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Abstract

These lecture notes provide a self-contained introduction to integrals of a specific
type, frequently encountered in applications. These are called Euler integrals. The
application we will focus on is particle physics, where Euler integrals appear as Feynman
integrals or string amplitudes. Our four selected topics highlight geometric aspects, and
illustrate modern tools from computational algebra.
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Introduction

Consider ¢ Laurent polynomials fi,..., f, in n variables * = (z1,...,x,) with complex
coefficients. By an Euler integral, we mean any integral of the following form:
bt do dx dx
L A A ”_/f—sx”—. (1)
. .. :I; x x
r 1 ¢ T n r

The right-hand side is our shorthand notation. The first example is the Euler beta function

B(r,1—3s) = /0 a f/{[)s df — g((’;)i(ll :37 where I'(u) = /000 pu=lo—t gy 2)

is the gamma function. The equality in blue will be derived below. Such integrals have been
called many different names, depending on the context in which they are studied. They
were called generalized Euler integrals by Gelfand, Kapranov and Zelevinsky [27]. This
was motivated by Euler’s integral representation of Gauss’ hypergeometric function. Our
integrals (1) represent generalized hypergeometric functions, and the name hypergeometric
integrals has appeared in the literature as well [5]. When s; = --- = s, = 1 and I' = R7,
our integral is a function of v called the Mellin transform of (fi--- f¢)~' [12], which lead the
authors of [9] to use the name Euler-Mellin integrals for general s and I' = R"}. The name
Aomoto-Gelfand integrals refers to the work of Aomoto [1] and Gelfand [26]. In particle
physics, Feynman integrals in quantum field theory and string amplitudes in superstring
theory take the form (1) for particular choices of f;. In Bayesian statistics, these integrals
appear as marginal likelithood integrals. We elaborate on these applications below. In our
title, we chose to use Fuler integrals as an umbrella term for all these instances of (1).

In different sections, we will view the integral (1) as a function of different sets of param-
eters. For instance, in Section 1, we will fix I' = R"! and think of (1) as a function of s and
v. On the other hand, in Section 3, we think of the integrand as an element of a cohomology
vector space, hence the integral gives a linear function which sends I" to (1). We will also
consider the case where the coefficients of f; depend on some parameters z. In this case our
integral is a function of z satisfying some interesting differential equations (see Section 4).

As mentioned above, Euler integrals appear in particle physics. The first important
example comes from quantum field theory, where Feynman integrals are used to describe
particle scattering processes. For a complete introduction to the subject, we refer to the

recent book by Weinzierl [19]. In Lee—Pomeransky representation [36]|, up to a prefactor
involving gamma functions in s, v, the Feynman integral of a graph G takes the form
x¥ dx
I = / —_— 3
Ri(UG‘i‘FG)S X ()

where n is the number of internal edges of G, and U, F¢ are the first and second Symanzik
polynomials associated to the graph. We illustrate this with our first running example.

Example 0.1. Consider the triangle diagram G with three massless internal edges with
variables (z1, x5, x3) and three external (open) edges attached to each vertex with kinematic
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parameters (ty, ta, t3):
to

s / \1 (4)

ty T2 t3

The Uq polynomial is the sum over spanning trees of (¢, with each term given by the z;’s

not present in the tree:
Ue = / —l—A—l— \ =T + T3+ 3. (5)

The Fg polynomial is given similarly as a sum of two-forests (disjoint unions of two trees),
each weighted with the corresponding kinematic variable:

|
fG:/&‘i‘ +/\:—tl'$2$3—t2'133$1—t3'$1$2. (6)
The associated integral is given by

I. — / xtwas? dazydzodes
aq = .
R (Zl'l + To -+ T3 — tl T3 — tg 1,3 — t3 . Il.CCQ)s T1X2T3

(7)
3
+
The exponents v; are typically taken to be non-negative integers and s = D/2 is half the
space-time dimension D. It is often convenient to think of (v, 15,1v3) and s are generic
parameters, which is referred to as analytic and dimensional regularization respectively. ¢

The second application of Euler integrals in physics comes from scattering amplitudes in
string theory, where instead of particles one computes the probability of strings interacting
with each other. See [37] for a comprehensive review. This offers a nice immediate connection
to algebraic geometry. The integration is on the moduli space M, ,, of genus zero curves
with m marked points, i.e. the space of configurations of m distinct points on P! up to its
automorphisms PSL(2). We can represent these points as the columns of a 2 x m matrix
with nonzero 2 X 2 minors. Two such matrices M;, My represent equivalent configurations if
there is an invertible 2 x 2 matrix 7" and an n x n invertible diagonal matrix D such that
T-M,-D = M,. We can use the action of T"and D to fix 3 out of m points, leaving n = m—3
degrees of freedom. Following |3, we write a point of Mo, as

1 1 1 1 . 1 0
M = (0 1 142 14+ 429 -+ 142+ +2, 1)’ (8)

where n = m — 3 and the 2 X 2 minors f;; = M;My; — My;My;, i < j are nonzero. The string
amplitude is given by an Euler integral depending on an extra parameter o':

!

AR o e

(a/)n / 1 n 7o _ (9)
MG H1<i+1<j<m i v
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The pairs (i, j) excluded in the product in the denominator are those for which the minor f;;
is either constant or one of the x-variables. The integration is over the positive part ./\/lafm
of My, which is the subset of points M satisfying f;; > 0, for all 1 <7 < j < m. Using
the parameterization (8), one checks that this is R’}. There are two physically interesting
limits: o/ — 0 and o/ — oco. The first one is called the field theory limit in which strings
become particles, and the second is the high-energy limit. We will see in Section 2 that both
of them admit an elegant geometric description.

Example 0.2 (m = 4). The moduli space M4 has dimension 1. The four-point string
amplitude (9) is o - B(a/v, —a'v + o/s13), where B is the beta function from (2). o

Example 0.3 (m = 5). The matrix parameterizing M, is

11 1 1 0

which has only 5 ordered minors depending on the variables (z1, x2):

fis=1+z1, fu=14+x1+z2, faz=ax1, fou=a1+22, fau=a0. (11)

The minors fo3 and f34 are not included in the integrand of (9), since they would only shift
the exponents of x? “J. The five-point string amplitude is given by

! /
[ dzydzy

Is = 0/2-/ ; ; ; 12
5 ( ) Ri (1+J}1>a513(1+$1+I2)asl4(ff1+172)a 524 1Tq ( )

The parameters (1, Vg, S13, S14, So4) describe momenta and angles of the 5 strings involved in
the scattering process. o

Euler integrals also have many other applications of recent interest, including marginal
likelihood integrals [13], wave functions in cosmology [7], and correlation functions of con-
formal field theories [22, 15].

1 Newton polytopes and convergence

This section discusses convergence of the integral (1), viewed as a function of the exponents
s,v. The integration contour I' = R} is fixed throughout the section. We set

d
I(s,v) = [ e (13)
R? x

To ensure that the integrand is finite on R}, we make the following assumption.
Assumption 1. The coefficients of f; are real, positive numbers. That is,
= > Gara® i=1..0 (14)
a € supp(fi)

where ¢; o € Ry, supp(f;) C Z" is the support of f; (see Definition 1.1) and ® = z{* - - - xo".
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Before studying convergence, we should address how to evaluate the integrand f—*z".
Since s and v are complex vectors, this function may be multi-valued. For instance, we have

fi(z)™ = exp(s;logfi(x)),

and log is only defined up to translates by integer multiples of 27v/—1. When s is not
an integer, exp(s;F) # exp(s;(F + 2my/—1k)) for some integer k. Le., there are multiple
branches of f;(x)*. Assumption 1 ensures that f; takes positive values on R, so that there
is precisely one positive branch of log f; and log ;. In this section, our integrand is

[z = exp(—silog fy — -+ — splog fo + vilogazy + -+ - + v, log z,,),

where the unique positive branches of log f; and log z; are intended.

As it turns out, statements about convergence of (13) involve convex polytopes and poly-
hedral cones. We start by introducing these objects, and then switch to convergence results
from [3, 9, 12]. In [9, 12], (13) was called an Fuler-Mellin integral and weaker assumptions
on f; are used. In this text, we stick with Assumption 1 for simplicity.

1.1 A little polyhedral geometry

This section introduces properties of convex polytopes and polyhedral cones that we need
in this text. We omit most proofs, and refer the reader to the standard text book [50] for
more details. A subset P C R" is called convez if for any p,ps € P, the line segment p;ps
is contained in P. The convexr hull of A C R" is the smallest convex subset P C R" such
that A C P. We denote this by conv(A). A convex polytope in R™ is the convex hull of
finitely many points. Since we will not encounter any non-convex polytopes in this text, we
will sometimes omit the adjective convex. If P is a polytope and s is a nonnegative number,
the s-dilation of P is the convex polytope

s-P={s-p:peP}

Here s - p is the usual scalar multiplication for vectors in R™. It is easy to check that s- P is
indeed a convex polytope. The Minkowski sum of two polytopes P, Q) is

P+Q ={p+q:peP qgeQ}

This binary operation is commutative and associative. An example is shown in Figure 1
(left), where we take the sum of three polytopes in R%. Each is the convex hull of the points
represented by black bullets. The dimension of a polytope is the dimension of the smallest
affine space containing it. Figure 1 (left) shows two polytopes of dimension two (these are
also called polygons), and two polytopes of dimension one (i.e. line segments). In the right
part of that figure, we show a three-dimensional convex polytope in R3. The polytopes we
will encounter in this text arise as the Newton polytope of a Laurent polynomial.

Definition 1.1 (Newton polytope). Let f = Y . co2® € Clzy",..., 25! be a Laurent
polynomial. The support of f is the set supp(f) = {a € Z" : ¢, # 0}. The Newton polytope
A(f) C R" is defined as the convex hull of the support, i.e., A(f) = conv(supp(f)).
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(0,1,1)

(0,1,0)

(1,0,1)
' h ’ \ ) &
— o (1,0,0)

Figure 1: Left: Minkowski sum of three polytopes in R?. Right: The polytope A(Ug + F¢)
of the triangle Feynman diagram.

(1,1,0)

At the level of Laurent polynomials, Minkowski addition corresponds to multiplication.
That is, for two Laurent polynomials f, g, we have A(fg) = A(f) + A(g).

Example 1.2. The polytopes in Figure 1, from left to right, are the Newton polytopes of
L4z, 144z, 1422, (I4+z1)(1+ 21+ 22) (21 + 22),
and the polytope A(Ug + F¢) for the denominator of (7). o

A nonzero vector y € R™ defines a face P, of a polytope P as follows:
P,={peP:y -p=miny-q}.
qeP

In particular, P is a face of itself: Py = P. Every face P, of P is a polytope itself, and a face
of a face of P is a face of P itself. If dim P, = dim P — 1, P, is called a facet of P. Faces
of dimension 0 and 1 are called vertices and edges respectively. For example, the polygon in
the middle of Figure 1 has 5 vertices, 5 facets (or edges), and one 2-dimensional face.

The faces of P divide up R™ into finitely many regions. For a given face () C P, we set

Co ={yeR":QCP,}

For any face Q) C P, Cq is a polyhedral cone. l.e., there is a finite set A C R™ such that

reA

Co = pos(A) = {Zcrr GRS Rzo}- (15)

All our cones are polyhedral, so we will sometimes just refer to them as cones. The dimension
of a cone is the dimension of the smallest linear space containing it. For our cones Cgp, we
have dim Cy = n —dim Q. E.g., if v € P is a vertex, we have dimC,, = n. If dim P = n and
Q is a facet, then Cg is a one-dimensional cone. These are called rays. When @) runs over
all faces, the cones Cq tile up R". The same is true for the vertices v. In symbols,

R" = | JCo = [ JCu (16)
Q v
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A cone C is called pointed it C'N(—C) = {0}. If P C R" is full-dimensional, i.e. dim P = n,
the cone Cq is pointed for each face ) C P. If Cg is pointed and A C R" is the minimal
subset such that (15) holds, the elements of A are called ray generators of C. The reason
is that each r € A generates the ray Cyr C Cp of a facet Q" O Q. A k-dimensional cone is
called simplicial if it has a set of k ray generators. This always holds when k£ < 2.

