
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Science

Solving Systems of
Polynomial Equations

Simon Telen

Dissertation presented in partial
fulfillment of the requirements for the

degree of Doctor of Engineering
Science (PhD): Computer Science

September 2020

Supervisor:
Prof. dr. ir. M. Van Barel





Solving Systems of Polynomial Equations

Simon TELEN

Examination committee:
Prof. dr. ir. Y. Willems, chair
Prof. dr. ir. M. Van Barel, supervisor
Prof. dr. N. Vannieuwenhoven
Prof. dr. W. Veys
Prof. dr. N. Budur
Prof. dr. ir. L. De Lathauwer
Prof. dr. D. A. Cox

(Amherst College)
Prof. dr. B. Mourrain

(INRIA)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor of Engineering
Science (PhD): Computer Science

September 2020



© 2020 KU Leuven – Faculty of Engineering Science
Uitgegeven in eigen beheer, Simon Telen, Celestijnenlaan 200A box 2402, B-3001 Leuven (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden door
middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande schriftelijke
toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm, electronic
or any other means without written permission from the publisher.



Preface

This text is the result of four years of research which I conducted as a PhD student
at the department of computer science of KU Leuven under the supervision of Prof.
dr. ir. Marc Van Barel. It describes the insights I gained during this journey, which
would have never been possible without the help and support of many other people.

I would like to thank all members of the examination committee for agreeing to be on
my jury, for reading this thesis and for providing me with helpful feedback.

I consider myself very lucky to be under the supervision of a mentor who, on top
of being an excellent researcher, is open for ideas and suggestions of his mentees
and cares a lot about their general wellbeing. Marc, I cannot thank you enough for
the opportunities you have given me to travel and meet other mathematicians, to
pursue my own research interests even though they were sometimes outside both of
our comfort zones, and for giving me the feeling that I can always contact you for
advice or just a conversation. I could not have asked for better guidance.

During my PhD I have had the opportunity to visit several other research institutes.
I am grateful to Bernard Mourrain for having me as a visitor at INRIA in Sophia
Antipolis in September 2017 and for teaching me most of what I know about resultants
and normal forms. I want to thank Tyler Jarvis and his students for inviting me to
come to BYU in Provo in April 2018 and for our interesting discussions together with
Alex Townsend on real root finding. I owe a big thank you to Jan Verschelde for two
great weeks at UIC in Chicaco in August 2018, during which I learned a lot about
homotopy continuation. My visit at MPI Leipzig in December 2018 was filled with
fascinating mathematical discussions and encounters with great colleagues. I want to
thank Bernd Sturmfels for the invitation and I am excited to start as a postdoc at
the institute. I am grateful to Tomas Pajdla for having me over as a visitor at CIIRC
in Prague in March 2019 and for introducing me to some fascinating applications of
polynomials in computer vision. My longest research stay abroad was made possible by
the MATH+ Thematic Einstein Semester on Algebraic Geometry, Varieties, Polyhedra,
Computation from September 2019 until January 2020 in Berlin. I am thankful to
Peter Bürgisser for giving me the opportunity to participate. To all the people with
whom I either shared an office (thanks, Oliver!), a research project (thanks, Alessandro,
Elise, Matías, Marta, Roser, Sascha, Thomas, Tim!), a session in our intersection

i



ii PREFACE

theory reading seminar or a table at Dave B’s: thank you for making this such a great
experience. We also had the privilege to welcome some visitors to Leuven. I want to
thank Milena Wrobel for the great week we spent in and around Leuven in August
2019 and for our many discussions about Cox rings and their applications. I’m also
very thankful for Sascha Timme’s visit in March 2020. I enjoyed our collaboration
and our time in Leuven together with Katy a lot.

I would like to thank my colleagues at the department for our daily discussions. I am
grateful to Nick Vannieuwenhoven for answering my questions, for giving me excellent
advice on many occasions and for sharing several conference experiences together.
Thank you Andrew, Daan, Dries, Luca, Marcus, Niel and Nina for being part of some
of my best ‘after work’ memories. As the research topics of this thesis require some
mathematical tools that are outside the expertise of our department, it was a great
help for me to have a group of specialists working in the very next building. Thanks
Alexander Lemmens, Filip Cools, Marcel Rubió, Naud Potemans, Nero Budur, Wim
Veys and Wouter Castryck for answering several of my questions.
During the past four years I have also had the chance to talk to many mathematicians
from other institutions whom I admire very much. I want to thank Carlos D’Andrea,
Kim Batselier, Alessandra Bernardi, Laurent Busé, Lieven De Lathauwer, Alicia
Dickenstein, Philippe Dreesen, Mateusz Michalek, Vanni Noferini, Gregory Smith,
Ivan Soprunov, Frank Sottile, and Bernd Sturmfels for being so kind and available for
all my questions. I would like to express my special thanks to David Cox for setting a
great example as a mathematician, a communicator and a person.
Mathematical conferences are great occasions to learn and to brainstorm, but also to
meet new people and to catch up with friends. Throughout the years, this job has
taken me from open mic nights in Hong Kong and karaoke bars in Valencia to line
dancing in Texas and rooftop bars in New York. I want to thank all of you who have
made my conference experiences so memorable.
I also owe a big thank you to my office mates, who have made me look forward to
going to work each day. Przemek, thank you for putting up with me and Andreas in
our first years. Sahar, thank you for doing the same thing during the last couple of
years and for always being happy and cheerful. Andreas, thank you for being my office
mate and companion throughout the entire journey (including travels, construction
works and pandemics) and for being patient with me and my computer illiteracy.

I want to thank my mom and dad for giving me the opportunity to study, work and
travel and for being supportive of whatever I do. I am grateful to my sister Valérie for
her interest, love and support, and to Ruben for being a great partner for her. I thank
both my grandmothers for always being there for me and for being (embarrassingly)
proud of what I do.
Finally, I want to thank my friends for keeping me sane and reminding me that
there is life outside of mathematics. Thank you for the skiing trips, the concerts and
festivals, the PÄÄL and Detlev weekend trips, the new years eve reunions, the good
conversations . . . . It goes without saying that I am more proud of all of you than of
any thesis or paper I will ever write. Special thanks to Brent, Bruno, Deborah, Dries,
Pieter, Sebastiaan and Sophie.



Abstract

Systems of polynomial equations arise naturally from many problems in applied
mathematics and engineering. Examples of such problems come from robotics,
chemical engineering, computer vision, dynamical systems theory, signal processing and
geometric modeling, among others. The numerical solution of systems of polynomial
equations is considered a challenging problem in computational mathematics.
Important classes of existing methods are algebraic methods, which solve the problem
using eigenvalue computations, and homotopy methods, which track solution paths in
a continuous deformation of the system. In this text, we propose new algorithms of
both these types which address some of the most important (numerical) shortcomings
of existing methods.

Classical examples of algebraic techniques use Gröbner bases, border bases or resultants.
These methods take advantage of the fact that the solutions are encoded by the
structure of an algebra that is naturally defined by the equations of the system. In
order to do computations in this algebra, the algorithms choose a representation of it
which is usually given by a set of monomials satisfying some conditions. In this thesis
we show that these conditions are often too restrictive and may lead to severe numerical
instability of the algorithms. This results in the fact that they are not feasible for finite
precision arithmetic. We propose the framework of truncated normal forms to remedy
this and develop new, robust and stabilized methods. The framework generalizes
Gröbner and border bases as well as some resultant based algorithms. We present
explicit constructions for square systems which show ‘generic’ behavior with respect
to the Bézout root count in affine space or the Bernstein-Khovanskii-Kushnirenko
root count in the algebraic torus. We show how the presented techniques can be
used in a homogeneous context by introducing homogeneous normal forms, which
offer an elegant way of dealing with solutions ‘at infinity’. For instance, homogeneous
normal forms can be used to solve systems which define finitely many solutions in
projective space by working in its graded, homogeneous coordinate ring. We develop
the necessary theory for generalizing this approach to the homogeneous coordinate
ring (or Cox ring) of compact toric varieties. In this way we obtain an algorithm for
solving systems on a compactification of the algebraic torus which takes the polyhedral
structure of the equations into account. This approach is especially effective in the
case where the system defines solutions on or near the boundary of the torus in its
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iv ABSTRACT

compactification, which typically causes difficulties for other solvers. Each of the
proposed methods is tested extensively in numerical experiments and compared to
existing implementations.

Homotopy methods are perhaps the most popular methods for the numerical solution
of systems of polynomial equations. One of the reasons is that, in general, their
computational complexity scales much better with the number of variables in the
system than that of algebraic methods. However, the reliability of these methods
depends strongly on some design choices in the algorithm. An important example
is the choice of step size in the discretization of the solution paths. Choosing this
too small leads to a large computational cost and prohibitively long computation
times, while choosing it too large may lead to path jumping, which is a typical cause
for missing solutions in the output of a homotopy algorithm. In this thesis, a new
adaptive step size path tracking algorithm is proposed which is shown to be much less
prone to path jumping than the state of the art software.



Beknopte samenvatting

Stelsels veeltermvergelijkingen duiken op in talrijke problemen in toegepaste wiskunde
en ingenieurswetenschappen. Voorbeelden van zulke problemen kan men vinden in
onder meer de robotica, chemische ingenieurstechnieken, computervisie, dynamische
systeemtheorie, signaalverwerking en geometrische modellering. Het numeriek oplossen
van een stelsel veeltermvergelijkingen wordt beschouwd als een uitdagend probleem
in de computationele wiskunde. Belangrijke klassen van bestaande methodes zijn
algebraïsche methodes, die het probleem oplossen via eigenwaardenberekeningen, en
homotopiemethodes, die oplossingspaden volgen in een continue vervorming van het
stelsel. In deze tekst stellen we nieuwe algoritmes voor van beide soorten die op
verschillende vlakken beter presteren dan de bestaande methodes.