The collection of cones £p = {Cq : @ face of P} is closed under taking intersections.
In fact, one can check that Cg, N Cy, = Cq,,, where Q12 C P is the smallest face of P
containing both ()1 and ). This fact, together with the observation that > p is closed under
taking faces (we leave the definition of a face of a cone to the reader), makes ¥p into a
polyhedral fan, called the normal fan of P.

Example 1.3. A pentagon P in R? has five vertices. These give five pointed full-dimensional
cones in its normal fan. The ray separating two neighboring cones C,, and C,, is the cone
Cy,v, corresponding to the edge containing v; and ve. This is illustrated in Figure 2. The
cone Cp = {0} is the only zero-dimensional one. The normal fan ¥p is invariant under
translations of P. L.e., Xp = Xp.,, for w € R". We encourage the reader to check this. ¢

Figure 2: The normal fan of a pentagon has five two-dimensional cones.

Our final construction is the polar dual P° of a polytope P C R"™. This is given by
P’ ={yeR":y-p>-—1, forall p e P}.

If P is full-dimensional and it contains the origin in its interior int(P), P° is again a polytope.
Its vertices lie on the rays of the normal fan ¥ p. Hence, the normal fan induces a subdivision

P° = JB,, where B, =C,NP" (17)

Here B, is the convex polytope {y € C,, : y-v > —1}.

Example 1.4. The polar dual and its subdivision are illustrated in Figure 3. To satisfy
0 € int(P), we translated our polytope so that (0,0) is an interior lattice point. o

The following lemma will be useful in our discussion on convergence.



Vs

Figure 3: The polar dual of P and its subdivision induced by the normal fan ¥p.

Lemma 1.5. Let P be a full-dimensional polytope in R"™. We have 0 € int(P) if and only if
for all vertices v of P, y-v <0 for ally € C, \ {0}.

Proof (sketch). The proof uses the facet description of int(P):
int(P) = {peR" : rg-p>rg-vg, forall facets Q C P}.

Here r¢ is any ray generator of the ray Cy, and vg is any vertex contained in @). If and only
if all right-hand sides 7¢ - v are negative, p = 0 belongs to this set. For a given vertex v of
P, a vector y € C, can be written as y = ZUEQ cQrg, with cg > 0. The lemma follows. [J

1.2 Nilsson-Passare convergence

The main theorem of this section identifies a region in (s, v)-space C**™ in which the integral
(13) converges. The result for £ = 1 and s = 1 is due to Nilsson and Passare [12|. This was
generalized to integrals of the form (13) in [9]. The papers |9, 12| use weaker assumptions
on f. Our proof below is inspired by that of 141, Section 2| and [%, Claim 1].

Theorem 1.6. Let Re(s;) > 0 fori = 1,...,¢ and suppose that A(f1) + --- + A(f) has
dimension n. The integral (13) with f; satisfying Assumption 1 converges absolutely if and
only if Re(v) € int(P(s)), where P(s) = Re(s1) - A(f1) + - -+ Re(se) - A(fr).

Example 1.7. Ignoring the o/ parameter for now, the string amplitude Z5 from (12) is

7. — / it ay? d:cldxg' (18)
R (1 + 331)813(1 +x1 + 33'2)814(1'1 + .T2)834 T1T9

2
+

Suppose (s13, S14, S34) = (1,1,1). By Theorem 1.6, the integral converges if (14, 15) € int(P),
where P is the pentagon in the middle of Figure 1. For (vq,15) = (1,1), we find using

Integrate [ ((1+x1) (1+x1+x2) (x1+x2))~(-1), {x1,0,Infinity}, {x2,0,Infinity}]



in Mathematica that Zs = 72/6. Multiplying the integrand with x1*x2, i.e. , using (vy, 1) =
(2,2), the program prints a message saying that the integral does not converge. o

The normalized volume of a compact set B C R™ is defined as Vol(B) = n!- [, 1dz. Our
proof of Theorem 1.6 uses Lemma 1.5, as well as the following lemma.

Lemma 1.8. Let C' C R" be an n-dimensional polyhedral cone and let v € R™ be such that
y-v <0 forallye C\{0}. Then B={ye C : y-v>—1} is a polytope with volume

Vol(B) = /Cexp(y-v) dy. (19)

If, instead, y - v > 0 for some y € C'\ {0}, then the integral above diverges.

Proof. 1t suffices to show this in the case where C' is simplicial, with n ray generators
r1,...,7,. This is because if C' is not simplicial, it can be subdivided into finitely many
simplicial cones Cf, ..., C}, and we would conclude

Vol(B) = ZVOI(BHQ) = Z/C exp(y-v) = /Oexp(ym).

Since y-v < 0 for all y € C, we may also assume that the ray generators r; are scaled so that
r; - v = —1. This means that Vol(B) = |det(A)|, where A = (rq,...,r,) is a matrix whose
columns are the ray generators. Since C' is simplicial, a point y = (y1,...,y,) € C can be
written uniquely as y = Az, where z = (21, ..., 2,) are new nonnegative coordinates. Hence

) exp(v'T Az)dz = |det(A)| /n HeXp(zi(n -v))dz.

+ + =1

/ exp(y - v) = |det(A)
C

|
R
We now perform the integration for each variable z; separately to conclude

e et ] [Mr

3 -V
=1

The integral is finite if and only if ; - v < 0 for all rays, which is equivalent to y - v < 0 for
all y € C'\ {0}. In this case, it equals |det(A)| = Vol(B), as desired. O

Proof of Theorem 1.6. We start with a change of variables z; = exp(y;):

dr exp(y - v)

= T T e Tty

+
To show absolute convergence, we need to prove that

/ exp(y - Re(v))
n e f(exp(y))Re(s)

exply - V)
o))

dy < oo.




The equality in this display uses [r*V=1| = |exp(log(r)(a 4+ v—1b))| = |exp(a log(r))| = r*
for a positive real number r and real numbers a,b. Notice that this means we may assume
s and v are real. We first consider the case where ¢ = 1. Let P be the Newton polytope
A(f) of f = fi. We have seen in (16) that its normal fan subdivides R™ into n-dimensional
polyhedral cones C,,, where v runs over the vertices of P. Therefore

Z(s,v) ZI (s,v) Z/ ey -v) dy (20)

¢, F(exp(y))®

Notice that we use the cones —C, instead of C, for this decomposition, because these are
the domains on which we can find easy bounds for the integrand. Let f =) ¢, - 2* with
cq > 0, as in Assumption 1. With our change of variables, this becomes f(e¥) = >  c,-e¥“.
Since v is a vertex of Ay, one of the exponents a equals v. Fory € —C,, y-v > y -« for
a € supp(f) \ {v}. This gives the following chain of inequalities:

c, - exp(y-v) < flexp(y)) < an exp(y - v) (21)
This leads to a chain of inequalities of integrals. Let M =) ¢,. Since s > 0, we have

M [ ety sy < o) < 6 [ el (- s

The integral appearing on the left and right of this expression can be written as

/ exp(y - w)dy, with w=sv—w.

By Lemma 1.8, this integral converges if and only if y - w < 0 for all y € C, \ {0}. Notice

that w is a vertex of the polytope s- P — v, and the cone C,_, in its normal fan equals C,.

By Lemma 1.5, y-w < 0 for all y € C, \ {0} = C, \ {0} for all vertices w if and only if

0 € int(s - P — v). This is equivalent to v € int(s - P), which proves the theorem for ¢ = 1.
When ¢ > 1, the formula (20) generalizes to a sum over the vertices of P(s):

exp@ V)
Zs,) ZZ 5v) Z/ o Frlexp @) - felexpm) ¥

Here P(s) = s1-A(f1)+- - +s0- A(fe). Each vertex v of P(s)isasum v = sy-v1+---+ 5,0
of vertices s;-v; of the summands s;- A(f;). Here v; is the face A(f;), C A(f;) for any interior
point of C,. With the notation for coefficients as in Assumption 1, we set M; = > ciq.
Bounding each of the f; via ¢;,, exp(y - v;) < fi(exp(y)) < M;exp(y - v;) as in (21), we find

4

[ |
i=1

} exp(y - (v —v))dy < Z,(s,v) < H / exp(y - (v —wv))dy. (22)

Again, the integral in these expressions converges if and only if 0 € int(P(s) — v). O
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Remark 1.9. The decomposition of the integral Z(s,v) in (20) is referred to as sector
decomposition in the physics literature [29, Section 3.4]. This is used in state-of-the-art
algorithms for evaluating Feynman integrals numerically, which use Monte Carlo sampling
and tropical geometry |11, 12].

By Lemma 1.8, if Re(s;) > 0 and v € int(P(s)), the bounds in (22) can be written as

¢
H M; R Nol(B,_,) < |Tu(s,v) H ) Vol(B, ). (23)
=1 i=1
Here B,_, ={y € C, : y- (v —v) > —1} is the portion of (P(s) — v)° corresponding to the
vertex v, see Figure 3. This will be important in our discussion on field theory limits.
Theorem 1.6 identifies a region of convergence of the integral (13), which is geometrically
described by a convex polytope. As pointed out in |9, Example 2.3|, the integral might
converge on a larger domain. E.g., the assumption Re(s;) > 0 is in general not necessary.
However, as it turns out, our domain is large enough to allow a unique meromorphic contin-
uation of Z(s,v) to the entire parameter space C*+". This is similar in spirit to the fact that
the integral representation of the gamma function seen in (2) only converges for Re(u) > 0.
The meromorphic function I'(u) is obtained by extending that integral function on R, to a
function on C \ Z< satisfying I'(u + 1) = uT'(u). Let us now consider the beta function.

Example 1.10. The coordinate change z = ¢ brings the integral in (2) into the form (13):

Loy da /OO y’  dy
= = L yith §=v+1--s (24
/0 (1—x) o (1+9)" vy )
Theorem 1.6 predicts convergence when Re(5) > 0 and v € int(P(3)), where
P(35) = {peR:p>0, —p > —Re(3)}. (25)
To justify the blue equality in (2), we observe that when these convergence conditions hold,
o) o 00 yy dy
Nv+1-s)-Br,1—3s) = / " %e tdt/ —_
i Bt o Ty y
v—1 —5
L) ) cae
1+y 1+y (1+y)?
With the coordinate change v = - +y, w = F we have u +w =t and tdy;)t dudw. Hence

'v+1-s)-Br,1—3s) = / u’ e du / w e dw = I'(v)I'(1 - s).
0 0

While the integrals in these equalities only make sense in their respective convergence re-
gions, we may use the definition of the gamma function to extend the beta function to a
meromorphic function on C?:

L)' —s)
Brv,1—s) = ————.
(r1=s) Fv+1-s)
Its poles are countably many lines in (s, v)-space, given by v, 1 — s € Z<o. o

11



A

Figure 4: The poles of the meromorphic continuation of I5 with (si3, $14,534) = (1,1,1) are
lines emanating from the boundary of the pentagon P from Example 1.7.

The fact that the beta function extends to a meromorphic function whose poles are given
by some gamma functions is an example of a general phenomenon, proved in [9]. We include
the statement, but omit the proof. We refer the reader to |9, Theorem 2.4] for full details.

Theorem 1.11. Suppose the Minkowski sum A(f1) + - -+ A(fy) has dimension n and the
polytope P(s) = Si_ Re(s;) - A(f;) is given by N < oo inequalities:

P(s) = {peR" :r;-p > w;-Re(s), i=1,...,N}, reR" w; €R"

Under Assumption 1, Z(s,v) from (13) admits a meromorphic continuation of the form

q)f(s,u)-HF(n-y—wi-s), (26)

where (s, v) is an entire function.

It is worth noting that only the entire factor ®;(s,r) in Theorem 1.11 depends on the
specific positive coefficients of f. The gamma factors only depend on the polyhedral data
coming from P(s). For fixed, positive s, the poles of this meromorphic continuation are
hyperplanes emanating from the boundary of P(s). This is illustrated in Figure 4 for (18).