Klassieke voorbeelden van algebraïsche technieken maken gebruik van Gröbner-basissen,
border-basissen of resultanten. Deze methodes zijn gebaseerd op het feit dat de
oplossingen geëncodeerd zijn in de structuur van een algebra die op een natuurlijke
manier door de vergelijkingen van het stelsel wordt gedefiniëerd. Om berekeningen
te doen in deze algebra kiezen de algoritmes een voorstelling ervan die gebruikelijk
bestaat uit een aantal monomen die aan zekere voorwaarden voldoen. In deze thesis
tonen we aan dat deze voorwaarden vaak te strikt zijn en mogelijk leiden tot ernstige
numerieke onstabiliteit van de algoritmes. Dit resulteert in het feit dat ze niet
geschikt zijn voor berekeningen in eindige precisie. We stellen het raamwerk van
afgeknotte normaalvormen (truncated normal forms, TNFs) voor om deze tekortkoming
te verhelpen en ontwikkelen nieuwe, robuuste en gestabiliseerde methodes. Het
raamwerk veralgemeent Gröbner- en border-basissen, alsook een aantal resultant-
gebaseerde algoritmes. We stellen expliciete constructies voor om vierkante systemen
op te lossen die ‘generiek’ gedrag vertonen, waarmee we bedoelen dat ze het verwachte
aantal oplossingen hebben in de zin van Bézout of Bernstein-Khovanskii-Kushnirenko.
We tonen aan hoe de voorgestelde technieken gebruikt kunnen worden in een homogene
context door het definiëren van homogene normaalvormen (homogeneous normal forms,
HNFs) die een elegante manier bieden om oplossingen ‘op oneindig’ af te handelen.
Bijvoorbeeld, homogene normaalvormen kunnen gebruikt worden om stelsels op te
lossen die eindig veel oplossingen definiëren in de projectieve ruimte door te werken
in de homogene coördinaatring. We ontwikkelen de nodige theorie om deze aanpak
te veralgemenen naar de homogene coördinaatring (of Cox ring) van een compacte
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torische variëteit. Op deze manier bekomen we een algoritme voor het oplossen van
veeltermstelsels in een compactificatie van de algebraïsche torus die rekening houdt
met de polyhedrale structuur van de vergelijkingen. Deze aanpak is vooral effectief in
het geval waarin het systeem oplossingen definiëert nabij de rand van de torus in zijn
compactificatie, hetgeen typisch een probleem vormt voor andere methodes. Elk van
de voorgestelde algoritmes wordt getest in numerieke experimenten en vergeleken met
bestaande implementaties.

Homotopiemethodes zijn wellicht de meest populaire methodes voor het numeriek
oplossen van een stelsel veeltermvergelijkingen. Één van de redenen daarvoor is dat
de rekenkost veel beter schaalt met het aantal variableen in het stelsel dan voor
algebraïsche methodes. Echter, de betrouwbaarheid van deze methodes hangt sterk af
van een aantal ontwerpkeuzes in het algoritme. Een belangrijk voorbeeld is de keuze
van de stapgrootte in de discretisatie van de oplossingspaden. Kiezen we deze te klein
dan leidt dit tot lange rekentijden. Kiezen we deze te groot dan kan dit leiden tot
path jumping, wat een typische oorzaak is voor verloren oplossingen in de output van
een homotopie algoritme. In deze thesis ontwerpen we een nieuw homotopie algoritme
dat gebruik maakt van een adaptieve stapgrootte en tonen we aan dat dit algoritme
beduidend minder last heeft van path jumping dan state-of-the-art alternatieven.
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Chapter 1

Introduction

This text is about the mathematical problem of solving a system of polynomial
equations, which is a fundamental problem in nonlinear algebra and algebraic geometry.
Application areas of this problem include cryptography, signal processing, data science,
chemical engineering, robotics and computer vision, to name a few.
With motivations coming mainly from pure mathematics, the research on algorithms
for solving polynomial equations in the 19th and most of the 20th century focused
on symbolic methods. This led to major advances in computer algebra with the
development of powerful tools for testing theories, formulating conjectures and even
proving theorems. Although very useful for such purposes, symbolic manipulation is
often unfeasible for problems coming from applications. There are two main reasons
for this. Firstly, the scale of such problems can be very large, requiring too much
time for symbolic algorithms to terminate. Secondly, the input data of the problems
(e.g. the coefficients of the polynomials) may come from measurements or previous
numerical computations. The representation of these data as rational numbers requires
the use of large integers, which rapidly leads to memory issues. These observations
establish the need for robust numerical algorithms that produce reliable results in
finite precision arithmetic. Somewhat surprisingly, the fields of numerical nonlinear
algebra and numerical algebraic geometry have remained largely uncharted territory
until the end of the 20th century. One possible explanation is that numerical analysts
have rarely been exposed to commutative algebra or algebraic geometry in their
undergraduate years. On top of that, the classical sources on these subjects often
assume a background in algebra and topology that excludes numerical analysts and
engineers from their reading audience. Books such as Ideals, Varieties and Algorithms
and Using Algebraic Geometry by Cox, Little and O’Shea are game changers from this
perspective. Among other things, the publication of such books has paved the way for
today’s growing community of applied and numerical algebraic geometers.
In this text, we have aimed to include background information on basic algebraic
geometry, commutative algebra, numerical analysis and numerical linear algebra. We
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2 INTRODUCTION

assume basic knowledge of algebraic structures, linear algebra and floating point
numbers. For the sake of readability, some of the preliminary material is moved to an
appendix and references are provided where a full discussion would be too lengthy.
In the first section of this chapter, we state the problem of solving a system of
polynomial equations in its simplest form and discuss some conventions used in this
thesis. In Section 1.2 we present a selection of applications of the problem in some
more detail. Section 1.3 gives an overview of some state of the art methods. In Section
1.4 we describe the goals of this thesis and our main contributions. Finally, in Section
1.5 we discuss the outline of the thesis.

1.1 Polynomial systems

Let R = C[x1, . . . , xn] be the ring of n-variate polynomials with coefficients in C.
An element f ∈ R defines a function f : Cn → C. We will use the short notation
x = (x1, . . . , xn) ∈ Cn and when n ≤ 3 we may use variable names such as x, y, z
instead of x1, x2, x3 to avoid subscripts. Given s elements f1, . . . , fs ∈ R, we define
the map F : Cn → Cs such that

F (x) = (f1(x), . . . , fs(x)).

We will be interested in the inverse image of the origin in Cs under this map, i.e., in
the fiber

F−1(0) = {x ∈ Cn | F (x) = 0}.

This set consists of all the points satisfying the relations

f1(x) = · · · = fs(x) = 0.

Therefore, F−1(0) is called the set of solutions of the system of polynomial equations
defined by f1, . . . , fs. In this context, by solving the system of polynomial equations
f1 = · · · = fs = 0 we mean ‘computing’ F−1(0). Here we have to specify what we
mean by ‘computing’ a set of points in Cn. Some issues are:

1. The set F−1(0) may be infinite.

2. There may be no expression in radicals for the coordinates of the points in
F−1(0), i.e. there is no algorithm that computes these coordinates in finite time.

Example 1.1.1. If n = 2 and s = 1, then f(x, y) = 0 defines infinitely many points
in C2 unless f is a nonzero constant function. If n = s = 1, then there is no expression
in radicals for the roots of a general quintic a5x

5 + a4x
4 + · · ·+ a0 = 0 by the famous

Abel-Ruffini theorem. 4

In this thesis, we will assume that f1, . . . , fs are such that the first situation does not
occur. That is, we will assume that F−1(0) consists of isolated points, and this implies
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that F−1(0) is finite by Bézout’s theorem 3.1.2. As we will see (Theorem 2.2.4), in
order for this assumption to be satisfied we must have s ≥ n. A system with finitely
many solutions is called zero-dimensional, which refers to the dimension of F−1(0) as
an affine algebraic variety. We will say more about dimension in Chapter 2 and use it
as an intuitive concept for now. If the fi are non-constant, the ‘expected dimension’
of F−1(0) is n − s, where negative dimensions (for s > n) indicate that F−1(0) is
expected to be the empty set.

Example 1.1.2. If fi = ai0 + ai1x1 + · · ·+ ainxn are affine functions, then F−1(0) is
the affine space of solutions of a linear system of equations defined by an s× n matrix
A = (aij)1≤i≤s,1≤j≤n. The dimension of the solution space is n− s, except when the
matrix A is not of full rank. 4

This means that systems given by n equations in n variables are expected to have
finitely many isolated solutions. Systems for which n = s are called square systems.
They form an important class of polynomial systems and they will play an important
role in this thesis.
The second issue listed above means that there is no hope for developing algorithms
for computing exactly the coordinates of the solutions of any system of polynomial
equations in finite time. However, the solutions can be approximated to arbitrary
precision by using, for instance, Newton’s method. Motivated by this, by ‘computing’
the solutions of f1 = · · · = fs = 0 we mean computing satisfactory numerical
approximations of the coordinates of the solutions in Cn. A way of measuring the
quality of an approximate solution is discussed in Appendix C.

In the formulation above, Cn is called the solution space of the system f1 = · · · = fs = 0.
Especially when dealing with systems in more than one variable (n > 1) it may be
convenient to work with different solution spaces X, as we will do later on in this
text. In the more general context, on which we will not elaborate until Section 3.2, F
will be a section of a rank s algebraic vector bundle on X, and the set of solutions
is the zero locus of F in X. One of the reasons for changing the solution space is
that systems may define solutions ‘at infinity’, and for numerical stability reasons we
may want to include ‘infinity’ in our solution space. This leads for instance to the
projective solution space X = Pn (see Section 2.2) or other compact toric varieties
(see Chapter 5). In all these cases, we will define coordinates on our solution space
X, and by solving we mean computing satisfactory numerical approximations of the
coordinates of the solutions in X.

Throughout this thesis, we will mostly work with polynomials, varieties and matrices
over the complex numbers C. This choice needs to be motivated, since many systems
arising from applications have real coefficients and it is often only important to
compute the real solutions. On top of that, the number of real solutions can be much
smaller than the number of complex solutions. Real solutions of polynomial systems
are studied in the field of real algebraic geometry [BCR13, Sot03]. Finding only the
real solutions without computing all complex solutions first is a hard problem that is
still largely open. One reason is the fact that C is algebraically closed and R is not.
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In fact, C is the algebraic closure R of R, which means that C is the smallest of all
fields K containing R such that every non-constant polynomial in R[x] has a solution
in K. This implies that we can invoke Hilbert’s Nullstellensatz (see Subsection 2.1.3),
which is a celebrated result in algebraic geometry. It also leads to the fact that for
certain families of polynomial systems and varieties, one can make statements about
what happens in general or generically. Finally, working over the complex numbers is
essential for the success of homotopy continuation methods (see Chapter 6) for solving
polynomial systems. In conclusion, although many of the polynomial systems we are
interested in have coefficients in R, we will solve them over C = R, and if we are only
interested in real solutions, we will adopt the usual strategy of computing all complex
solutions in Cn and taking the intersection with Rn.
Example 1.1.3. Consider a general quadratic polynomial f = ax2 + bx+ c ∈ R[x]
with a 6= 0. The polynomial f has two solutions in R when b2 − 4ac > 0, one
solution in R when b2 − 4ac = 0 and no solutions in R when b2 − 4ac < 0. A
geometric way of thinking about this is the following. The discriminant surface
{(a, b, c) ∈ R3 | b2 − 4ac = 0} partitions the parameter space {(a, b, c) ∈ R3 | a 6= 0}
into two compartments, each with a different real root count. A quadratic equation
f = ax2 + bx+ c ∈ C[x] with a 6= 0 always has a solution in C, and for general a, b, c
there are two solutions in C. If there is only one solution, then b2− 4ac = 0. A general
cubic f = ax3 + bx2 + cx + d ∈ R[x], a 6= 0 may have 1 or 3 solutions in R. The
discriminant is now given by ∆f = b2c2 − 4ac3 − 4b3d− 27a2d2 + 18abcd = 0. If the
coefficients are complex, there are 3 solutions except when ∆f = 0. 4

1.2 Applications

Systems of polynomial equations are at the heart of many problems in pure and applied
mathematics. Some examples are computing all possible conformations of molecules in
molecular biology [EM99a], the design of wavelet families in signal processing [Tel16,
Section 1.2], analyzing feasible robot configurations in robotics [WS11], computing
Nash equilibria in economics and game theory [Stu02, Chapter 6] (or [WS05, Chapter
9]), numerous applications in statistics [Sul18], curvature and bottleneck computation
in topological data analysis [Bre20] and solving linear partial differential equations
with constant coefficients [Stu02, Chapter 10]. The author learned about several of
these applications and others in a course taught by David Cox at the 2018 CBMS
conference on ‘Applications of Polynomial Systems’. The course material has recently
been published in [Cox20a]. In the remainder of this section we present a selection of
other applications of polynomial systems in some more detail.

1.2.1 Polynomial optimization

Systems of polynomial equations often arise in applications in the form of a polynomial
optimization problem [AL11], where the goal is to minimize a polynomial objective
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function g(x1, . . . , xk) ∈ R[x1, . . . , xk] ⊂ C[x1, . . . , xk] over a real algebraic set (the
zero locus of a set of polynomials h1, . . . , h` ∈ R[x1, . . . , xk] in Rk). That is, we
consider the optimization problem

min
x∈R

g(x1, . . . , xk),

subject to h1(x1, . . . , xk) = · · · = h`(x1, . . . , xk) = 0.
(1.2.1)

This is an example where one is only interested in real solutions: minimizing over the
complex numbers does not make much sense. Introducing new variables λ1, . . . , λ` we
obtain the Lagrangian L = g − λ1h1 − · · · − λ`h`, whose partial derivatives give the
optimality conditions

∂L

∂x1
= · · · = ∂L

∂xk
= h1 = · · · = h` = 0. (1.2.2)

This is a polynomial system with n = s = k + `. The real solutions are obtained by
computing all the complex solutions and intersecting with Rk. By the discussion in
Section 1.1, the number of solutions is typically finite.

Example 1.2.1 (Euclidean distance degree). Given a general point y = (y1, . . . , yk) ∈
Rk, we consider the (squared) Euclidean distance function g(x1, . . . , xk) = ‖x− y‖2

2 =
(x1 − y1)2 + · · ·+ (xk − yk)2. Let Y be the zero-locus of h1, . . . , h` ∈ R[x1, . . . , xk]:

Y = {x ∈ Rk | h1 = · · · = h` = 0}.

Consider the optimization problem (1.2.1) given by these data. The solution y∗ is the
point on Y that’s closest to y. The number of complex solutions of (1.2.2) is called
the Euclidean distance degree of Y [DHO+16]. The authors of [DHO+16] point out
that if y is a noisy sample from Y , then y∗ is the maximum likelihood estimate for y
under the assumption that the noise has a standard Gaussian distribution in Rn. 4

Example 1.2.2 (Computing critical points). In many applications one is interested
in finding the critical points of a differentiable function f : Rn → R, not necessarily
polynomial, in a bounded domain Ω ⊂ Rn. These are the real solutions in Ω of

∂f

∂x1
= · · · = ∂f

∂xn
= 0. (1.2.3)

A possible strategy for finding these points is approximating f by a polynomial function
f̃ on Ω and computing the critical points of f̃ in Ω instead. An effective way of doing
this approximation numerically is by the use of multivariate Chebyshev interpolants
[Mas80, Tre17]. Replacing f in (1.2.3) by f̃ gives the optimality conditions for an
unconstrained version of (1.2.1). This approach is used in [NNT15] (in combination
with domain subdivision) for solving one of the SIAM 100-Digit Challenge problems
[Tre02]. 4

Example 1.2.3 (Parameter estimation for system identification). System identifi-
cation is an engineering discipline that aims at constructing models for dynamical
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systems from measured data [Lju86]. The general model for a discrete time, single-
input single-output linear time-invariant system with input sequence u : Z → R,
output sequence y : Z→ R and white noise sequence e : Z→ R is

A(q)y(t) = B1(q)
B2(q)u(t) + C1(q)

C2(q)e(t).

Here A,B1, B2, C1, C2 ∈ C[q] are unknown polynomials in the backward shift operator
q which acts on any sequence s : Z→ R by qs(t) = s(t− 1). Let dA, dB1 , dB2 , dC1 , dC2

be the degrees of these polynomials, which depend on the choice of model. Clearing
denominators gives

A(q)B2(q)C2(q)y(t) = B1(q)C2(q)u(t) +B2(q)C1(q)e(t). (1.2.4)

Suppose we have measured u(0), . . . , u(N), y(0), . . . , y(N). Then we can find algebraic
relations among the coefficients of A,B1, B2, C1, C2 by writing (1.2.4) down for t =
d, d+ 1, . . . , N where

d = max(dA + dB2 + dC2 , dB1 + dC2 , dB2 + dC1).

The coefficients of these polynomials are then estimated by solving the polynomial
optimization problem

min
Θ∈Rk

e(0)2 + . . .+ e(N)2

subject to (1.2.4) is satisfied for t = d, . . . , N

where Θ is the set of parameters consisting of e(0), . . . , e(N) and the unknown
coefficients of A,B1, B2, C1, C2. The interested reader is referred to [Lju86, chapter
7] for a detailed treatment of parameter estimation in system identification, and to
[Bat13, Subsection 1.1.1] for a worked out example. 4

1.2.2 Chemical reaction networks

The equilibrium concentrations of the chemical species occuring in a chemical reaction
network satisfy algebraic relations. Taking advantage of the algebraic structure of
these networks has led to advances in the understanding of their dynamical behaviour.
We refer the interested reader to [Dic16] and references therein. The network below
involves 4 species A,B,C,D and models T cell signal transduction (see [Dic16]).

A+B
κ
12κ

21

C

κ 31

D
κ23
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The parameters κ12, κ21, κ31, κ23 ∈ R>0 are the reaction rate constants. Let
xA, xB , xC , xD denote the time dependent concentrations of the species A,B,C,D
respectively. The law of mass action gives the relations

fA = dxA
dt

= −κ12xAxB + κ21xC + κ31xD,

fB = dxB
dt

= −κ12xAxB + κ21xC + κ31xD,

fC = dxC
dt

= κ12xAxB − κ21xC − κ23xC ,

fD = dxD
dt

= κ23xC − κ31xD.

The set {(xA, xB , xC , xD) ∈ (R>0)4 | fA = fB = fC = fD = 0} is called the
steady state variety of the chemical reaction network. By the structure of the
equations, for given initial concentrations, the solution (xA, xB , xC , xD) cannot leave
its stoichiometric compatibility class, which is an affine subspace of (R>0)4. Adding the
affine equations of the stoichiometric compatibility class to the system, we get the set
of all candidate steady states. We conclude by pointing out that there are remarkable
connections with toric geometry [CDSS09] and geometric modeling [CGPS08].

1.2.3 Tensor decomposition

Tensors, as a generalization of matrices, are represented in coordinates by multi-
dimensional arrays. They have numerous applications in signal processing, chemistry
and data mining, among others [KB09, Com02, CMDL+15, SDLF+17]. In these
applications, a frequently encountered problem is to find a decomposition of a tensor
into a sum of ‘simple’ tensors. For example, the tensor rank decomposition or Canonical
Polyadic Decomposition (CPD) of a third order tensor A ∈ Cl ⊗ Cm ⊗ Cn is

A =
r∑
i=1

xi ⊗ yi ⊗ zi (1.2.5)

where r is the rank of A (it is the minimal number for which such a decomposition
exists), xi ∈ Cl, yi ∈ Cm, zi ∈ Cn and a term xi ⊗ yi ⊗ zi is called a rank-one tensor,
or elementary tensor [DSL08]. Equivalently, in coordinates we can write (1.2.5) as

Ajk` =
r∑
i=1

xijyikzi`, 1 ≤ j ≤ l, 1 ≤ k ≤ m, 1 ≤ ` ≤ n. (1.2.6)

Even when the rank r is known, it is considered a difficult problem to find the rank-one
summands in (1.2.5). It is clear from (1.2.6) that the entries of the xi, yi, zi are the
solutions to a set of polynomial equations. Some variables can be eliminated by
observing that axi ⊗ byi ⊗ czi = (abc)(xi ⊗ yi ⊗ zi). That is, with an appropriate
change of coordinates one can assume that xi1 = yi1 = 1, and the solution space



8 INTRODUCTION

has dimension r(l +m+ n− 2). For some formats (l,m, n), there exists r ∈ N such
that the resulting polynomial system is square. These are the formats (l,m, n) for
which lmn/(l +m+ n− 2) ∈ N. Such tensor formats are called perfect and homotopy
methods of numerical algebraic geometry have proved very useful for investigating the
identifiability and the generic number of possible decompositions [HOOS19].

In applications, the data in A are often contaminated by noise and there is no hope
for having equality in (1.2.5) for low ranks r. One is usually interested in finding a
rank r tensor that approximates A. In the case where r = 1 one computes the critical
points of the algebraic function ∑

jk`

(Ajk` − xjykz`)2,

which is another example of polynomial optimization (Subsection 1.2.1).

In [KL18], homotopy continuation methods have been successfully applied for
decomposing unbalanced tensors (in our example, these are tensors with r <
max(l,m, n)). The key ingredient is an alternative algebraic formulation for the
decomposition problem using basic (multi-)linear algebra techniques.

Symmetric tensors A in (Cl)⊗d (i.e., tensors for which the coordinates are invariant
under permutation of the indices) are homogeneous polynomials fA of degree d in
l variables (see Section 2.2). For d = 2, this statement reduces to the standard
observation that a matrix A ∈ Cl×l = Cl⊗Cl defines a quadratic form fA(u) = u>Au
where u = (u1, . . . , ul)>. The symmetric tensor rank decomposition of a symmetric
tensor A is the decomposition of A into a minimal sum of symmetric elementary
tensors. The number of summands is called the symmetric rank. This decomposition
is given by the Waring decomposition of the corresponding homogeneous polynomial,
which is its minimal decomposition into a sum of powers of linear forms. For instance

(Cl)⊗3 3 A =
r∑
i=1

xi ⊗ xi ⊗ xi ∼ fA(u) =
r∑
i=1

li(u)3,

where li(u) = xi1u1 + · · ·+ xilul. Apolarity theory relates the problem of finding the
Waring decomposition to the theory of polynomial system solving [IK99, Chapters
1-2]. This was exploited in [BCMT10, BT20b] to design an algorithm for symmetric
tensor decomposition which combines ideas from algebraic polynomial system solving
methods and homotopy methods.