Example 1.12. In Example 1.10, we read off from (25) that N = 2 and r, = 1, w; =
0, 7o = —1, we = —1. The gamma factors in Theorem 1.11 are I'(ry - v — w; - §) = I'(v) and
[(ry-v —wy-5) =T(1—s). The entire function ®1,(s,v) equals ['(v +1 —s)L. o

2 Limits and critical points

In this section, we continue to use the integration contour I' = R” and we work under
Assumption 1. We now think of the parameters s, v to be fixed, satisfying the conditions

12



of Theorem 1.6. The main novelty with respect to Section 1 is that we introduce a new
parameter 9, of which the integral Z is now a function:

vy vn
1 S d dx,, 1 B 1 d
I((S) = 5_n/ xlsl xse ;Jl Ao A xx - 5_n (f sxu)}s % (27>
Riff...ff 1 n r

Notice that 6! plays the role of the inverse string tension o’ in the string amplitude (9). We
are interested in the opposite limits lims_,o, Z(6) and lims_,o+ Z(0). Motivated by the physics
application, these are called field theory limit and high energy limit respectively [11, 8]. They
are the leading terms in the series expansions of Z(§) around § = oo and § = 0.

As it turns out, both the field theory limit and the high energy limit can be expressed in
terms of complex critical points of the potential function or log-likelihood function

logl = log f %z = —sylogfi —---—sglog fr + 17 logxy + -+ - + v, log x,.

These critical points are the complex solutions to the n rational function equations

0 9
d(log f~*x") v, a_:J:; anﬁ ,
= — — 5 — =8y :0’ 3217.__’71_ (28)
Oz, x; fi fe
These rational functions are defined where neither x; nor f;(x) are zero. We define
X ={zeC":ay- -z fi(x) - fo(z) #0}. (29)
This is an example of a very affine variety, see |31, page 6]. The set of complex critical

points of log L is Crit(log L) = {z € X : x satisfies (28)}. Since (28) consists of n equations
in n unknowns, we expect Crit(log L) to be finite. A solution z € Crit(log L) is degenerate if

0 0
HlogL = det (.T]% (Jfka—mlOgL(lL‘))) = 0. (30)
J ak

This determinant is called the toric Hessian of log L. It is much like the usual Hessian
determinant, but with 0/0z; replaced by the Euler operator z,;(0/0z;). Using the toric
version will be convenient later in the section. The following result is Theorem 1 in [33].

Theorem 2.1. There is a dense open subset U C C*™ such that for (s,v) € U, the number of
solutions to (28) equals the signed Euler characteristic (—1)"-x(X) of the very affine variety
X, and all solutions are non-degenerate, meaning that Hy,e,(x) # 0 for all x € Crit(log L).

Theorem 2.1 says that the number of points in Crit(log L) depends only on the topology
of the space X. We will see how to compute the Euler characteristic x(X) below.

In Section 2.1 we discuss how to compute Crit(log L) using numerical homotopy continu-
ation. Sections 2.2 and 2.3 explain how these critical points are used to compute field theory
and high energy limits respectively.
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2.1 Computing critical points

Our goal is to solve the equations (28), assuming that (s,v) € C**" belongs to the set U from
Theorem 2.1. This ensures that there are finitely many solutions, all of them non-degenerate,
and the number of solutions we find is the Euler characteristic of X (up to sign).

We use the Julia package HomotopyContinuation. j1l (v2.6.4) for all computations in this
section [11]. Our approach follows that in [17] and is illustrated by means of an example,
for which we use the integral (18). The function log L is

log L = —sy3log(1 + x1) — s14log(1 + x1 + x2) — s34log(xy + x2) + 14 log 1 + 15 log 5.

Its partial derivatives give two rational function equations g; = g2 = 0 in the unknowns x1, zs:

S13 S14 534 n S14 534 V2
S . e N CT)

1—|—32'1 1+Q31+£C2 T+ T2 T 1+$1+l’2 1+ T2 )
Importantly, we think of s and v as parameters at this stage. We will emphasize the de-
pendence of g; on these parameters by writing g;(x; s,v). The fixed complex parameters we

want to solve for are denoted by (s*,v*) € U. Here is how to code this up in Julia:

g1 =

using HomotopyContinuation # load the package

n=2;1=3; @ar v[1:n] s[1:1] x[1:n] # declare variables and parameters
f=1[1+ x[1]; 1 + x[1] + x[2]; x[1] + x[2]]

logl = - sum([s[il*log(£f[i]) for i = 1:1]) + sum([v[jl*log(x[j]) for j = 1:n])
g = differentiate(logl, x)

g_sys = System(g, parameters = [s; v]) # system of equations with parameters
s_star = [1;1;1]; v_star = [1;1] # chotce of target parameters

Here we chose s* = (1,1,1) and v* = (1,1), like in Example 1.7. The strategy for solving
g1(x; s*,v*) = gox; s*, V") consists of two steps:

1. Solve g;(z;5,7) = go(x; 8, ) = 0 for a different set of parameters (5,7) € U.

2. Deform the start parameters (3,7) continuously into the target parameters (s*,v*) and,
along the way, keep track of the solutions to ¢i(x; s, v) = go(z;s,v) = 0.

Both these steps require numerically tracking solution paths as we vary the parameters. This
can be phrased as numerically solving an ordinary differential equation called the Davidenko
equation. For details, we refer to the standard textbook |16].

Step 1 is done using the monodromy method [23]. We explain how this works in a
nutshell, using Figure 5 as an illustration. In that cartoon, the solutions for a fixed point
(s,v) are represented by the points on the blue surface lying directly above it. This surface
represents the incidence space {(z,s,v) € X x C*" 1 gy(x;s,v) = go(x;5,v) = 0}. Choose
a random point £ € X, and let (5,7) be any solution to the linear system of equations
91(Z; s,v) = go(Z;s,v) = 0. Clearly, 7 is a point lying above (§,7). This is called the seed
solution. Now walk a loop in (s, v)-space while keeping track of the seed solution Z along
the way. When we arrive back at (3, 7), there is a good chance we picked up a new solution
Tnew t0 the system ¢;(z;5,7) = go(x; §,7) = 0. Now repeat this procedure to populate the
solution set. In practice, this technique is extremely effective. In Julia, all this happens via
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Figure 5: Tllustration of the monodromy method.

R1 = monodromy_solve(g_sys)
start_pars = parameters(R1); start_sols = solutions(R1)

The variable start_pars stands for start parameters. It contains {+n = 5 complex numbers,
the first £ = 3 of which give §, and the last n = 2 give . If all went well, the variable
start_sols contains all solutions to ¢;(z; §,7) = go(x; §,7) = 0. Hence, step 1 is completed.

By Theorem 2.1, the number of solutions in start_solutions equals (—1)"- x(X). This
gives a way of computing x(X), which has been applied in some challenging cases [2, 17].
In our example, the number of solutions is 2. Here is a way to verify that y(X) = 2. The
real part Xy of the very affine variety X is the complement of an arrangement of five lines
in R?. These lines are given by {z; = 0},{z2 = 0}, {1 + 2, = 0}, {1 + 21 + 22 = 0} and
{z1 + 22 = 0}. By [18, Theorem 1.2.1], the signed Euler characteristic of X is the number
of bounded cells of Xg. In our case, the bounded cells are two triangles.

In step 2, we use our start solutions as initial conditions for path tracking from (§,7) to
(s*,v*). That is, we use the solutions start_sols for parameters start_pars to compute
the solutions solutions(R2) for the target parameters [s_star; v_star]:

R2 = solve(g_sys, start_sols; start_parameters = start_pars,
target_parameters = [s_star;v_star])
solutions(R2)

The last line prints an accurate numerical approximation of the two critical points:

<\/52_ L 1) , (# 1) . (32)

2.2 Dual volumes in field theory limits

We switch back to the integral (27). The field theory limit of Z(0) is lims_,o, Z(9). This has a
nice description in terms of our polytope P(s) = Zle Re(s;) - A(f;) from Theorem 1.6, and
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in terms of the critical points Crit(log L) computed in the previous section. The statement
uses the toric Hessian determinant H_ .z, of minus the log-likelihood function, see (30).

Theorem 2.2. Let Re(s;) > 0 fori = 1,...,¢ and suppose that A(f1) + -+ + A(fe) has
dimension n. If f1,..., fi satisfy Assumption 1 and v € int(P(s)), then we have

lim Z(5) = Vol(P(s) —=v)°) = > H_igr(z)™". (33)

d—00
z€Crit(log L)

Proof. We prove the first equality. The second equality uses [3, Section 7.1, Claim 4]. See
also [17, Theorem 13|. For any fixed 6 € R, we have v/é € int(P(s/d)), and a vertex v of
P(s) gives a vertex (v —v)/d of P(s/d) — v/d. We can use (23) to obtain the estimate

L 14
—Re(si)/6 n —Re(si)/6
ST M Vol(Bu-o) < 6"-Z(8) < > [] i Vol(Buw).  (34)

v o1=1 v 1=1

The sums are over vertices of P(s). The factor §" in the middle comes from Z(4) = 6" -
I(s/6,v/d), with Z(s,v) as in (13). Using the scaling property of the volume Vol(B,_,)/5) =
o™ - Vol(B,_,), we can cancel 0" from (34). Taking the limit § — oo gives

lim Z(5) = »_Vol(B,—,) = Vol((P(s) — v)°)

d—00

as desired. For the last equality, see (17) and Figure 3. ]

Example 2.3. Let us verify the formula (33) for the integral representation (24) of the
beta function. The Newton polytope P(3) is a segment given by (25). The dual polytope
(P(3) —v)° is given by (s, ). Its volume Vol((P(8) — v)°) is = + == = @ Checking
that this equals our field theory limit can be done in one line of Mathematica code:

Limit[1/&*Integrately~(v/& - 1)/(1 + y)~(s/8), {y, 0, Infinity}], & -> Infinity]

Finally, we compute the sum of H_ . (y) evaluated at the critical points of log L. We solve

d v S
ay %% (y) ;11

The unique solution is y = . The toric Hessian determinant of —log L is

e

d d d Sy Sy
Hoenli) = g (v oe L)) = v (v= 15 ) = o 39

The value at y = % is @ We have now confirmed (33). o
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Example 2.4. Consider the integral Z(§) from (12) with o/ = 3. The Newton polytope

P(s) = P(s13,514,524) of fi(x1,22) = 1 + @1, fo(w1,22) = 1 4+ 21 + 22, f3(21,22) = 21 + 22
is two dimensional for positive s. When s13 = s14 = $o4 = 1, it is as in Figure 1. We take
vy = vy = 1. The values of H_ g1, at the two critical points (32) are

% <25 n 11\/3) , % (25 _ 11\/5) .

The sum of the reciprocals of these two numbers is 5. This is the area of (P(s) — v)° in
the right part of Figure 3, normalized by a factor 2! = 2 (recall our definition of Vol in the
discussion preceding Lemma 1.8). Let us illustrate the computation of the dual volume using
the Julia package 0SCAR. j1 (v0.12.0) [13]. It calls polymake for polytope computations [25].
The Newton polytope P = P(s13, S14, S24) of Example 2.4 is computed as follows:

using Oscar #load the package

P1 = convex_hull([0 0;1 0]) #Newton polytope of f1
P2 = convex_hull([0 0;1 0;0 11) #Newton polytope of f2
P3 = convex_hull([1 0;0 1]) #Newton polytope of f3
P = P1+P2+P3 #Minkowski sum

The dual polytope (P(s) — v)° and its volume are computed by the commands
polarize and volume respectively. The vertices of the dual polytope (P — v)° are
(1,1),(1,0),(0,—-1),(—1,—1),(0,1) as in Figure 3. The normalized volume is 5, as expected.

DP = polarize(P+[-1,-1]) #dual polytope of P-v
println(vertices(DP)) #print the vertices

factorial (2)*volume (DP) #normalized volume - output: 5

The reader is encouraged to repeat this example for the Feynman integral (7). o

We point out that the field theory limit o/ — 0 of the string amplitude (9) is the scattering
amplitude for a physical model called bi-adjoint scalar ¢ theory. The expression in terms
of critical points was first discovered in |18]. The critical point equations (28) are called the
scattering equations in this context. For a connection to algebraic statistics, see [17].