So far, we have discussed how polynomial system solving techniques can be applied
to solve tensor decomposition problems. Going the other way around, in [VSDL17a,
VSDL17b] the authors use tensor decomposition as the last step in their algorithm for
solving systems of polynomial equations. The connection between the CPD of third
order tensors and joint eigenvalue decomposition of commuting matrices, as discussed
in [DL06], is exploited. Multiple roots of the polynomial system are handled using
the block term decomposition and the algorithms can be used in particular for solving
noisy, overdetermined systems.
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1.2.4 Computer vision

An important problem in computer vision is that of estimating internal calibration
parameters of a camera or camera displacement from point correspondences in a
sequence of images [HZ03]. Every such point correspondence imposes an algebraic
relation on the parameters that are to be estimated. For some minimal number of
points, the number of solutions to the resulting system is finite. Problems that can be
formulated in this way are called minimal problems [Kuk13].

Example 1.2.4 (relative pose problems). Consider a moving, fully calibrated camera
taking two pictures of the same object at different moments in time. In these pictures,
there are certain points that correspond to one another. For instance, if the object is
a cube, one of its vertices might appear in both pictures. A question one could ask is:
‘What is the minimal number of point correspondences that we need to know such
that there are only finitely many possible displacements of the camera that can realize
these correspondences?’ The answer to this question is five [Nis04]. If the focal length
of the camera needs to be estimated as well (i.e. the camera is not fully calibrated),
we need six point correspondences. 4

Example 1.2.5 (the 8-point radial distortion problem). The epipolar geometry and
one parameter radial lens distortion of a camera can be estimated simultaneously from
eight point correspondences [KP07]. This problem has several alternative formulations.
See [Kuk13, Section 7.1] for a formulation as a polynomial system with 7 equations in
7 unknowns, and a different formulation as a system with 3 equations and 3 unknowns.
In the first formulation with n = s = 7, there are 6 equations of degree 2 and one of
degree 3. In the formulation with n = s = 3, two equations have degree 3 and one has
degree 5. Geometric problems coming from applications can often be described by
different polynomial models with solution spaces of different dimensions. Typically, as
is the case in this example, the price one pays for reducing the number of variables is
an increase of the degree of the equations and vice versa. We will say a bit more about
the structure of the equations in the n = s = 3 formulation in Experiment 5.5.2. 4

1.3 State of the art

In this section we give an overview of the available methods for solving systems of
polynomial equations. We will elaborate more on methods related to those proposed
in this thesis in later chapters. For more information, the reader can consult overview
books such as [Stu02, WS05, EM07, CCC+05]. Strategies for solving polynomial
equations over the complex numbers can be roughly subdivided into two classes. One
class of methods reduces the problem to a univariate root finding problem or an
eigenvalue problem via algebraic manipulations of the input polynomials. We refer to
such methods as algebraic methods. Other methods use a topological approach, where
a polynomial system is continuously deformed into another one and numerical methods
are used to track the paths of the isolated solutions. Such methods are referred to
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as homotopy methods. We give an overview of algebraic and homotopy methods in
Subsections 1.3.1 and 1.3.2 respectively.
We should mention that there is another popular class of methods, called subdivision
methods, for finding solutions in bounded domains of Rn [MP09]. The approach uses
a combination of domain reduction and domain subdivision for iterative refinement
of the subregions where solutions may be located. We will not give any details here,
since both the used techniques and the scope of these methods are fundamentally
different from the ones in this thesis. We refer the interested reader to [MP09] and
references therein.

1.3.1 Algebraic methods

We denote by I ⊂ R the ideal generated by the polynomials f1, . . . , fs defining our
system of polynomial equations. As explained in Section 3.1, the solutions of the
polynomial system are encoded in the C-algebra structure of the residue ring R/I.
Algebraic methods for polynomial system solving deduce the algebraic structure of
R/I by performing linear algebra operations on vector subspaces of I.

This approach finds its origins in 18th, 19th and early 20th century works on
elimination theory and resultants by Bézout, Waring, Poisson, Sylvester, Cayley,
Macaulay. . . [Béz79, War91, Poi02, Syl40, Cay64, Mac02, Mac94]. Matrices whose
entries are coefficients of the polynomials f1, . . . , fs play a key role in these works, and
they continue to do so in research on algebraic solving methods today. An explicit
construction of such matrices was introduced for computing projective resultants, see
e.g. [Mac02]. These matrices are also called Macaulay resultant matrices or, in the
case of two homogeneous polynomials in two variables, Sylvester resultant matrices.
See [CLO06, Chapter 3] for a detailed treatment. Analogous constructions have been
described for computing toric or sparse resultants [EC93, PS93, D’A02, DS15]. These
are among the main objects of study in sparse elimination theory and find their origins
in the foundational work of Gel’fand, Kapranov and Zelevinsky [GKZ94]. Other
types of matrix constructions come from residual resultants [Bus01] and Bézoutians
[CCC+05, Chapter1]. An overview of these matrix techniques can be found in [EM99b]
and a nice summary of the history of elimination theory is given in [Cox20a, Chapter 1].
Although the original application of the theory of elimination and resultants was mainly
in symbolic computing, the methods have been analyzed and used in a numerical
context; see for instance [Tel16, JV05, BKM05]. We will say more about resultants in
Section 3.4. In [Bat13, Dre13, DBDM12] (non-square) Macaulay-type matrices are
used for root finding in a numerical linear algebra context. The authors have also
developed algorithms that exploit the structure of these matrices (see, e.g., [BDDM14])
and show that their methods are useful in an overdetermined context where equations
may be contaminated by noise. All of these tools can be used to reduce the problem
of solving polynomial systems to a classical, generalized or polynomial eigenvalue
problem.
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Another well-established approach to describe the algebra R/I uses Gröbner bases. A
Gröbner basis for I with respect to a certain term order is a finite set of generators
for the ideal I satisfying some criteria (see Section 3.3). These criteria make the set of
generators extremely useful for computations with and modulo the ideal. Gröbner bases
were introduced in 1965 by Bruno Buchberger in his Ph. D. thesis [Buc06] entitled An
algorithm for finding the basis elements of the residue class ring of a zero dimensional
polynomial ideal. In this thesis he also presents what is now called the Buchberger
algorithm for computing Gröbner bases. Many algorithms in computer algebra rely on
(optimized versions of) this algorithm. A great introduction to the basics of Gröbner
bases and the Buchberger algorithm can be found in [CLO13, Chapters 2-3] or [AL94,
Chapter 1]. More advanced topics are discussed in [Stu96]. Great improvements on the
efficiency of Gröbner basis computation have been made by using linear algebra tools.
This has led to Faugère’s F4 and F5 algorithms [Fau99, Fau02], which are considered
the state of the art algorithms. The FGb library [Fau10] has an implementation of
these algorithms and an interface to Maple [Map18]. The development of specialized
Gröbner basis algorithms is an active area of research; see e.g. [BFT19] for Gröbner
bases in a toric context.

Gröbner basis computations depend strongly on a choice of term order (see Section
3.3). H-bases, introduced by Macaulay [Mac94], are a different type of ideal bases
which can be viewed as a ‘coarser’ version of Gröbner bases. The term order (which
is always a total order on monomials) is replaced by a coarser order on monomials
given by the total degree. Such bases have interesting properties and can be used, like
Gröbner bases, for computing normal forms and to describe R/I [MS00].

Although Gröbner bases are indispensable symbolic tools for algebraic root finding,
their use in a numerical context has remained limited. The reason is that Gröbner
basis computations are numerically unstable. One of the causes is the fact that the set
of standard monomials (these are the residue classes of monomials corresponding to a
term order that form a basis for R/I, see Section 3.3) change discontinuously with the
coefficients of the input polynomials f1, . . . , fs [Ste97, Mou99]. We will give an example
in Subsection 3.3.2. To address this drawback of Gröbner bases, border bases have been
introduced [AS88, MMM91, Möl93, Ste97, Mou99, KK05, KKR05, KK06, MT08]. A
border basis for I is a finite set of generators of I satisfying criteria that are less strict
than those imposed on Gröbner bases. For example, border bases do not necessarily
correspond to a term order. For some finite dimensional vector subspace B ⊂ R,
a border basis establishes the equality R = B ⊕ I identifying R/I ' B as vector
spaces. It is commonly required that B be connected to 1 (see [Mou99]). If B is
spanned by a set B of monomials of R, this restriction is sometimes made stronger by
imposing that B be an order ideal (e.g. [KKR05]). Both restrictions are satisfied by
the span of the standard monomials coming from a Gröbner basis computation. These
generalizations lead to more robust numerical methods than Gröbner bases. The
algorithms work with matrices that are usually smaller than resultant constructions
because of their incremental nature [MT00]. However, these techniques do not offer a
canonical choice for the representation of R/I that is optimized for numerical stability.
This is mentioned as an open problem in [Mou07] and will be addressed in this thesis.
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1.3.2 Homotopy methods

The strategy of homotopy continuation methods for solving systems of polynomial
equations can be described (omitting many subtleties) as follows. Consider F : Cn →
Cn as in Section 1.1 where we take s = n. Suppose G : Cn → Cn represents a different,
square polynomial system whose solutions we know or can be easily computed. On
top of that, assume that G has the same number of solutions as F . The next step is
to construct a polynomial map

H : Cn × C→ Cn such that H(x, 0) = G(x) and H(x, 1) = F (x).

For instance
H(x, t) = (1− t)G(x) + tF (x).

In this setup G is called the start system and F is called the target system of the
homotopy H. As t goes from 0 to 1 along any continuous 1-real dimensional path in C,
the polynomial map G deforms continuously into F . If this path is ‘nice’, the solutions
will describe smooth, continuous paths in Cn during this deformation, and the idea of
homotopy continuation is to track these paths numerically. This is usually done by
discretizing the path into small steps and applying a predictor-corrector scheme. An
introduction to homotopy continuation can be found in [AG12, MS87, Li97, SVW01,
SVW05, WS05].

Working over the complex numbers is crucial for the success of homotopy continuation
methods (although recently, in [EdW19], the authors have made some progress in
investigating what is possible over the reals). This means that these methods have
an intrinsic numerical character. In fact, numerical path tracking is strongly related
to numerically solving initial value problems given by ordinary differential equations
[WS11, Part 2].

Constructing an appropriate start system G is an interesting problem on its own.
One issue is that if G has too many solutions, some paths will diverge to infinity
as t approaches 1. This leads to waste of computational efforts, which is of course
undesirable. If all paths converge to a solution of F , the homotopy is called optimal
[HSS98]. Optimal homotopy constructions exist for some important types of polynomial
systems. Examples are total degree homotopies for square systems with the Bézout
number of solutions [WS05, Subsection 8.4.1], multihomogeneous homotopies for square
systems with the multihomogeneous Bézout number of solutions [Wam93] or polyhedral
homotopies for square systems with the BKK number of solutions [HS95, VVC94].
We will say more about these solution counts in Sections 3.1 and 5.1.

Under the right assumptions on the path that is followed in the parameter space, the
solution paths are smooth and do not cross each other along the way. However, if the
system F has singular solutions, some paths may come together at t = 1. Also, if we
were not able to construct an optimal homotopy, some paths may diverge to infinity.
For dealing with this type of situations, so-called end games have been developed
[MSW92a, MSW92b, HV98]. An alternative way of dealing with diverging paths is
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compactifying the solution space. It is common practice to track paths in projective
and multiprojective spaces [WS05, Chapter 3].

An important reliability issue of these methods is the possibility of path jumping.
This is the phenomenon where the numerical approximation of a point on one path
jumps to another path along the way. This happens, for instance, when the predicted
next point on the path is too far off and lands in the Newton basin of attraction of a
different path. In order to avoid this problem, the steps taken in the discretization
of the path should be small enough. On the other hand, taking the step size too
small would result in a high computational cost. Motivated by this, adaptive step size
methods have been developed that aim to choose the step size adaptively by detecting
which regions of the path are easy/hard to track [SC87, KX94, GS04, Tim20]. In this
thesis, we will propose a path tracking algorithm that proves to be more robust than
the state of the art implementations with respect to path jumping.

Some state of the art implementations of the homotopy continuation method for
solving systems of polynomial equations are Bertini [BSHW13], PHCpack [Ver99],
HOM4PS [LLT08] and the recently developed Julia package HomotopyContinuation.jl
[BT18]. We should also mention that certified path trackers have been developed
[HS12, HLJ16, XBY18], which avoid path jumping and provably compute approximate
solutions to the polynomial system F in the sense of Smale’s α-theory [BCSS12].
However, these methods are computationally significantly more expensive and the
certification assumes that the coefficients of the input systems are known exactly.

If one of the solutions of F is known, one could construct a homotopy H(x, t) such
that H(x, 0) = H(x, 1) = F (x) by describing a closed loop in the parameter space.
If this loop encircles some branchpoints, tracking the corresponding solution path
will give us a new solution of the system. This is (again, omitting many details) the
approach taken in monodromy solvers [DHJ+19], which turn out to be very successful
for generating start systems and starting solutions.

1.4 Research goals and contributions

Given a polynomial system f1 = · · · = fs = 0 with solution space X defining finitely
many solutions, our aim in this thesis is to develop new algorithms that work in finite
precision arithmetic for finding numerical approximations of the coordinates of the
solutions on X. In particular, with these algorithms we seek to address numerical
stability and robustness issues of existing implementations. We develop the necessary
theory for presenting the algorithms and perform numerical experiments to show their
effectiveness in comparison with the state of the art. The numerical algorithms we
present in this thesis are of two different types: some are algebraic solvers using normal
forms and eigenvalue computations, others are homotopy algorithms.

Classical algebraic methods impose restrictions on the representation of the quotient
algebra associated to a polynomial system which may lead to ill-conditioned rewriting
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rules. More specifically, often monomial bases are used which either come from a
monomial ordering or which satisfy some connectedness property (see Section 3.3). We
develop the framework of truncated normal forms (TNFs) which allows more general,
possibly non-monomial representations for the quotient algebra and leads to significant
improvements in the stability of normal form algorithms. For example, an algorithm
based on the classical Macaulay resultant construction fails at computing the 400
intersection points of two general degree 20 curves in the plane: the backward error is
O(1). With the TNF algorithm proposed in Subsection 4.3.2 we can compute all 28900
intersection points of two general degree 170 curves with a backward error no larger
than 10−8 (see Subsection 4.3.3). The key feature of the algorithm that realizes this
improvement is an automatic choice of representation for the quotient algebra with
good numerical properties by applying standard tools from numerical linear algebra.
Truncated normal forms generalize both Gröbner and border bases. We develop the
theory and propose explicit constructions for square polynomial systems which show
‘generic’ behavior with respect to their degrees or their monomial supports (Algorithms
4.1 and 5.3). These constructions are strongly related to Macaulay and toric resultant
constructions. Just like in these constructions, exploiting the polyhedral structure of
the system instead of only considering the degrees of the equations gives a significant
reduction of the sizes of the matrices involved in our algorithms.
The systems encountered in applications are often ‘non-generic’: the number of isolated
solutions may be much smaller than the expected number for a system with the same
degree or support. Enlarging our solution space to projective space or a more general
compact toric variety X, we can present constructions which allow isolated solutions
‘at infinity’. The methods rely on a homogeneous interpretation of the theory of
truncated normal forms. The ‘normal forms’ in this context work in the (multi-)graded
homogeneous coordinate ring or Cox ring of X. We call them homogeneous normal
forms and show how they lead to algorithms which can deal with solutions at or ‘near’
infinity (i.e. with large coordinates) in a robust way and which can help to understand
the solution count in the torus for certain families of systems. For this, we prove a
toric version of the classical eigenvalue-eigenvector theorems and prove new regularity
results for homogeneous ideals in the Cox ring, defining finitely many points on X.

Perhaps the most important reliability issue for homotopy continuation methods is
the possibility of path jumping, which happens when a numerical path tracker jumps
‘too far off’ the path that is currently being tracked, onto a different solution path.
This is a typical way of how solutions are lost during the path tracking. To address
this issue, we develop an adaptive stepsize algorithm that uses Padé approximants
in the predictor to detect ‘difficult’ regions along the path. It detects where there is
danger for path jumping and adjusts the discretization step of the path accordingly by
using a new heuristic. The resulting algorithm can reliably solve challenging problems
where other implementations fail.
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1.5 Outline

To conclude this chapter, we give an overview of the contents of this thesis by
summarizing the subject and goal of each of the next chapters.

In Chapter 2 we give an overview of some basic concepts from algebraic geometry and
we fix our notation for varieties, rings and ideals. We have included examples which are
instructive for later chapters. The goal of the chapter is to recall important concepts
such as the correspondence between varieties and their coordinate rings, the definition
of projective space and its standard affine open covering, homogeneous coordinate
rings of projective varieties and the gluing construction, which play a prominent role
in this thesis.

Chapter 3 consists of four sections, of which the first two recall some specific properties
of zero-dimensional varieties in affine and projective space and the last two describe
some classical methods for computing zero-dimensional varieties. The main goal of
the first part of the chapter is to state two versions of the eigenvalue-eigenvector
theorem for isolated root finding and to describe generic properties of systems of
equations, introducing Bézout’s theorem as an important example. The second part of
the chapter focuses on how these results are used by Gröbner basis, border basis and
resultant algorithms for solving equations. These methods have strong connections to
the algorithms proposed in this thesis.

Chapter 4 introduces truncated normal forms (TNFs) and algorithms based on this
framework for solving square polynomial systems. Different choices of representations
for the quotient ring are discussed together with several adaptations and improvements
of the proposed algorithms. The last section introduces homogeneous normal forms
(HNFs) for solving square systems in projective space. Several numerical experiments
illustrate the effectiveness of the proposed methods. The chapter is strongly based on
the papers [TVB18, TMVB18, MTVB19].

In Chapter 5 we show how TNFs and HNFs can be used to solve more general families
of polynomial systems. More specifically, we consider systems that are called sparse in
the literature, referring to the fact that not all monomials up to a certain degree occur
in the equations. Taking the polyhedral structure of the equations into account leads
to smaller matrices than those of the constructions in Chapter 4. In order to use HNFs
in this setting, we work in the Cox ring of a compact toric variety which is a natural
solution space for our polyhedral system. We generalize the homogeneous version of
the eigenvalue-eigenvector theorem to use it in this setting and answer some questions
regarding the regularity of a homogeneous ideal in the Cox ring. The chapter is based
on [TMVB18, Tel20, BT20a].

Chapter 6 is fairly independent of Chapters 3-5 since it deals with a different type of
methods for solving polynomial systems. It discusses homotopy continuation algorithms.
We recall the definition of Padé approximants, discuss some of their properties in
the context of homotopy continuation and propose a new numerical path tracking
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algorithm. In several numerical experiments, this algorithm proves to be significantly
more robust with respect to the issue of path jumping than existing implementations.
This chapter is based on [TVBV19].

The text is supported by a total of five appendices which contain some supplementary
material. Appendix A contains a summary of definitions and results from commutative
algebra which are relevant to the text. Appendix B gives an overview of the used
methods and concepts from numerical linear algebra. Appendix C motivates and
defines the way in which we measure the error of computed approximate solutions to
a system. Appendix D discusses objects and results from polyhedral geometry. Finally,
Appendix E contains a crash course in basic toric geometry.

For the reader’s convenience, we have summarized the most important dependencies
between the different parts of the text in the table below.