As a final remark on field theory limits, note that the coordinates of the individual critical
points in Crit(log L) are algebraic functions of s,v. They are usually not rational functions,
like in Example 2.3. For instance, eliminating xo from (31) gives a quadratic equation in
x1, resulting in the square roots in (32) via the quadratic formula. However, the sum over
Crit(log L) in Theorem 2.2 is a rational function in s and v by Galois theory. This is called
the canonical function of P(s). On the domain Re(s;) > 0, v € int(P(s)), it evaluates to
Vol((P(s) — v)°). When s with positive real part is fixed and P(s) is viewed as a polytope
in n-dimensional v-space R™, the canonical function defines a meromorphic top form on R".
That form is called the canonical form of P(s) in the theory of positive geometries [0].
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2.3 Saddle point approximation in high energy limits

While the field theory limit lims_,o, Z(0) is obtained by summing over the complex points
Crit(log L), the high energy limit lims_,o+ Z(J) is governed by a single, positive critical point.

Theorem 2.5. Let s; € Ry fori = 1,...,0 and suppose that A(f1) + -+ + A(fe) has
dimension n. If f1,..., f; satisfy Assumption 1 and v € int(P(s)), then Crit(log L) N R’}
consists of one point {a}. Moreover, the following formula holds:

D=

lim (276) "% L(a) 5 Z(6) = (H_1g1(a))”

6—0t

(36)

We used the following conventions in (36). As above, for a positive real number r, we take
the branch of the logarithm for which logr € R. For the square root, we set (—T)% = ¢lars.
Notice that, rather than requiring Re(s;) > 0, here we only allow real values for s;. The
reader can check that, using the values s;5 = s14 = s34 — v/—1 = 1 in the example of Section
2.1 instead, there are no positive critical points.

To prove Theorem 2.5, we use two lemmas. The first is on the convexity of log L.

Lemma 2.6. Let fi,..., f; satisfy Assumption 1 and let si,...,s, € Ry. The function
log L(e*, ... ,e*) with L(x) = f~*x" is strictly concave in z € R™. The toric Hessian matriz

(1 (e si)) o

of log L is negative definite for any v € R}.

Proof. Substituting x; = exp(z;), the toric Hessian matrix (37) is the usual Hessian matrix of
— Zle silog fi(e*, ..., e*). Each summand is strictly concave for z € R” by [17, Theorem
1.13], so the toric Hessian is indeed a negative definite matrix. O

To state the next lemma, we introduce a version of the algebraic moment map puc : X —
C". This name comes from toric geometry, see Fulton’s book [241, Section 4.2|. Our moment
map is slightly different from the one used by Fulton. It is given by

l ¢
Mcm:( S sih)? S, Y s P >) (38)

i=1 =1

This map is closely related to our critical points. From (28), it is clear that « € Crit(log L) if
and only if uc(x) = v. The crucial properties of uc are summarized in the following Lemma.

Lemma 2.7. Let s; € Ry fori=1,... ¢ and suppose that A(f1)+---+A(f,) has dimension
n. If fi,..., fo satisfy Assumption 1, then pc(R%) C int(P(s)). Moreover, the restriction

po= (pc)rn = (p1,- ..o pn) : R —> int(P(s)) (39)
of pc to R} is a diffeomorphism, and the Jacobian matrix <%> 18 positive definite.
i/ jk=1
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Proof. This theorem follows from [21, Section 4.2] if ¢ = 1. The statement for ¢ > 1
has appeared in [3, Claim 4|. For the readers’ convenience, we provide a concise proof. Let
A; = supp(fi) C Z" be the set of exponents appearing in fi(z) = > c 4. Ciar®. We construct
the Cayley configuration A C 7™ of Ay, ..., A,. This is given by

A= {(ea) :acAy,i=1,...0} cCZ", (40)
where ¢; is the i-th standard basis vector of Z‘. Consider the Laurent polynomial f =
siyifi - Fswefe € Ry, ..y, 2, ..., 2], We define the map

X . of of of of
R 5 int A — e ey S N .
1% + m (pOS( ))’ (y,[L‘) (yl ay17 a?/éay/% 8.1717 y L 8$n
Here, pos(A) is the positive hull seen in (15). The reader who is unfamiliar with moment
maps should check that the image of /i indeed lies in the interior of the cone pos(A). By the
statement labeled (A,) in [24, page 83|, ji is a diffeomorphism.
We consider the polytope P(s) consisting of all points in pos(A) whose first £ coordinates

are (s1,...,5¢). The preimage of P(s) under fi is given by
Xy = {y,x) € an cynfix) = =yufe(x) = 1}

In fact, fi ¢, X, — int(P(s)) is a diffeomorphism. We now relate this to the moment map
in (39). To identify the domains of 4 and /i, we introduce the map « : R} — X, with k() =

~

(filz)™Y ..., fe(x) ' 2y, ..., 2,). For the co-domains, note that ¢ : int(P(s)) — int(P(s))
with ¢(v) = (s1,..., S, v) is an isomorphism. We obtain a diagram of diffeomorphisms

X, int(P(s)) .
R? "~ int(P(s))

The Jacobian matrix of u is positive definite on R”} if and only if the toric Jacobian matriz

o ; 5 R B )
<%’8_wj)j,k N (_'Ija_:r;j <xka—%logL(x)))jvk - ;Sl <x]a$j (mkaxk logfl)>j,k‘

is positive definite on R’} . The positivity follows from Lemma 2.6. ]

Note that Lemma 2.7 implies that, under our assumptions, Crit(log L) NR" = p'(v)
consists of a single point {a}. This is the first claim in Theorem 2.5. While Theorem 2.5
uses the fiber u~!(v), Theorem 2.2 sums over the fiber uz'(r) of the complexified map pc.

Proof of Theorem 2.5. We have established that Crit(logL) N R} = {a} is a singleton
(Lemma 2.7). Let U be a small open neighborhood of the positive critical point a. The
idea of the proof is to decompose Z(J) into two parts:



We will show that the integral over R} \ U does not contribute to the limit § — 0%, and the
integral over U gives rise to a Gaussian integral. By Lemma 2.6, log L attains its unique global
maximum at = a and log L(e*,...,e*) is a concave function of (z1,...,2,) € R" (see
Figure 6). There exists a positive number ¢ such that the inequality log L(z) —log L(a) < —¢
is true for R% \ U. We obtain the following inequality for 0 < ¢ < 1:

ST

L(a)™} /Ri\UL(x)}Sd;:e_ /Rwexp (57" (g L(x) ~log () +)) 2 (a1)

e

ST

IN

/R” . exp (log L(z) — log L(a) + ¢) (1_x (42)

Here, we used the fact that log L(z) — log L(a) + € is negative for any € R"} \ U, and the
final integral in (42) is bounded because of Theorem 1.6. The inequality (42) shows that the
integral over R" \ U converges to zero as § — 07,

Let P be an orthogonal matrix which diagonalizes the Hessian matrix of log L:

2
PT. (a 1OgL(a)) P =D.
Oz ;j0xy, ik

Here D is an n x n diagonal matrix, with negative diagonal entries. We perform a linear
change of coordinates y = PT(x — a). The Taylor expansion of log L(x) — log L(a) around
y = 0 looks like 1(y" Dy + r(y)). Plugging this into our integral gives

The last denominator is the product of the entries of Py + a. Without loss of generality,
we may assume that PT(U — a) is a product of small intervals (—¢, €)”. Replacing y; with
y;/\/9, the last integral becomes

N3

0

/ exp 1yTDy + r(\/gy) dy .
N 0 ) IL(VoPy +a);

The function 7(v/dy)/d is bounded for 0 < 6 < 1 and y € (—¢/+/0,€/+/9)™ and it converges
to 0 when 0 tends to 0. Therefore, Lebesgue’s dominance convergence theorem proves

=

n 1 d d
lim 672 L(a)~ /L(:v)“—x = / esv Dy W
550+ U x " ap - ay,

This leaves us with a Gaussian integral. To finish the proof, recall that

/ 2 dy = \/2—7;, for A <0,

and use the fact that H_jogp(a) = (a1 an)?* - [[,(— D). O
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L(l’l, 1'2)

T

Figure 6: The likelihood function of Example 2.4 attains its maximum at (21, z2) ~ (0.618,1).

Example 2.8. Let us verify the formula (36) for the integral representation (24) of the beta
function. The integral (24) is expressed by Gamma functions as in (2):

w0-5(55%5) - S50

The function L(a)_%, where a is the unique critical point - from (2.3), is given by

Stirling’s formula [(z) ~ V2me *2""2 (z — +00) shows that the left-hand side of (36) is

1

given by ,/—=— ( . We have seen in Example 2.3 that this equals H_o5 7 (a)” 2. o

3 Twisted (co)homology

In this section, we abandon the concrete integration contour R’;, and we drop Assumption 1.

We fix f = (fi,...,f.) € Claft, ... o s = (s1,...,58) € C'and v = (vy,...,v,) € C™
The perspective we take is that the Euler integral ( ) is the result of a pairing between the
integration contour I' and the differential n- form . More generally, an n-form ¢ gives

- /F ) (43)

This works nicely when I' is a twisted n-cycle and ¢ is a twisted n-cocycle. We will introduce
these concepts, and see that the pairing (43) is a perfect pairing of finite dimensional C-vector
spaces. In particular, the integral (43) always evaluates to a (finite) complex number.

This story is reminiscent of the classical duality between singular homology and de Rham
cohomology, where one pairs an integration contour A on a complex manifold X with a
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differential form ¢ by evaluating [ A @ [28, Chapter 0]. In our setting, X is the very affine
variety seen in (29). The material in this section is like that standard theory, but with
a twist. For instance, recall from the beginning of Section 1 that our integrand f~*x" is
multi-valued. To make sense of the integral (43), we need to specify a branch. We will see
that this information is carried by our twisted cycle I'. Also, a central role in de Rham’s
cohomology theory is played by Stokes’ theorem, which says that for an (n — 1)-form v,

Joaw= | v (44)

In our setting, the twisted boundary operator d,, takes the choice of branch into account, and
the twisted differential V,, replaces the ordinary differential d to accommodate our integrals:

/fsx” Vo = fx" . (45)
r 8T
The meaning of the index w will become clear soon. For now, it simply indicates the twist.

The theory of twisted (co)homology goes back to the seminal work of Deligne and
Grothendieck [21]. It has been investigated in the context of Euler integrals and hyper-
geometric functions by several authors, among which we mention Aomoto, Gelfand, Iwasaki,
Kapranov, Kita, Matsumoto and Zelevinsky. See [5, 27| and references therein. The rele-
vance of this theory in particle physics was first realized by Mastrolia and Mizera [33].

The section is organized as follows. We start by discussing twisted chains and cycles,
leading to a twisted version of the usual chain complex of X. Next, we switch to the
dual complex, called the twisted de Rham compler of X. We discuss properties of the
(co)homology of these complexes, ultimately leading to the perfect pairing in (43).

3.1 Twisted chain complex

Throughout the section, X is the very affine variety from (29). A singular k-simplex A in
X is a continuous map from the standard k-simplex to X. The C-vector space generated by
all singular k-simplices is the space of singular k-chains, denoted Cy(X):

ax)= € c-aA (46)
ACX, k-simplex

Example 3.1. Examples of 1-simplices X = C\{0, 1} are illustrated in Figure 7. Here ¢ € R
lies in (0, 1/2). There are 5 simplices in total. Four of them are semicircles, parameterized by

Agple) = {t—ate-exp(v/—1(0 +tr)}, t€][0,1].

The remaining simplex is the line segment [e, 1 —¢], parameterized by ¢ — (1 —t)e+t(1—¢).
These parameterizations fix the orientations visualized by the arrows in Figure 7. o

We need to modify this standard construction to account for multi-valuedness of f~*z".
The branches of f~°z” generate the space of sections of a line bundle £_, on X called a
local system. On an open subset U C X, these sections are

L_,(U) ={r:U — C : 7 is holomorphic and dr — dlog(f°z") 7 = 0}. (47)

22



Aog,o(e) Aqo(—¢)
[e,1—¢]
0 m
Aox(e) Ay x(—e)

Figure 7: Five simplices in C\ {0, 1}.

One checks that each branch 7 of f~%z" indeed satisfies the equation dr — dlog(f~*z") T =
0. The one-form dlog(f~*z") is of crucial importance in this section, so we introduce the
notation w = dlog(f~*z"). We have w = ¢;dz; + - -+ + g,dz,, where g; are the rational
functions in (28). The symbol £_,, stresses the term —w in the operator applied to 7 in (47).