Section . . . depends on . . .
Chapter 2 2.1 Appendix A

2.2 Appendix A, Section 2.1
2.3 Sections 2.1 and 2.2

Chapter 3 3.1 Appendix A, Section 2.1
3.2 Appendix A, Section 2.2
3.3 Section 3.1
3.4 Section 3.2

Chapter 4 4.1 Sections 3.1 and 3.3
4.2 Appendix A, Sections 3.1 and 3.3
4.3 Appendices B and C, Sections 4.2 and 3.4
4.4 Section 4.3
4.5 Appendix C, Sections 3.2, 3.4 and 4.2

Chapter 5 5.1 Appendices A and D, Sections 2.1 and 3.1
5.2 Sections 2.1, 3.4, 5.1
5.3 Appendix C, Sections 5.1 and 5.2
5.4 Appendix E, Sections 2.3 and 5.1
5.5 Appendices C and E, Sections 3.2, 3.4, 5.1, 5.3

Chapter 6 6.1 Section 2.1
6.2 Section 6.1
6.3 Section 6.2
6.4 Appendix B, Sections 6.3 and 6.2
6.5 Appendix C, Section 6.4

Appendix E E.1 Appendices A and D, Section 2.1
E.2 Appendices A and D, Sections 2.2 and 2.3



Chapter 2

Basic algebraic geometry

Algebraic geometry is the study of geometric objects described by algebraic equations.
These objects are called algebraic varieties. The goal of this chapter is to introduce
some basic concepts from algebraic geometry on which the methods for system solving
proposed in this thesis are built. We limit ourselves to the concepts that are instructive
for the rest of the material in this thesis.
Many of the powerful results in modern algebraic geometry have been made possible
by the rigorous algebraic foundations laid out by pioneers such as David Hilbert,
Emmy Noether, Jean-Pierre Serre, Bartel Leendert van der Waerden, André Weil,
Oscar Zariski and the high level of abstraction in the works of Alexander Grothendieck.
However, it is this same level of abstraction that has given the subject the reputation
of being rather unaccessible for outsiders. In order to appreciate the field to the
fullest, it is crucial to start with the right book. Which book that is depends, of
course, on the reader’s background. An excellent introduction for readers with an
engineering or applied mathematics background is [CLO13], and so is the follow-up
book [CLO06]. Other gentle treatments can be found in [SKKT04, SR94]. The book
of Hartshorne [Har77] is a standard, more advanced reference. Other advanced and
complete treatments can be found in [Mum96, Eis13, Vak17, Cut18], and [Har13] is
an excellent source of examples.
Just like differentiable manifolds locally look like open subsets of Euclidean space,
algebraic varieties locally look like affine varieties. These can be viewed as the building
blocks of algebraic varieties, and they are a natural starting point for this chapter.
We will discuss affine varieties in Section 2.1. After that, we will introduce projective
and quasi-projective varieties in Section 2.2. Finally, we briefly describe how affine
varieties can be glued together to obtain more general, abstract varieties in Section
2.3. This gluing construction gives us a good way to think about toric varieties, which
will play an important role in later chapters.

17
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2.1 Affine varieties

Our starting point is the n-dimensional complex affine space Cn. As a set, Cn consists
of all n-tuples of complex numbers. Some authors write An for this space to emphasize
that the origin 0 ∈ Cn does not play a special role here, as it does when we think of
Cn as a vector space over C. We believe this will not be a source of confusion here and
write Cn to avoid introducing too much notation. Let R = C[x1, . . . , xn] be the ring
of polynomial functions on Cn. As stated in the introduction, if n is small (n = 1, 2, 3)
we will use variable names such as x, y, z to avoid subscripts.

2.1.1 Definition

We are interested in special subsets of Cn, namely the zero sets of polynomials.
Definition 2.1.1 (affine variety). An affine variety in Cn is a subset Y ⊂ Cn such
that there is a set P ⊂ R of polynomials for which

Y = {x ∈ Cn | f(x) = 0,∀f ∈ P}.
In this case, we denote Y = VCn(P) or, for short, Y = V (P) when the ambient
affine space is clear from the context. If P = {f1, . . . , fs} is finite1 we will write
VCn(f1, . . . , fs) for VCn({f1, . . . , fs}).

Although we work over the complex numbers, for visualization purposes we often
consider the real part Y ∩ Rn of an affine variety, especially when n = 2, 3.
Example 2.1.1 (Plane curves). Let R = C[x, y]. Algebraic plane curves are affine
varieties Y = VC2(P) where P is a singleton {f}, f ∈ R \ C. A nice class of examples
of algebraic curves is given by Lissajous curves. These are curves parametrized by
x = sin(t), y = sin(a1t+ a2) with 0 ≤ a2 ≤ π/2. Under the assumption that a1 ∈ Q,
the curve is the zero set of a polynomial in R intersected with the box [−1, 1]2. These
curves have applications, for instance, in polynomial approximation and interpolation
[BCDM+06]. An example is shown in Figure 2.1. 4
Example 2.1.2 (Algebraic surfaces). Let R = C[x, y, z]. If Y = VC3(P) where P is
a singleton {f}, f ∈ R \ C, then Y is called an algebraic surface. As an example we
consider the surface given by the equation

f = (x2 − y2)2 − 2x2 − 2y2 − 16z2 + 1 = 0.
Its real part is shown in Figure 2.2. This surface is obtained from projecting the double
pillow surface, which lives in a 4-dimensional space, to a 3-dimensional space. The
interested reader can find more information in [Sot17, Subsection 3.3]. It is clear from
the figure that the surface contains one ‘pillow’ embracing the origin. The second
pillow is in fact embracing a point ‘at infinity’, which we will make more concrete in
Section 2.2. 4

1In fact, by Hilbert’s basis theorem (see Theorem A.1.1), P can always be assumed to be finite,
since V (P) = V ({f1, . . . , fs}) for some f1, . . . , fs ∈ R.
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Figure 2.1: Lissajous curves with parameters a1 = 3/2, a2 = 0 (left) and a1 = 3/2, a2 =
π/7 (right). The left curve is equal to the real part of V (x2(4x2 − 3)2 + 4y2(y2 − 1)).

Figure 2.2: The double pillow.

Example 2.1.3 (Space curves). Let P = {y−x2, z−x3} ⊂ R = C[x, y, z]. The affine
variety VC3(P) is the intersection of the algebraic surfaces VC3(y−x2) and VC3(z−x3).
This is a standard example of an algebraic space curve (i.e., an algebraic curve in
3-space) called the twisted cubic. It is the image of the map φ : C→ C3 defined by
φ(t) = (t, t2, t3). This is illustrated in Figure 2.3. 4

Example 2.1.4. Note that Cn = V (0) is itself an affine variety, and so is each point
p = (a1, . . . , an) ∈ Cn, as p = V (x1 − a1, . . . , xn − an). Also the empty set ∅ is an
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Figure 2.3: The twisted cubic.

affine variety, by ∅ = V (1). 4

2.1.2 Affine varieties as topological spaces

Definition 2.1.1 defines affine varieties as sets. In this subsection we will define them
as topological spaces (that is, we will specify which subsets are closed and which
subsets are open in an affine variety Y ). One way to do this is by considering the
classical topology on Cn and the induced topology on affine varieties, which are among
the closed subsets of Cn (by continuity of polynomial maps). However, in algebraic
geometry we mostly work with a different topology on Cn, called the Zariski topology.

Definition 2.1.2 (Zariski topology on Cn). The Zariski topology on Cn is the topology
where the closed subsets are the affine varieties.

One can check that affine varieties satisfy the axioms for closed sets in a topology:
both Cn and ∅ are closed by Example 2.1.4, intersections of affine varieties are affine
varieties and finite unions of affine varieties are affine varieties.

Definition 2.1.3 (Zariski topology on an affine variety). Let Y ⊂ Cn be an affine
variety. The Zariski topology on Y is the subspace topology induced by the Zariski
topology on Cn.

This means that the closed subsets of Y are the intersections of Y with closed subsets
of Cn, which are affine varieties. Closed subsets of Y are also called subvarieties of
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Y . The Zariski closure Y of a subset Y ⊂ Cn is the smallest Zariski closed subset
containing Y .

Example 2.1.5. The only closed subsets of C are C,∅ and finite subsets. The set
{(x, y) ∈ C2 | |x| ≤ 1, |y| ≤ 1} is closed in the classical topology, but it is neither open
nor closed in the Zariski topology. In fact, its Zariski closure is C2. The same is true
for the set {(x, y) ∈ C2 | y = exp(x)}. 4

Definition 2.1.4 (Reducibility). An affine variety Y is called reducible if it can be
written as a union Y = Y1 ∪ Y2 with Y1 and Y2 proper closed subsets. A variety that
is not reducible is called irreducible.

2.1.3 The Nullstellensatz

It is a simple observation that V (P) = V (I), where I = 〈P〉 = {
∑
i gifi | gi ∈

R, fi ∈ P} is the ideal generated by the elements in P . For some basic properties and
definitions related to ideals, we refer the reader to Appendix A. By Hilbert’s basis
theorem (see Theorem A.1.1) we can always find a finite set {f1, . . . , fs} ⊂ P ⊂ R
such that

I = 〈f1, . . . , fs〉 = {g1f1 + · · ·+ gsfs | gi ∈ R} .
Given an ideal I ⊂ R, the operator V (·) gives an affine variety Y ⊂ Cn. Going the
other way around, one could start from a subset Y ⊂ Cn and define its vanishing ideal

I(Y ) = {f ∈ R | f(x) = 0,∀x ∈ Y } ⊂ R.

It is clear that V (I(Y )) = Y is the Zariski closure of Y in Cn. In particular, if Y is an
affine variety, then V (I(Y )) = Y . A natural question to ask is whether I(V (I)) = I?
Although it is not hard to show that I ⊂ I(V (I)), a simple counterexample shows
that the other inclusion does not hold in general.

Example 2.1.6. Let I = 〈x2〉 ⊂ C[x]. Then V (I) = {0} and I(V (I)) = 〈x〉 6= I. 4

Example 2.1.6 gives us an intuition about what can go wrong for the other inclusion.
The ideal 〈x2〉 consists of all polynomials with a root of multiplicity at least 2 at the
origin. The operator V (·) does not ‘see’ the multiplicity: for a polynomial to be in the
ideal I(V (I)), it need only vanish at x = 0. A celebrated result by David Hilbert tells
us that I = I(V (I)) for a subclass of ideals in R.

Theorem 2.1.1 (Hilbert’s Nullstellensatz). Let I ⊂ R = C[x1, . . . , xn] be an ideal
and let Y ⊂ Cn be an affine variety. Then

V (I(Y )) = Y and I(V (I)) =
√
I,

where
√
I = {f ∈ R | fm ∈ I for some m ∈ N} is the radical of I.

Proof. Proofs can be found, for example, in [CLO13, Chapter 4], [Eis13, Chapter 4]
or [Rei95, Chapter 5].
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Theorem 2.1.1 establishes a nice interplay between algebra and geometry. More
specifically, it tells us that there is a one-to-one correspondence between affine varieties
in Cn and radical ideals of R.

2.1.4 Coordinate rings and morphisms

Our goal in this subsection is to establish a one-to-one correspondence between affine
varieties and some special commutative rings with identity. As a first step, given an
affine variety Y ⊂ Cn, we want to understand the polynomial functions on Y . That is,
we want to characterize the set C[Y ] of functions Y → C that are the restriction of a
polynomial in R. It is clear that this set has a ring structure and there is a surjective
ring homomorphism R → C[Y ] given by ‘restriction to Y ’. The elements of R that
restrict to 0 on Y are exactly the elements in I(Y ). This gives a short exact sequence
(see Subsection A.2.2)

0→ I(Y )→ R→ C[Y ]→ 0. (2.1.1)

By the first isomorphism theorem (Theorem A.2.2) we find that C[Y ] = R/I(Y ). The
quotient ring R/I(Y ) is called the coordinate ring of Y . It is a finitely generated
C-algebra with no nilpotents2 (by the fact that I(Y ) is radical), see Section A.1 for
definitions.