Picking a (linear combination of) branch(es) of f~*z” on a singular k-simplex A means
picking a section 7 of £L_, on a sufficiently small open subset U D A. We formalize this
intuition by considering the direct limit

L ,(A) = lim £,(U). (48)

UDA

Here the open sets U containing A are ordered by inclusion, and when U C U’, the map
L_,(U)— L_,(U) is given by restriction. A reader who is unfamiliar with direct limits can
simply think of elements in £_,,(A) as branches of f~*z", restricted to A.

Example 3.2. We continue Example 3.1. On each of the five simplices we define a section of
L, where w = (—s(1—2) ' +vz~1) dz is the logarithmic differential of f~*z" = (1—z) 2.
Here s and v are fixed complex numbers. Notice that f~%z" is the integrand of the beta
function in (2). At x = ¢, both (1—x) and x are positive. Let { = exp(—slog(1—e)+vloge) €
C, where we evaluate the positive branch of the logarithm. The conditions

drop —wroo = 0 and  Toe(e) =¢ (49)

uniquely define 799 € L_,(Agp(e)). Constraints like 79 (c) = ¢ are called initial conditions.
On our other simplices, we choose 7,9 € L_,(Ayp(€)), 7 € L_,([e,1 — ¢]), with

Tox(—€) = T00(—€), T-(¢) =T00(e), Mma(1—¢)=7_(1—¢), mo(l+¢)=m,.(1+¢).

To compute these boundary values, one can make use of the parameterizations in Example
3.1. For instance, 7 (¢ exp(y/—1tn) is given by (1 — e exp(v/—1mt))~*c” exp(y/—1vtr), for

€ [0,1]. At t = 1, this gives 1o0(—¢) = (1 4+ &) %" exp(v/—17v). A similar computation
for 79, shows that 7 .(¢) = exp(v/—1v27) . In particular, 7o(g) # 79.(¢), for non-integer
V.

We remark that having nontrivial sections of £_, is the reason why we split up the circle
So(e) = {t = cexp(v/—1t27)},t € [0,1] into two semicircles Aggo(e) and Ag(g). Indeed,
because of the nontrivial monodromy around xz = 0, there are no nonzero holomorphic
solutions of d7 — w7 = 0 on Sy(e): L_,(So(e)) = 0. o
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This gives us all ingredients to define the space of twisted k-chains on X, with twist w:

CiX,—w) = P AL (50)

ACX, k-simplex

Comparing (50) with (46) motivates why this construction is sometimes called the space of k-
chains with coefficients in L_,,. In words, Cx(X, —w) consists of finite C-linear combinations
of elements of the form A ® 7, where 7 : A — C is an element of £_,(A). We say that A is
loaded with the branch 7.

Let us now clarify the meaning of (43) for a twisted k-chain I' € Cy (X, —w).

Definition 3.3. Let I' = > d, A, ® 7, € Ci(X, —w) be a twisted k-chain on X, with
d, € C. Let ¢ = g(z)dz be a holomorphic k-form on X. We define

Co) = [roo=Yd [ o= | e G

The integrals on the right are the familiar integrals of single valued k-forms on k-simplices.

p®Tp

We now explain how to take boundaries in this twisted setting. A k-simplex A on X has
boundary 0A = 0Ag+ -+ A € Cr_1(X). That is, if A is given by the parameterization
¢ : A — X with A the standard k-simplex in R™, then 04, is the (k—1)-simplex in X coming
from the restriction of ¢ to the i-th boundary component of A. Let ' = A® 7 € Cy(X, —w)

be a k-simplex A on X, loaded with 7. Observe that there is a natural restriction map
pan : Loy(A) — L_,(A") whenever A’ C A. The twisted boundary 0,(I') of I is

O0u(I) = 000 ® paron,(T) + -+ + 0L @ paon, (T).
Extending this C-linearly gives the twisted boundary operator
Opw: (X, —w) — Cp1(X, —w). (52)
Morally, this boundary operator simply keeps track of the branch of the twisted chain.

Example 3.4. Consider again the five simplices illustrated in Figure 7, loaded with the
branches specified in Example 3.2. The twisted boundaries are

9u(Roo(e) ® T00) = {—€} ®T00(—¢) — {e} ® T00(8),

9u(Dor(e) ®Tor) = {e} ® Tox(e) — {—c} ® Tor(—¢),

Ou(le,1 —e]®@1) ={1—¢c}@7_(1—¢)—{ec}@71_(e), (53)
Ou(A12(e)®@my) = {1+e}@n.(1+e)—{l—c}@n,(1—¢),

O.y

(A1p(e)@mp) = {l—e}@mo(l—¢)—{l+e}@T0(l+¢).

The orientation of the boundary components of a 1-simplex is like in standard singular
homology: end point minus starting point. The restrictions of our sections to these boundary
points are simply given by their value at the point. It is instructive to reduce the number
of parameters in (53) by using our definitions and findings from Example 3.2. For instance,
we have 7g . (—¢) = 190(—¢), 7_(€) = T0,0(€), T0.x(€) = exp(v/—1v27) 7o 0(€), and so on.  ©
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Notice that, for a twisted k-chain A ® 7, we have 0,,0,(A® 1) = 0. This follows from the
fact that the boundary of a boundary is empty, i.e., 00A = 0, and the fact that d, simply
restricts 7 to 0A. We suggest that the reader checks this carefully for a two-dimensional
simplex in X = C\ {0, 1} from our running example. In homological algebra, 9,0, = 0 is
the key property of a boundary operator in a chain complex.

Definition 3.5. Let X be the very affine variety from (29). Let w = dlog(f~°z"), and let
Cr(X, —w) be the space (50) of twisted k-chains on X. The twisted chain complex is

(Co(X, —w),0.) : 0 — Con(X, —w) 22 Con1(X, —w) 25 - 2% Cy(X, —w) — 0. (54)

The homology of this complex is obtained by considering all twisted chains whose twisted
boundary is zero, modulo those that are twisted boundaries themselves.

Definition 3.6. The k-th homology vector space of (Ce(X, —w), d,,) is the quotient space

B {T' € Cr(X, —w) : 0,(I') =0}
B 0, Cri1(X, —w) '

Hy (X, —w) (55)

Elements of Hy (X, —w) are called twisted k-cycles (or sometimes loaded k-cycles). We
will primarily be interested in the n-th homology space H, (X, —w), because these are the
cycles on which we can integrate n-forms. While it is easy to construct cycles in the usual
(non-twisted) singular homology, this is a bit more complicated in our twisted setting. The
running example of this section illustrates a standard construction |5, Section 3.2.4].

Example 3.7. None of the five twisted chains in Example 3.4 are twisted cycles, since they
have non-zero twisted boundaries. However, we can use the expressions (53) to find a linear
combination of these chains whose twisted boundary is zero. For ease of notation, let us
write I'pp = Dgp(e) @ Top € C1(X, —w), and I'_ = [g,1 — ] @ 7_ € C} (X, —w). Consider

Foo+Tox I'x+Thpo
= ’ - + I — ’ ’ e C1(X,—w). 56
exp(2my/—1v) — 1 exp(—2my/—1s) — 1 1 ) (56)

Note that (56) only makes sense when v and s are non-integer. This genericity assumption
will appear in our theorems below. One checks that J,(I') = 0 by expanding it using (53),

and applying identities like at the end of Example 3.4. The class [['] € H;(X, —w) of T is
non-zero. We will show this in Example 3.22. Hence, I' is not a boundary of a 2-chain. ¢

3.2 Twisted cochain complex

While chains tell us where to integrate, co-chains tell us what to integrate. This is to be
taken with a grain of salt in our twisted setting. We have seen above that twisted chains
also carry some information about the integrand: they specify a branch of f~z”. In (43),
the multivalued function f~*x" is multiplied with an n-form ¢ = gdz, where g is a single-
valued function on X. This section explains which n-forms ¢ we consider. It constructs a(n
algebraic) twisted de Rham complex, dual to the twisted chain complex in Definition 3.5.
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The vector spaces Q2%(X) of the twisted de Rham complex are rather easy to describe.
They are the reqular k-forms on X, which have coefficients in the coordinate ring O(X):

QM(X) = E Gir gy Ao Nday 1 gy € O(X E C- [’y . (57)
1< << <n ez
bezZm™

In particular, Q°(X) ~ Q"(X) ~ O(X). Notice that w = dlog(f*z") € Q'(X). We will
integrate regular n-forms ¢ € Q"(X). In particular, setting ¢ = % € Q"(X) in (51) gives
our integral (1). In analogy with the usual de Rham complex, we want to regard regular
k-forms ¢ modulo those that integrate to zero in (51) on a twisted cycle ' = A® 7. A first
step towards formalizing this is the following important observation.

Lemma 3.8. For any ¢ € Q* Y X) and any twisted k-chain T € Cyp(X, —w), we have

/f Y(d+ wA) = / (fa"p) = /&J(F)fsx”w. (58)

Proof. The first equality is checked by expanding d(f~*z"¢) = d(f~2") ¥ + f~*x* dip. The
second identity is Stokes’ theorem (44) More precisely, if ' = A®7 is a simplex loaded with
7, the integral is [, d(7(2)y) = [, 7(x)1), which agrees with (58) via Definition 3.3. O

Equation (58) will be our twisted version of Stokes’ theorem (45), where the twisted
differential V,, is given by d + wA. That is, for any 0 < k < n we define

V., Q(X) = Q"Y(X)  with V,(¢) =dé+wA ¢ (59)

A regular k-form ¢ is closed if its twisted differential is zero, i.e., V,(¢) = 0. In particular,
all n-forms are closed, since Q"™ (X) = 0. A regular k-form ¢ is called ezact if it is the
twisted differential of some (k — 1)-form: ¢ = V(). Here is a consequence of Lemma 3.8.

Lemma 3.9. Let I' € Cyp(X, —w) be a twisted cycle and let ¢ € QF(X) be a closed k-form,
i.e., 0,(I') =0 and V,(¢) = 0. If T is a twisted boundary or ¢ is exact, i.e., I' = 0,(I") for
some I € Cyi1 (X, —w) or ¢ = Vo, (¥) for some ¢ € Q" 1(X), we have [ f~*z"¢ = 0.

Every exact k-form is closed. Indeed, using ddy) = dw = w A w = 0, we find that
VoVetp = ddy +dw Ap —wAdYp +wAdY +wAwAY =0, for any ¢ € Q" 1(X).

Here dw = 0 because w = dlog(f~*z"). The property V,V, = 0 means that V, defines a
flat connection on X. Lemma 3.9 says that an exact k-form ¢ satisfies (I, ¢) = 0, for any I" €
Hy (X, —w). Tt is therefore natural to regard k-forms modulo the exact k-forms V,,(2*~1(X)).
This amounts to considering the cohomology of the following cochain complex.

Definition 3.10. Let X be the very affine variety from (29). Let w = dlog(f~*z"), and let
QF(X) be the space (57) of regular k-forms. The (algebraic) twisted de Rham complez is

(Q°(X), V) : 0— QX)) 2 QY(X) Yo .o Yoy (X)) —s 0. (60)
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This complex is also called the twisted cochain complex, to emphasize its duality with
(54) (see below). As said above, since exact forms integrate to zero, we pass to cohomology.

Definition 3.11. The k-th twisted cohomology vector space of (60) is the quotient space
_ {p e QF(X) : V,(¢) =0}  closed k-forms

HA(X = :
(X,w) V,QF1(X) exact k-forms
We regard ¢ in (43) as a twisted cocycle, i.e., an element of the n-th twisted cohomology
2"(X)
H"(X = ——. 61
( ? w) van_l (X) ( )

The twisted de Rham complex in Definition 3.10 is called algebraic because we work with
the regular k-forms QF(X) in the sense of algebraic geometry. One can build an analogous
complex using holomorphic k-forms, for which the coefficients g;, . ;, in (57) can be any holo-
morphic functions on X. By the Grothendieck-Deligne comparison theorem [21, Corollaire
6.3], the cohomology of this holomorphic twisted de Rham complex is isomorphic to that of
(60). Since our cocycles ¢ will be regarded as elements in this cohomology, it suffices to work
with the algebraic complex (60). This is also the preferred setting for doing computations,
because the regular k-forms (57) have a very concrete description.

Here is an example of how to compute relations in twisted cohomology.