Example 2.1.7 (Some trivial coordinate rings). Note that C[Cn] = R and C[∅] =
{0}. 4

Example 2.1.8 (Coordinate rings of points). If Y = {p} is a single point p =
(a1, . . . , an) ∈ Cn, then I(Y ) = 〈x1 − a1, . . . , xn − an〉 is a maximal ideal of R. In
fact, all maximal ideals of R are of this form [CLO13, Chapter 4, §5, Theorem 11]. In
this case C[Y ] = C and the map R→ C[Y ] in (2.1.1) sends f to f(p). 4

Example 2.1.9 (Irreducible varieties). The geometric notion of an affine variety being
irreducible (which means it cannot be written as the union of two strict subvarieties)
corresponds to the equivalent algebraic notions of the ideal I(Y ) being prime and the
ring R/I(Y ) being an integral domain [CLO13, Chapter 4, §5, Proposition 3]. 4

Definition 2.1.5 (Morphisms of varieties). Let Y ⊂ Cn and Y ′ ⊂ Cm be affine
varieties. A morphism between Y and Y ′ is a map φ : Y → Y ′ given by polynomials:

φ(x) = (f1(x), . . . , fm(x)), fi ∈ C[x1, . . . , xn].

Example 2.1.10 (Morphisms). The parametrization t 7→ (t, t2, t3) of the twisted
cubic in Example 2.1.3 is a morphism between C and C3, and between C and the
twisted cubic. The coordinate ring of an affine variety Y is the ring of morphisms
Y → C. 4

2We say that a ring has no nilpotents or is nilpotent-free if its only nilpotent element is 0.
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Note that the composition of two morphisms is again a morphism. A morphism
φ : Y → Y ′ gives a C-algebra homomorphism φ∗ : C[Y ′] → C[Y ] by composing
f ∈ C[Y ′] with φ: φ∗(f) = f ◦ φ. The map φ∗ is called the pullback map or simply
the pullback of φ.

Definition 2.1.6 (Isomorphism). A morphism φ : Y → Y ′ is an isomorphism if the
pullback φ∗ : C[Y ′] → C[Y ] is an isomorphism of C-algebras. Two affine varieties
Y ⊂ Cn, Y ′ ⊂ Cm are called isomorphic if there exists an isomorphism φ : Y → Y ′.

One can check that Y and Y ′ are isomorphic if and only if there exists morphisms
φ : Y → Y ′ and φ′ : Y ′ → Y with φ ◦ φ′ = idY ′ and φ′ ◦ φ = idY [CLO13, Chapter 5,
§4, Theorem 9]. If Y and Y ′ are isomorphic, we write Y ' Y ′ and sometimes, with a
slight abuse of notation, Y = Y ′.

Example 2.1.11. Let Y ⊂ C3 be the twisted cubic as in Example 2.1.3. The
pullback of the map φ : C → Y given by φ(t) = (t, t2, t3) is the map φ∗ that
sends f + 〈y − x2, z − x3〉 ∈ C[x, y, z]/〈y − x2, z − x3〉 to f(t, t2, t3) ∈ C[t]. It is
clearly surjective because t = φ∗(x+ 〈y − x2, z − x3〉). It is also injective because if
f(t, t2, t3) = 0, then f vanishes at every point of Y , hence f ∈ 〈y − x2, z − x3〉. It
follows that Y is isomorphic to C. 4

Example 2.1.11 tells us that the twisted cubic in C3 and the affine line C are basically
the same affine varieties, they are just embedded in a different ambient space. The
intrinsic reason for this is that the algebras of polynomial functions on the twisted
cubic and on C are the same. That is,

C[x, y, z]/〈y − x2, z − x3〉 ' C[t].

The different embeddings come from a choice of representation of the C-algebra C[t] as
an image of a polynomial ring: it is the image of C[t] under the identity morphism but it
is also the image of C[x, y, z] under the map f 7→ f(t, t2, t3) with kernel 〈y − x2, z − x3〉.
This hints at a more general procedure for associating an affine variety to a finitely
generated C-algebra A. We first represent A as the image of a polynomial ring:
R → A → 0. Next, we consider the kernel of this map, which is an ideal I ⊂ R, to
obtain the affine variety Y = V (I). If A is nilpotent free, then I is radical and by
the Nullstellensatz I(V (I)) = I(Y ) = I. Therefore, C[Y ] = R/I(Y ) = R/I ' A. The
following theorem is a consequence of this.

Theorem 2.1.2. There is a one-to-one correspondence between isomorphism classes of
affine varieties and isomorphism classes of finitely generated, nilpotent free C-algebras.

We have the notation Y 7→ C[Y ] to make this correspondence explicit. To go in
the other direction, we introduce the notation A 7→ MaxSpec(A) which associates to
a finitely generated, nilpotent free C-algebra A an affine variety by the procedure
presented above. The notation MaxSpec(A) is motivated by the fact that for an affine
variety Y ⊂ Cn, the points in Y are in one-to-one correspondence with maximal ideals
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in R/I(Y ). This was established in Example 2.1.8 in the case where Y = Cn. The
general case is described in [CLO13, Chapter 5, §4, Theorem 5].

Morphisms between varieties give homomorphisms between C-algebras going in the
opposite direction by considering the pullback morphism. Going the other way around,
a C-algebra homomorphism φ∗ : A′ → A with A,A′ finitely generated and nilpotent
free gives a morphism φ : MaxSpec(A) → MaxSpec(A′) defined as follows. A point
p ∈ MaxSpec(A) corresponds to a maximal ideal I(p) of A. The inverse image
(φ∗)−1(I(p)) is again a maximal ideal in A′ (see, e.g., [SKKT04, Section 2.6]) and
corresponds to a point p′ ∈ MaxSpec(A′). We set ψ(p) = p′. One can check that ψ is
a morphism and that ψ∗ = φ∗. For readers familiar with category theory, we remark
that this construction makes the correspondence in Theorem 2.1.2 functorial: the
functor Y 7→ C[Y ] establishes a contravariant equivalence of categories between affine
varieties and finitely generated nilpotent free C-algebras [Har77, Chapter I, Corollary
3.8].

The machinery introduced in this chapter allows us to state a more general version
of the Nullstellensatz which identifies subvarieties of an affine variety Y with radical
ideals in its coordinate ring. For a subvariety Y ′ ⊂ Y = MaxSpec(A) and an ideal
I ⊂ A = C[Y ] we define the vanishing ideal of Y ′ and subvariety of I as

IA(Y ′) = {f ∈ A | f(p) = 0,∀p ∈ Y ′}, VY (I) = {p ∈ Y | f(p) = 0,∀f ∈ I}

respectively. In the following theorem we recover Theorem 2.1.1 when A = R.

Theorem 2.1.3. Let A be a finitely generated nilpotent free C-algebra and let Y =
MaxSpec(A) be the corresponding affine variety. Let I ⊂ A be an ideal and let Y ′ ⊂ Y
be a subvariety. Then

VY (IA(Y ′)) = Y ′ and IA(VY (I)) =
√
I,

where
√
I = {f ∈ A | fm ∈ I for some m ∈ N} is the radical of I.

Proof. See [CLO13, Chapter 5, §4, Theorem 5].

Example 2.1.12 (Localization at f). Let A be a finitely generated nilpotent free
C-algebra and Y = MaxSpec(A). Let Af be the localization of A at f ∈ A, f 6= 0 (see
Subsection A.1.4). Note that Af is finitely generated and nilpotent free. When A is
an integral domain with field of fractions K(A), then the canonical map A→ Af is
injective and Af is given by

Af =
{
g

f `
∈ K(A) | g ∈ A, ` ∈ N

}
,

see for instance [CLS11, Exercise 1.0.3]. We will now describe the corresponding affine
variety Yf = MaxSpec(Af ). The maximal ideals of Af are the maximal ideals of A
not containing f [AM69, Chapter 3]. Since points of Yf are maximal ideals of Af ,
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the points of Yf are the points p ∈ Y such that f(p) 6= 0. This shows, somewhat
surprisingly, that the open subset of Y consisting of the complement of VY (f) can be
given the structure of an affine variety. A standard example that clarifies this is the
case where Y = C is the affine line and f = t ∈ A = C[t]. Here Yf = C \ {0} = C∗

and Af = C[t]t ' C[x, y]/〈xy − 1〉. This isomorphism of algebras is given explicitly
by φ∗ : C[x, y]/〈xy − 1〉 → C[t]t defined as

φ∗(f + 〈xy − 1〉) 7→ f(t, t−1).

This corresponds to the morphism φ : C∗ → VC2(xy− 1) given by φ(t) = (t, t−1). This
morphism is illustrated in Figure 2.4.

Figure 2.4: Illustration of the morphism φ : C∗ → VC2(xy − 1) from Example 2.1.12.

The affine variety C∗ is an example of an algebraic torus: the n-dimensional algebraic
torus is the affine variety (C \ {0})n = (C∗)n = MaxSpec(C[x1, . . . , xn]x1···xn).
Algebraic tori will play an important role in later chapters of this thesis. Subvarieties of
algebraic tori are defined by elements of C[x1, . . . , xn]x1···xn

= C[x1, x
−1
1 , . . . , xn, x

−1
n ]

which are called Laurent polynomials. 4

2.1.5 Dimension

Although the geometric concept of dimension is very intuitive, formal definitions of
dimension often are not. For completeness, we will include some formal, equivalent
definitions of dimension in this subsection. The equivalence of these definitions
establishes nicely the interplay between algebra and geometry. More elaborate
treatments can be found in [CLO13, Chapter 9], [AM69, Chapter 11], [SR94, Chapter 1,
Section 6], [Cut18, Chapter 2, Section 2.4], [Eis13, Chapter 2]. We should mention that,
since we are working over the complex numbers, we always think of complex dimension.
For instance, C has complex dimension one, but real dimension 2. Therefore, we will
think of C as the affine line (a terminology that has been used a few times above) as
opposed to the complex plane.
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A first observation is that a reducible affine variety may have components of different
dimension. For instance, the affine variety Y = VC3(xy, xz) is a union of the yz-plane
where x = 0 and the x-axis defined by y = z = 0. We will define dimension for
irreducible affine varieties and say that the dimension of an affine variety Y is the
maximum among the dimensions of its irreducible components (which are always finite
in number, see [Har77, Chapter I, Proposition 1.5]).

Definition 2.1.7 (Dimension of an irreducible affine variety). Let Y ⊂ Cn be an
irreducible affine variety. The dimension of Y , denoted dimY , is the length k of the
longest possible chain of strict inclusions

Y0 ( Y1 ( · · · ( Yk = Y

where Yi are irreducible subvarieties.