Example 3.12. Consider again the Euler beta integral (2). The twisted differential is
vw:d+<i+5)dm. (62)
r
Applying this to 1 € Q°(X), we obtain the following equality in H'(X,w):
de |  |-vdx
-2 | s x|

More generally, we shall derive in Section 4 that for a,b € Z, we have the relation

] - [t .

(1—2)* x (14+v—38)pax

Here, for a complex number v and an integer a, we used the following notation:

Yy +1) (v +a—1) (a>0)
(7)o =141 (a=0). ©
(v=D'y=2" - (v+a)t (a<0)

While Q!(X) and V,(Q°(X)) are infinite-dimensional C-vector spaces, Example 3.12
claims that the quotient H'(X,w) is one-dimensional. Indeed, each regular 1-form can be
written as a constant multiple of [d?‘”] This holds, at least, when s, v, s — v are non-integer.
We will now proceed towards the underlying theorem (Theorem 3.14). First, we state a
vanishing result for twisted cohomology.
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Theorem 3.13 (Vanishing theorem). Let X be the very affine variety from (29). There
exists a dense open subset U C C™ such that, for each (s,v) € U, we have

H¥(X,w)=0 forall k+#n, with w=dog(f *z"). (64)

A description of the open subset U C C*" follows from the proof in |3, Theorem A.1].
In our running example, one can take U = {(s,v) € C"™ : s,v,s —v ¢ Z}.

One of the consequences of this vanishing theorem is a geometric description of the
dimension of H"(X,w). By [5, Theorem 2.2|, the topological Euler characteristic x(X) of
the very affine variety X is given by the alternating sum of cohomology dimensions:

n

X(X) =) (-1)*dime H* (X, w). (65)

k=0
Combined with (64), this immediately gives us the following result.

Theorem 3.14. Let X be the very affine variety from (29). Fiz (s,v) € U, where U C CH™
is as in Theorem 3.13, and let w = dlog(f~*z"). We have dim¢ H"(X,w) = |x(X)].

The Euler characteristic x(X) also appeared in Theorem 2.1: it is the number of critical
points in Crit(log L) (up to a sign). Hence, for generic (s, ), we can compute the dimension
of H"(X,w) using the homotopy continuation techniques explained in Section 2.1.

Example 3.15. In the case of our running example, X = C*\ {0,1} is topologically the
Riemann sphere S? with three points removed. Using the inclusion-exclusion principle and
x(5%) = 2, x(point) = 1, we get x(X) = —1. Hence dim¢ H'(X,w) = 1. This confirms what
we saw in Example 3.12. A basis for H'(X,w) is [42]. 3
Example 3.16. Consider m-point string amplitudes, for which X = M ,,. The projection
map Mg, = Mom—1 is obtained by dropping one of the marked points. The fiber of this
map at a given configuration of m — 1 distinct points in P! is P! with these m — 1 points
removed. The product property of the Euler characteristic for fibrations gives the recursion

X(Mom) = x(S? — {m—1 points}) - x(Mom_1) - (66)

By the same arguments as in Example 3.15, the first factor on the right-hand side is 3 — m.
The endpoint of the recursion is m = 3, for which x(Mp3) = x(point) = 1. We conclude

X(Mom) = (=1)"*(m = 3)!. (67)

We have seen this number for m = 5 in Section 2.1, where we explained that it also counts
bounded cells of hyperplane arrangements in R™~3. Equation (67) implies that the dimension
of H™3(Mom,w) is (m — 3)!, under the genericity assumptions of Theorem 3.14. A basis
consists of (m — 3)! regular (m — 3)-forms. In the physics literature, it is common to use the
so-called Parke-Taylor basis, see, e.g., |10, Definition 3.2] and [16, Appendix A|. o
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3.3 Back to Euler integrals

We have been using the shorthand notation (I',¢) for our integrals, see Definition 3.3.
Equipped with the tools from Sections 3.1 and 3.2, we can now formally introduce the
pairing (-, -) as a bilinear map on homology and cohomology. This was alluded to in (43).

Theorem 3.17. Let X be as in (29) and let w = dlog(f~*x"). For any k, the C-bilinear map
() H(X,-w) x BY(Xw) — € (L) — @)= [ w6 (09
r
is well-defined. Moreover, the induced maps Hy(X, —w) — HM(X,w)" and H*(X,w) —
Hip (X, —w)Y (see below) are isomorphisms. In other words, the pairing (68) is perfect.

Proof. Well-definedness follows from Lemma 3.9. The pairing is perfect by |5, Lemma 2.9(1)],
using the Deligne-Grothendieck comparison theorem [21, Corollaire 6.3]. [

The pairing (68) is called the period pairing between twisted homology and cohomology.
In the theorem, V'V = Homc(V, C) denotes the dual vector space of a C-vector space V. The
maps Hy(X, —w) — H*(X,w)¥ and H*(X,w) — H,(X,—w)" are given by

[l = ([¢] = (' 9)), and [¢] = ([[] = (T, ¢))

respectively. Notice that Theorem 3.17 makes no assumptions on s and v. We spell out
three important implications (Corollaries 3.18; 3.19 and 3.21).

Corollary 3.18. Let X,w be as above. For any k, dim¢ Hy(X, —w) = dime H*(X, w).

Corollary 3.19. If (s, v) lies in the open subset U from Theorem 3.13, the vanishing theorem
extends to twisted homology: Hy(X, —w) = 0 when k # n, and dimc H, (X, —w) = |x(X)].

This means that, when (s,v) € U, we can find a set of y = |x(X)| basis elements

(1], ..., [¢y] for H"(X,w), and a set of x basis elements [I'1],...,[I'y] for H,(X, —w). In
particular, for any (a,b) € Z“+", there exist coefficients c‘f’b, . ,c;’b € C such that

2’ dzx a a R

[F 7} = cl’b (1] + -+ cx’b [by] In H"(X,w). (69)

Example 3.20. For the beta integral, we have seen in Example 3.12 that for ¢; = [dz/z],

o (=90,
! (1 +v— S)b,a.

Corollary 3.21. Let X,w be as above. A regular n-form ¢ € Q*(X) is zero in twisted
cohomology, i.e., [¢p] =0 in H"(X,w), if and only if

(I, 0) = /f‘sx”gb =0 forall T e H,(X, ~w).
r
Here it suffices to let T' run over a C-basis for H,(X, —w).
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Corollary 3.21 says that relations in cohomology like (63) are equivalent to relations
between Euler integrals which hold for any twisted cycle. That is, Equation (63) implies

fasa= - wn

for any I' € H,(C\ {0, 1}, —w). More generally, the expansion (69) in terms of a basis gives

v+ dz b/x” b/x”
— =" =+ -+ =@, forall e H,(X,—w).
[ =t e e )

The integrals on the right-hand side are called a set of master integrals in physics, see [19].

Example 3.22. In Example 3.7, we promised to show that I" from (56) is nonzero in twisted
homology. For this, let us fix values of s, such that 0 < v < v — s+ 1. These are precisely
the convergence conditions derived in Example 1.10. We will come back to this later. The
twisted cycle I' in (56) depends on ¢, but by the Cauchy-Goursat theorem, the value of the
integral (I', %) is independent of & € (0,1/2). According to the three terms in (56), we split
the integral up into three parts: (I',42) = Iy() + I_() + I1(¢). The first summand is

1 2w
- o N—10\—s v /—16v
Iy(e) = eQWml’—l/o (1 —eevV™ )% dé.
Because of the assumption v > 0, we have lim._,o+ In(¢) = 0. Analogously, one shows
lim. o+ I1(¢) = 0. Finally, by (2), we have

d l1—e v d
<r,—x> = lim I_(¢) = lim T B,1-s).

x e—0+ e—0t ). (1—2x)
Since the result is nonzero, Corollary 3.21 implies [I'] # 0. o

Our final goal in this section is to connect the Euler integrals (T, ¢) obtained from the
pairing in Theorem 3.17 with the Euler-Mellin integrals from Section 1. For that, we first need
to reinterpret (I', ¢) as a function of s, v. We write w = w(s, v) to emphasize the dependence
on these parameters. On the cohomology side, the natural thing to do is to fix ¢ € Q"(X),
and regard it as an element in the varying cohomology vector space H"(X,w(s,r)). On the
homology side, we need to take into account the fact that the line bundle £_,,) depends on
s,v. Let I'(s,v) = A®7(s,v) be the singular n-simplex A loaded with 7(s,v) € L_,s.)(A).
To see how 7 varies with s, v, note that it is a C-linear combination of the branches of

exp(—silog fi — -+ — sglog fo + vilogxy + -+ - + v, log xy,)

restricted to A. Such a branch is fixed after fixing the branches of the logarithms log f;, log x;,
which are independent of s and v. Our integral is the following function of s, v:

(5,0) — s — /AT(S,V)(x)(b — (A®T(s,v), ). (70)

A®T(s,v)

Taking derivatives of (70) in s, can be done under the integration sign |35, Chapter XVII,
Theorem 8.2|. This implies the following Proposition.
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Proposition 3.23. The function (s,v) — (A ® 7(s,v), ¢) from (70) is holomorphic.

It is straightforward to extend this to the case where I'(s,v) = >, d,(s,v) - A, @ 7y(s, V),
where the coefficients d,(s, ) are meromorphic functions. Similar to Definition 3.3, we set

(D(s,0),0) = 3 dyls,v) - /A (5, 0)(2) 6. (71)

By Proposition 3.23, this is meromorphic in s,rv. Notice that we can also view this as the
sum y_ (A, ®7,(s,v),dy(s,v)¢), allowing meromorphic coefficients in cohomology. This will
be useful in Section 4.1. It turns out we have seen (71) before.

Theorem 3.24. Let f1,..., fo satisfy Assumption 1, and suppose that the Minkowski sum
A(f1) + -+ A(fe) has dimension n. Let X be as in (29). There exist finite sets of mero-
morphic functions d,(s,v), singular n-chains A, on X and sections 7,(s,v) € L_.(s.)(Ap)
with the following property. For I'(s,v) =3 dy(s,v) - A, ® 7,(s,v), the function (s,v)
(T(s,v), 42 form (71) is the meromorphic continuation (26) from Theorem 1.11.

Theorem 3.24 replaces integrating over R’} by integrating over I'(s,v). The twisted cycle
I'(s,v) is called the regularization of R’} |5, Sections 3.2.4 and 3.2.5]. Here is an example.

Example 3.25. We have seen two integral formulas for B(v,1 — s) in Example 1.10:

/o1 @i—yﬂf)s d?x - /o1 (1 —x;)51 ac(ldf z) /R+ (1 _y:y)é d_yy (72)

The coordinate transformation is p : Ry — (0,1), with z = u(y) = y(1 + y)~'. This is the
moment map from Lemma 2.7 up to scaling by 5. Its complexification uc is an isomorphism

X, = C\{0,-1} X% C\{0,1} = X,.

Let w, = dlog((1 — z)'~*2¥) € Q}(X) be the regular one-form corresponding to the middle
integral of (72). We define w, to be the pullback of w, along pc. That is, explicitly,

wy = 1" (wy) = dlog((L — pe(y)'"ne(y)”) = dlog((1+y)~*y").
The cocycle dz/(x(1 — x)) pulls back to dy/y under u. A twisted chain I' = A® 7 €
C1(X4, —w,) is naturally pulled back to a cycle p*(I') € C1 (X, —w,) via
p(r) = p (D)@ (1op).

As usual, this definition for simplices is extended linearly to C(X,, —w,). With this notation
in place, it is easy to check that for any I' € C1(X,, —w,), we have

(=) = how T = Lo wry = 0F)

By Example 3.22, if we pick I' as in (56) (with s replaced by s — 1), the left integral is a
meromorphic function in (s,v) which agrees with B(v,1 —s) if 0 < v < v — s+ 1. Hence,
the regularization of R, is p*(I"). It depends on §, v as explained above. o
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4 Differential and difference equations

It is common practice to describe a function F' via the differential or difference equations it
satisfies. More precisely, one attempts to find differential operators P such that P e F' = 0,
or difference/shift operators S such that S e F' = 0. Here P e F reads as P applied to I, and
similarly for S e F. In this section, F' is an Euler integral (1), seen as a pairing between a
twisted n-cycle [I'] and the twisted n-cocycle [dx/z], see Section 3. Such an integral satisfies
difference equations when seen as a meromorphic function of s and v, as in (71).

Example 4.1. We have seen in Example 3.22 that the beta function B(v, 1 — s) is given by

Z(s,v) = B(v,1—3s) = /F(lf—yx)sdx—x, (73)

where I' is the twisted 1-cycle from (56). This agrees with the integral over (0, 1) in (2) when
Re(s) > 0 and 0 < Re(v) < Re(v) — Re(s) + 1. The shift operator in s, denoted o, acts by

os8ZL(s,v) = I(s+ 1,v).
Similarly, the action of o, is 0, ¢ Z(s,v) = Z(s,v + 1). We claim that the shift operators
Si=1—-0,(1—0,) and Sy = v+ s0,0, (74)

annihilate Z, i.e., S; ¢ Z = 0 and S, @ Z = 0. Here coefficients that are rational functions in
s, v simply act by multiplication. The identity S; @ Z = 0 is easy to verify:

et ([ [ ) - [

The rightmost integral equals Z =1 e Z. To see that Sy @ Z = 0, we apply Lemma 3.9:

SyeT = /Fﬁ <§+1ix)dx: /Fuf—;)svw(l) ~ 0.

Here V,, is as in (62). We reiterate that, in order to view Z as a meromorphic function of
s, v, it is important to keep in mind that w = w(s, v) varies. Hence, so does the local system
L_, = L_4su), and the twisted cycle I' = I'(s, v). This was explained in Section 3.3. o

The goal of Section 4.1 is to derive operators like (74) for general Euler integrals. These
operators appeared in |3, Section 3.1], |3, Section 3| and [39]. Shift operators for Feynman
integrals were studied in [10]. Section 4.2 discusses differential operators. For that, we must
view our Euler integrals as functions of a new set of parameters: the coefficients of f;.

Example 4.2. Fix two generic complex numbers s, v € C. We modify the beta integral (2)
by introducing complex valued parameters 21, zo for the coefficients of the denominator f:

T(21,20) = /F(x—d—“"

21+ 200)° T
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The dependence on z = (21, 22) is subtle. For instance, the very affine variety X from (29)
depends on z and, necessarily, so does I'. In this example, one can think about Z(z1, 22) as a
function on a small neighborhood of (21, z2) = (1, —1), which corresponds to our original beta
integral. In that neighborhood, one can modify I' by keeping the 1-simplices in Example 3.1
fixed, and varying the sections in Example 3.2 with 2z, z;. For instance, the initial condition
T0.0(&; 21, 22) = (21, 22) from (49) is given by ((z1, 22) = exp(—slog(z1 + z9¢) + vloge), and
for the first log we use the analytic continuation of the positive branch near 1 — ¢.

The differential operator 0,, acts by partial derivation in z;, for ¢ = 1,2, and rational
functions in z act by multiplication. Here are two annihilating operators for Z(z1, 22):

P =20,+20,+s and P, = 20, +v. (75)

The derivatives can be taken under the integration sign. We verify P, ¢ Z = 0:

—sz;-x¥  dzx / —8zox -2V dx
r(

21+ 22 I)S'H i

(210, + 200,,) @ L(2) = / = —s-I(2).

r (Zl + 29 ZE)S'H ?
To see that P, e Z(z) = 0, we again need Lemma 3.9. We compute
x¥ . v S22
0=PFPel(z) = | ——— V1), ith w(z) = |- —— | dx. o
2 Z(z) /F(ZH—ZQI)S SIONA (2) (x z1+22x)

The differential operators (75) form an A-hypergeometric system or GKZ system of linear
partial differential equations. Such systems were introduced by Gelfand, Kapranov and
Zelevinsky to study A-hypergeometric functions |26, 27]. We will introduce these systems
and recall their relation to Euler integrals in Section 4.2. For a recent survey, see [15].

4.1 Difference equations

We start with difference/shift operators in (s,v). In analogy with Example 4.1, we call these
operators o, for i = 1,...,¢ and o,, for j = 1,...,n. They act on the integral Z = (T', ¢)
from (71) as follows. We view (71) as the sum of pairings

I(s,v) = de(s, V) -/A T,(s,v)(x) ¢ = Z (A, ®@Ty(s,v), dp(s,v) P)

p p

That is, the cocycle now depends meromorphically on s,v. We set

o5, ¢L(s,v) = I(s+e;,v) = Z (Ap @ Tp(s +e€i,v), dp(s+€;,v) 0) (76)

= Z(Ap®7'p(s,u), dp(s + e, v) o), (77)

o, 0L(s,v) = I(s,v+e;) = Z (A, @ Tp(s,v+¢€;), dp(s,v+e;) ) (78)
= Z (A, ®@Ty(s,v), dy(s+ e, v)z;d). (79)
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Here ¢; is the j-th standard basis vector. The reader should check the passages from (76)
to (77) and (78) to (79) carefully. The expressions (77) and (79) show that the action of the
shift operators can be viewed as an action on cohomology H™(X, w(s,v)). For instance,

o, 0 [8(s, V)] = [f d(s e v)], 0y, 0[0(s,v)] = [x;0(s, v+ e;)]. (80)

In [39], this action is defined on a cohomology vector space with coefficients in C(s,r). We
will also use the inverses 0;,1, o, ! of these shift operators. Their action is straightforward to

define. The variables s; and v; act on Z(s,v) by multiplication: s; ¢ Z(s,v) = s,Z(s,v), and
v; @ Z(s,v) = v;I(s,v). Notice that the operators s; and o, do not commute:

05,510 L(s,v) = (s; + DI(s+e;,v) # siZ(s+e,v) = s05 ¢ L(s,1).

Such commutator relations naturally lead to the following definition.

Definition 4.3. The ring of difference operators R = C(s,v)(o3!, ... 05! ot ... 02!) is
the C(s,v)-vector space with basis o202, where (a,b) € Z*+". Le., it consists of finite sums
§ : a a b bn § a b
ga,b(& V) 0311 T Usf O‘I/i U ayn - ga,b(57 V) Us UV'
(a,b)eztt+n (a,b)ezttn

The product is subject to the following relations. For any rational function g(s,v) € C(s,v),

[o’iljg(sjy)] = (g(Sieivy) —9(57 V))Usi and [Jil,g(s,y)] = (9(57V:l:ej) —g(S,I/))U,,j.

Here [A, B] = AB — BA denotes the commutator.

The ring R acts on meromorphic functions in s, v as explained above. The annihilator
Anng(Z) of a meromorphic function Z(s,v) consists of all shift operators annihilating Z:

Amng(Z(s,v)) = {Se€ R : SeI(s,v) =0} (81)

Clearly, if Sy, 52 € Anng(Z), then Sy + Sz € Anng(Z) as well. Also, if 51 € Anng(Z), then
S9S1 € Anng(Z) for any Ss € R. In other words, Anng(Z) is a left ideal of R.

To describe the annihilator of our integral, we introduce the notation f;(0,) € R for the
difference operator obtained by replacing x; — 0, in fi(x). This is well-defined, since all
0, commute. For instance, for f(z) =1 — x from Example 4.1, we write f(0,) =1 —0,.

Proposition 4.4. Let J C R be the left ideal generated by the following ¢ + n operators:

1 —os, fi(o,) fori=1,...,¢, (82)
dfi :
1 7
0, Vi — g si-asia—%(ay) forj=1,...,n. (83)

For any cycle T', the annihilator of the Euler integral Ir(s,v) = (T, d?x) contains J.
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Proof. We need to show that the operators (82) and (83) annihilate Zr(s,v). Let f;(z) =
Y o Cia - 2%, where ¢; o € C for i = 1,2,...,¢. Hence, using (79), we find

ooz = (1w %) (ran ). s

Together with (77) we find oy, fi(0,) ® Ir(s,v) = (I, %) = Zp(s,v), which shows that (82)
annihilates Zr(s, v). Notice that, for this, we do not use the fact that I' is a cycle. To show
that the operators in (83) annihilate Zr(s, v) as well, we compute

gﬂ{l (0,) @ Ip(s,v) = <F,%d§> and a,jjlyj o Ir(s,v) = <F, i 1d_x>
j j

ZL’j x

We combine these identities to get

V4 Ofi
B v —1 Dz, (z) dx
< E Si O-S»L Oy > .IF(S7V) - <F7 < x] E fz( ) ) >

To show that this is zero for any cycle I', we need to show that the n-form on the right is
exact (Lemma 3.9). That is, we need to find ¢ such that it equals V,,(¢). The solution is

v; — 1 : gi: () dz -, dz;
< T _Zsi fi(z) ) z Ve ((_UJ lxl...xn)’

=1

where dz; is the (n—1)-form dzy A --- Adxj_g Adxjg Ao Ada,. O

Example 4.5. The operators S; and ¢,'S; from (74) are (82) and (83) for n = ¢ =1 and
f =1—x. We can use these operators to obtain the relation (63). Observe that

s-(1—o0s+4+050,)— (V+s0,05) = s—sos—v € J.

Since J annihilates Ir = (I',dz/z) for all T" (Proposition 4.4), this means o, e [dz/z| =
(s —v)s ' e[dx/x]. Applying o' from the left (necessarily, because J is a left ideal), we get

o, (S_V> = <S_1—_V> o, = 1mod J, ie, as_lo[d—x] = <i>o[d—ﬂ
S s—1 T 1+v-—s T

Similarly since o;'(1 — 05 + 050,) € J, we derive that

] =04 ()[4

Now, we use these identities to write 0%0> e [dx/x] = [2°/(1 — 2)® - dz /] in terms of [dz/z]:

dx

tote |2 = otolt (i) o | 2] = ool () () o | 2| =

i €T
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Here the second equality uses the commutation rules. Suppose b, a € Z-~q are positive. After
repeating this step b times, we begin expanding o¢:

aio, e B—x} = aé‘ﬁ ° {dﬂ = (v — 5)(1(V+>by— 8)p1 (55) ¢ {dﬂ

_ a2 ()b (1) () o {%ﬂ

S s D)k, )

- (1+£Vibs)b_a ((_S)<_S_ 0 .1..(_3—a+1)) ’ {%ﬂ '

The rational function we obtain is precisely that of (63). Notice that the numerator factors

(s—v), (s—v+1),...cancel with the denominators (v —s), (v —s—1), ..., and the minus
signs are absorbed in the denominator factors s,s + 1,.... The reader should check that if
a, b satisfy different sign conditions, we arrive at the same formula. o

Example 4.5 illustrates the concept of contiguity relations for the Euler beta integral. In
general, the action of shift operators can be captured by contiguity matrices. Let [¢1],. .., [¢y]
be a basis for the twisted cohomology H™(X,w(s,v)) (for generic s,v). There are x =
(—1)™ - x(X) such basis elements by Corollary 3.19. We assume the [¢;] have coefficients
that are rational functions in s,v. There are y x y-matrices Cy,;, C,, such that
<F7 ¢1> <Fa ¢1>

<F7 ¢1> <F7 ¢1>

O, ®

7

<F7 ¢X> <F7 ¢X> <P7 ¢X> <F7 ¢X>

Here o,, and o0, act entry-wise on vectors, and the contiguity matrices Cy,, C,, have entries
in C(s,v). For more on these matrices and how to compute them, see [39, Section 5.

g, ®
) vj

= C,, -

Remark 4.6. In the context of Feynman integrals, special choices of contiguity relations
are known as dimension-shift identities, because they relate Feynman integrals evaluated in
different space-time dimensions. We refer to [19, Section 6.2| for more details.

4.2 Differential equations

As illustrated in Example 4.2, Euler integrals are annihilated by differential operators in the
coefficients of f;. These are new parameters denoted by z; 4, i.e.,

fi= ) zia-a® i=1...( (85)

a€A;

Here A; = supp(f;) € Z™ is the support of f;, in the sense of Definition 1.1. We fix complex
parameters s = (s1,...,s5,) € C* and v = (vy,...,v,) € C*. The variety X defined in
(29) is also dependent on z. For this reason, we write X, instead of X. The Euler integral
(1), seen as a function of the coefficients z = (2; 4 )i, defines a holomorphic function on an
open subset U of coefficient space C4 = CAt x .- x CA¢. To define this function, we need
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to specify how the twisted integration cycle I' varies with z. For a fixed set of coefficients
2t = (2 0)ia € C4, let [[(2%)] € H,(X.; —w(z%)) be a twisted cycle. The open set U is a
sufficiently small neighborhood U of z*. The choice [I'(z*)] gives rise to a family of cycles
I'(2)] € Ho(X,; —w(z)) defined for z € U. For this, we fix the singular n-simplices, and vary
the sections of £L_, ;) in the only sensible Way That is, I'(z") = >_ d, - Ap ® 7,(2"), where
Tp(2*) € L_y 2+ is a branch of f(x;2*) °z" which depends holomorphlcally on z, and

=34 A @m(z) € H'(X., —w(2)). (86)

Here d, € C are constants. This was illustrated for the beta integral in Example 4.2. It is
crucial that, with this construction, the twisted boundary 9,.)(I'(2)) is zero for all z € U.

Proposition 4.7. Let U 5 z* and [['(z)] € H,(X.; —w) be as above. The function

dx

Ir:U—C, z+ / f(z;2) %2 — € C. (87)
I'(z) z

18 holomorphic on U.

Proof. Since 7(z) is holomorphic in z, it suffices to observe that for z € U,
d
z) = gdp : /Ap 7(z)(x) %

The theorem follows from the definition of a holomorphic function and differentiation under
the integral sign |35, Chapter XVII, Theorem 8.2]. H

Our goal is to derive a system of differential equations satisfied by Zr(z). This is an exam-
ple of a class of such systems, called GKZ systems (after Gelfand, Kapranov and Zelevinsky)
or A-hypergeometric systems. We introduce these in general, and then specialize to our in-
tegrals. The proof of the main theorem in this section (Theorem 4.10) uses the theory of
D-modules. Here the ring D is the Weyl algebra, which plays an analogous role as that of
the ring R of difference operators (see Section 4.1). To state Theorem 4.10, it is unnecessary

to introduce D-modules. We refer the interested reader to [20] for a nice introduction.
Let d be a positive integer and let A C Z¢ be a finite subset. To each av € A, we associate
a complex variable z, and a partial derivative operator 0, = %. For a function f(z) of

2 = (Za)aca, its partial derivative aaf (z) with respect to z, is denoted by 0, f(z). The toric
ideal Iy C C[0,, a € A] is an ideal generated by all binomials

U Vo
110 -112
a€A acA

where u = (Ug)aca, U = (Va)aca € N4 are such that A - (u —v) = 0. That is,

Z Ua Ot = Z Vo V. (88)

acA a€A
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Of course, there are infinitely many integer vectors u — v satisfying A - (u — v), but finitely
many suffice to generate the ideal I4. Fix a vector 3 € C% The GKZ system H,(3)
associated to A and f is the following system of partial differential equations in f(z):

Hi(B): ) zalao f(2)a—f(2)8 =0 and P(9)f(z) =0, for P(9) € L. (89)

acA

Note that the first equation of (89) is an identity of vectors in C¢, and it is enough to check
that P(9)f = 0 for a finite set of generators of I4. On an open subset U C C4, we define
the space of solutions Soly, 5)(U) of H4(3) as the complex vector space

Solg,3)(U) = { f:U — C holomorphic : f satisfies (89) }.

Our Euler integral (87) satisfies the GKZ system specified by the following parameters. Set
d = {4+ n. The Cayley configuration A C Z of Ay,... Ay is

A= {(ea) :acA,i=1,....0}y cZ% (90)
We have seen this in (40). The vector 3 is —(s,v) € C%.
Proposition 4.8. For A, as above, and Ir(z) as in (87), we have Ir(z) € Solp () (U).

Before proving Proposition 4.8, we encourage the reader to check that (75) is the GKZ
system for the beta integral. In that example, the toric ideal I4 is 0. Notice that Proposition
4.8 is independent of the choice of cycle I'(z).

Proof of Proposition 4.8. By the definition of the Cayley configuration (90), the constraint
(88) for u = (Ujn)i=t1,..0 , U = (Vig)i=1,.., X takes the following form :

¢ ¢
U; = Z Ui = Z Via (1=1,...,0) and Z Z Ui 0 = Z Z ey (91)

a€A; acA; i=1 acA; i=1 acA;

By our construction of I'(z) in (86), the integration contours A, C X are independent of z,
and we may apply the operators 0, o) to Zr(z) by differentiating under the integration sign.
The sections 7,(z) : A, — C differentiate to the corresponding branches of

Deray @ f 75 = =sif 0™ f70 7o e (92)

The operators generating [, are HZ 1 Tlaea; 9 o HZ 1 Tlaea; 9 a9, . We calculate

L u;—1

T[T oty e 7o) = [T LT si—) [ i fro S S -

i=1 acd; i=1 j=0 I'(2)

Doing the same for []'_, [Toea, Ejei’“a) and applying (91) we see that I4 annihilates Zp(z).
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It remains to verify that the other operators in the GKZ system annihilate Zr(z) as well:
Z 20400 @ Ir(2)a — Ir(2) 8 = 0. (93)
acA

The first f-entries come from the homogeneity relation
—sif; T = s (Z Zz‘,al'a) fi_si_l = Z ZiaO(e;0) ® fi
a€A; a€A;

For any 7 = 1,...,n, the (£ + j)-th entry of (93) is derived by differentiating under the
integral sign and observing that the result is the pairing of I'(z) with the exact n-form

V4
\ ((—1)j—1d371 N-cdrg ANdajyg - /\dx") - _ (Z sifi Z ik + Vj) @.

ml ... x]flx‘j+1 ... xTL 2_1 aeA x
- 7

Here, o is the j-th entry of a. This generalizes what happened for P in Example 4.2. [

Often, in applications, one is interested in differential equations satisfied by Zr(z) after
specializing the parameters z. This is the case for Feynman integrals, in which the coefficients
2i o depend linearly on the Mandelstam invariants. For the case of Example 0.2, we now
show how the equations in these new variables can be derived from the GKZ system.

Example 4.9. We revisit the Euler integral (7) of Example 0.1. The differential equations
satisfied by this integral as a function of ¢y, ¢y, t3 are the running example of [30]. In this
case, they can be derived in an easy way from the GKZ differential equations for

Tay?rs? dxdzad
ne) - | o rieey

21 X1 + 22 To + 23 T3 + 24 Tokz + 25 T3 + 26 T12T2)°  T1Tol3

Here { =1, n =3, f = —(s,11,1,v3) and A consists of the columns of
1 1 1111
1 00 011
01 0101
001110

We denote these columns by as, ..., a6 € Z*, and set 9; = 0, for brevity. The toric ideal I4
is generated by P; = 0,04 — 030s and P, = 0,05 — J30¢. These operators can be found, e.g.,
by typing the following commands on a computer algebra software Macaulay?2:

needsPackage "(Quasidegrees"

A = matrix{{t,1,1,1,1,1},{1,0,0,0,1,1},{0,1,0,1,0,1},{0,0,1,1,1,0}}
D = QQ[d_1..d_6]

T = toricIdeal(A,D)
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The remaining operators are
22:19k+3, 91+95+96+V1, 92+94+96+V2, 93+94+95+V3, (94)

where 0), = z;0;. Up to replacing R? with I', the integral Z; in (7) is Zp(1, 1, 1, —t1, —to, —t3).
Notice that here one could take I' to be the regularization of R3 , see Theorem 3.24. To turn
our operators in zi,..., 2z¢ into differential operators in %1, t9, t3, observe that the fact that
the operators (94) annihilate Zr implies the following homogeneity condition:

Tr(u™zy,. .. u®z) = v’ Ip(z), for all u € C*.
We adopted the usual notation u”® = u;*u; " uy us ™. For u = (1, 2", 25 %, 23 ") this reads

24 Z5 26

Ir (1, 1,1, ) = 2 252253 Tp(2). (95)

2223’ 212’3’ 21%2

We differentiate (95) with respect to z;, and afterwards we substitute z = (1,—t) =
(1,1,1, —t1, —to, —t3). Using (05Zr)(1, —t) = —0,(Zr(1, —t)) and similarly for 9¢Zr, we get

(811})(1]., —t) = — (1/1 + t28t2 + t38t3) ® IF(I]_, —t)
(02Zr)(1, —t) = — (v + 1104, + t304,) @ Ip(1, —t)
(OsTr) (1, —t) = — (v3 + 110, + t20y,) @ Tr(1, —1).

In this manner, we can eliminate 0,Zr, OyZr, 0sZr in terms of 0y, O,, O,. For example, the
first row of the first equation of (89)

PyeTr(2) = (20) + -+ + 2605 + 5) @ Ip(2) = 0
is equivalent to the following relation for Zp(1, —t) = Zp(1,1, 1, —t1, —t9, —t3):
PyeZr(1,—t) =0, Py=10; +t20y, + 30, + 11 + 12 + 13 — 8. (96)
Likewise, we obtain a relation

(84811[‘)(]1, —t) = —8,51 ® (8le)(]l, —t) = 8t1 [ ] (Vl + t23t2 + tgatg) [ Ip(ﬂ, —t) (97)
=0y o (1o +v3—s+4:0,) e Ip(1, —1). (98)

Here, we used (96) when we pass from (97) to (98). Repeating this for the monomials in P,
P,, we find that Zp(1, 1,1, —t1, —t5, —t3) is annihilated by the following differential operators:

P1 = tlﬁfl - t38t23 + (1 — S+ vy + Vg)atl - (]_ — S+ + V2)8t3
Py =1,0; —t30;, + (1 — s+ 11 +1v3)0, — (1 — s+ 11 + 12)0,
Pg = tlatl + t23t2 -+ t38t3 + 1%} + 1] + V3 — S.

These operators agree with the ones in [30, Equation (2.6)] after setting s = D/2. o
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The local solutions of H,(B3) at a point z* € C# are given by the direct limit

Soly,(p),.+ = lim Solp,(5)(U).
z*elU
Elements of Soly,(s).~ are represented by holomorphic solutions of H4(f), defined on a
sufficiently small open neighborhood U of z*. Theorem 4.10 describes it in terms of integrals.
For a facet @ of the polyhedral cone pos(A), we write rg for the primitive ray generator of
the dual ray {y € (R))Y : y-q >0 for all ¢ € Q}. A complex vector 3 € C"** is said to be
non-resonant if r¢ - B ¢ Z for any facet () of pos(A). The following is [27, Theorem 2.10]:

Theorem 4.10. Let 3 = —(s,v) € C*" be non-resonant. For any z* € C#4, the map
Hy(X.e, —w(2")) = Solu,p),-+ given by [I'(2*)] — Zr(2) is a vector space isomorphism.

Remark 4.11. Theorem 4.10 implies that, for generic s, v (in the sense of the Vanishing
Theorem 3.13), the dimension of the local solution space Soly ,(s),.~ equals the signed Euler
characteristic of X,.. For z* outside an algebraic hypersurface {E4 = 0} C C4, this number
equals the normalized volume of the convex hull of A |1, Theorem 5.15]. The polynomial £,
is the principal A-determinant, as introduced by Gelfand, Kapranov and Zelevinsky.

While the function Zr is an integral over I'(z) against a particular cohomology class [4],

the pairing (I'(z), ¢) is well-defined for any twisted cocycle [¢] € H"(X,,w). Let [¢1], ..., [éx]
be a basis for the twisted cohomology H"(X,,w) for z € U. Again, by Corollary 3.19, there
are X = (—1)"- x(X,+) basis elements. We assume the [¢;] have coefficients that are rational
functions in z. There exist x x x-matrices C,, (o € A) such that

<F(Z)7 ¢1> <F(Z)> ¢1>
Oy ® : = (Cy - : . (99)
(C(2), éx) (C(2), ¢x)

Here 0, acts entry-wise on vectors. These expressions form the so-called Pfaffian system.
The Pfaffian system can be derived from a system of differential operators, like a GKZ
system. The general procedure is explained in [19, Section 3].

Remark 4.12. Pfaffian systems lead to one of the most efficient ways of evaluating Feynman
integrals [31]. In practice, (99) can be solved by providing boundary conditions (I'(z*), ¢;)
fori=1,...,x at some z = z* and using path-ordered exponentiation of the matrices C, to
evaluate the Pfaffian system at other values of z. See [32] for a pedagogical introduction.
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