An affine variety is called pure dimensional if all its irreducible components have the
same dimension. Pure dimensional affine varieties of dimension 1 are called (affine)
curves, those of dimension 2 are called (affine) surfaces and those of dimension n
are called (affine) n-folds. When embedded in an affine space Cn of dimension n,
an affine variety Y has codimension n− dimY and affine varieties of codimension 1
are called (affine) hypersurfaces. More generally, for a subvariety Y ′ ⊂ Y we define
codimY Y

′ = dim Y − dimY ′.

Example 2.1.13. Consider the affine varieties

Y2 = VC3(x2 + y2 + z2 − 1),
Y1 = VY2(x2 + y2 − x+ 〈x2 + y2 + z2 − 1〉) = VC3(x2 + y2 + z2 − 1, x2 + y2 − x),
Y0 = VY1(z − 1 + 〈x2 + y2 + z2 − 1, x2 + y2 − x〉)

= VC3(x2 + y2 + z2 − 1, x2 + y2 − x, z − 1).

This gives Y0 ( Y1 ( Y2, which is a chain of maximal length as in Definition 2.1.7.
This shows that the sphere has dimension 2 in C3. It also shows that dimY1 = 1 and
dimY0 = 0. The (real part of the) curve Y1 in this example is known as Viviani’s
curve. The situation is illustrated in Figure 2.5. 4

The following theorem establishes the equivalence of the geometric (topological)
Definition 2.1.7 with an algebraic definition of dimension. It shows, for instance, that
the dimension is independent of the choice of embedding.

Theorem 2.1.4. Let Y be an irreducible affine variety with coordinate ring C[Y ].
The following natural numbers are all equal to dimY :

1. the Krull dimension of C[Y ] (see Subsection A.1.3),
2. the transcendence degree of the quotient field C(Y ) of C[Y ] over C,
3. the maximal number of elements of C[Y ] that are algebraically independent over

C,
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Figure 2.5: Illustration of the affine varieties Y2 (blue surface), Y1 (orange curve) and
Y0 (black point) from Example 2.1.13.

4. the degree of the affine Hilbert polynomial as defined in [CLO13, Chapter 9, §3].

Proof. The first statement follows directly from the fact that prime ideals of C[Y ] are
irreducible subvarieties of Y , and the correspondence is inclusion reversing [CLO13,
Chapter 5, §4, Theorem 5]. For the equivalence between the first and the second
definition see [Har77, Chapter 1, Section 1, Proposition 1.7 and Theorem 1.8A], [AM69,
Chapter 11]. The equivalence of the second, third and fourth definition is established
in [CLO13, Chapter 9, §3 and §5].

2.1.6 Affine schemes

For any ideal I ⊂ R, we can consider the affine variety V (I). However, if I is not
radical, some information is lost in making this association. There are many more ideals
than affine varieties. Looking more closely, two ideals I 6= I ′ ⊂ R with V (I) = V (I ′)
determine objects with different geometric behavior. Here are two examples.

Example 2.1.14. Consider the ideals 〈f〉 = 〈x2(x− 1)〉 ⊂ C[x] and 〈g〉 =
〈x(x− 1)2〉 ⊂ C[x]. It is clear that V (f) = V (g) = {0, 1} ⊂ C. However, f has
the point x = 0 as a double root, since f(0) = ∂f

∂x (0) = 0, whereas ∂g
∂x (0) = 1.

Slightly perturbing the polynomial f would result in a variety consisting of two points
near x = 0 (although they may be far away from x = 0 relative to the ‘size’ of the
perturbation) and a point near x = 1. On the other hand, slightly perturbing g would
result in the opposite scenario. The situation is illustrated in Figure 2.6. 4

Example 2.1.15. Consider the parametrized ideal I(t) = 〈(x− t)(x+ t)〉 ⊂ C[x].
For t 6= 0, V (I(t)) = {t,−t} consists of two points in C and C[x]/I(t) has no nilpotents.
As t→ 0, the two points collide and I(0) = 〈x2〉 is the ideal from Example 2.1.6 and
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0 1

0

0 1

0

Figure 2.6: Illustration of V (f) (left, black dots) and V (g) (right, black dots) from
Example 2.1.14 and the varieties (blue dots) corresponding to perturbed polynomials
(dashed curves).

x+ I(0) is a nilpotent element of C[x]/I(0). This illustrates that finitely generated
C-algebras with nilpotent elements may arise as a limit of a sequence of finitely
generated, nilpotent free C-algebras. 4

From Example 2.1.15 one can imagine more complicated situations such as points in
higher dimensional affine spaces moving together resulting in multiple points or fat
points (i.e. points with multiplicity > 1), curves moving together resulting in multiple
curves, points moving into curves resulting in embedded points inside these curves,
embedded curves in surfaces, and so on. In order to take these limiting situations into
account, it is clear that we have to extend our correspondence between affine varieties
and finitely generated, nilpotent free C-algebras to larger classes of objects (i.e. larger
categories). For instance, we want to allow nilpotent elements in our algebras. A
powerful extension of this correspondence is given by the theory of affine schemes.
Affine schemes form a category of geometric objects of which ‘affine varieties’ can
be considered a subcategory. The equivalent category on the algebraic side consists
of commutative rings with identity, containing the finitely generated, nilpotent free
C-algebras. The power and extent of this generalization can be seen from how small
the subset of finitely generated, nilpotent free C-algebras is in the commutative rings
with identity.

The theory of schemes uses high levels of abstraction and defining them formally
would require notions of sheaf theory, which would take us too far. Affine schemes will
only make a modest appearance in this text: we will only consider finitely generated
C-algebras but we will sometimes allow nilpotents. Such schemes are sometimes called
affine C-schemes, and they are in one-to-one correspondence (up to isomorphism) with
all rings of the form R/I where R is a polynomial ring over C and I ⊂ R is any ideal of
R. Among affine C-schemes there are the affine varieties, whose algebras are nilpotent
free. Affine schemes corresponding to nilpotent free rings are called reduced. We will
also mostly be interested in zero-dimensional affine C-schemes. Fortunately, these
schemes have a very explicit and relatively simple description, which will be given in
Subsection 3.1.3. For more information about schemes, we refer to [EH06] for a gentle
introduction with many examples or [Har77, Chapter 2] for a denser treatment.
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2.2 Projective varieties

The projective n-space Pn is defined as the set of all lines through the origin in Cn+1.
If x0, . . . , xn are coordinates on Cn+1,

Pn = (Cn+1 \ {0})/ ∼

where the quotient is by the equivalence relation

(x0, . . . , xn) ∼ (x′
0, . . . , x

′
n)⇔ (x′

0, . . . , x
′
n) = (λx1, . . . , λxn) for some λ ∈ C∗. (2.2.1)

Points in Pn are denoted by x = (x0 : · · · : xn), where (x0 : · · · : xn) = (λx0 : · · · : λxn)
for λ ∈ C∗. We will use the notation S = C[x0, . . . , xn] for the coordinate ring of
Cn+1.

2.2.1 Definition

For a monomial xa = xa0
0 · · ·xan

n ∈ S with a = (a0, . . . , an) ∈ Nn+1, we define its
degree to be deg(xa) = |a| = a0 + · · ·+ an. We will consider S as a Z-graded ring (see
Subsection A.2.4). The C-vector subspaces of the polynomial ring S spanned by the
monomials of a fixed degree are called the graded pieces of S. They are denoted by

Sd =
⊕

|a|=d

C · xa, d ∈ Z≥0 and Sd = {0}, d ∈ Z<0,

where a ranges over Nn+1. The decomposition

S =
⊕
d∈N

Sd

of S into its graded pieces coarsens the decomposition S =
⊕

a∈Nn+1 C · xa
corresponding to the monomial basis. Note that for all d, e ∈ N, Se · Sd = {fg | f ∈
Se, g ∈ Sd} ⊂ Sd+e.

Definition 2.2.1 (Homogeneous polynomial). A polynomial f ∈ S is called
homogeneous if it is contained in a graded piece of S, that is, if f ∈ Sd for some d ∈ Z.
The degree of a nonzero homogeneous polynomial f , denoted deg(f), is d such that
f ∈ Sd. The zero polynomial is homogeneous and its degree is −∞ by convention.

Example 2.2.1. A homogeneous polynomial of degree 1 is called a linear form. A
homogeneous polynomial of degree 2, 3, 4, 5, 6, . . . is called a quadratic, cubic, quartic,
quintic, sextic, . . . form. Homogeneous polynomials in 2, 3, 4, 5, 6, . . . variables are
called binary, ternary, quaternary, quinary, senary, . . . forms. For example, a general
binary quintic form is given by

c5x
5
1 + c4x

4
1x0 + c3x

3
1x

2
0 + c2x

2
1x

3
0 + c1x1x

4
0 + c0x

5
0, ci ∈ C.

Often the word ‘form’ is dropped: a binary quintic is a binary quintic form. 4
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Just like affine varieties in Cn were defined as subsets of affine space given by
polynomials in R, we will define projective varieties as subsets of Pn given by
polynomials in S. In order to do so we investigate which polynomials have well defined
zero sets on Pn. As we saw in Section 2.1, elements of S are polynomial functions
on Cn+1. Note that for a homogeneous polynomial f ∈ Sd we have f(λx) = λdf(x),
x ∈ Cn+1, λ ∈ C∗. Therefore, for an element f ∈ Sd, the set

VPn(f) = {(x0 : · · · : xn) ∈ Pn | f(x0, . . . , xn) = 0}

is well defined. This leads to the following definition.

Definition 2.2.2 (Projective variety). A projective variety is a subset X ⊂ Pn such
that there is a subset P ⊂ S of homogeneous polynomials for which

X = {(x0 : · · · : xn) ∈ Pn | f(x0, . . . , xn) = 0,∀f ∈ P}.

In this case, we denote X = VPn(P). If P = {f1, . . . , fs} we will write VPn(f1, . . . , fs) =
VPn({f1, . . . , fs}).

Every polynomial f ∈ S can be decomposed uniquely as

f = fd + fd−1 + · · ·+ f0, fi ∈ Si.

Therefore f(λx) = λdfd(x) + λd−1fd−1(x) + · · ·+ f0. We conclude that a polynomial
f ∈ S gives a function

f : Pn → C given by f((x0 : · · · : xn)) = f(x0, . . . , xn)

if and only if f is homogeneous and deg(f) = 0. Indeed, homogeneous polynomials of
degree d > 0 do not give functions on Pn, but they do have well defined zero sets. A
set of homogeneous elements P ⊂ S also defines an affine variety

VCn+1(P) = {x ∈ Cn+1 | f(x) = 0,∀f ∈ P}

which is called the affine cone over VPn(P).

Example 2.2.2. The projective space Pn itself and the empty set ∅ ⊂ Pn are
projective varieties. One can easily check that any finite union of projective varieties
is again a projective variety, and so is any intersection of projective varieties. 4

Example 2.2.3 (Linear subspaces). The image under the quotient by (2.2.1) of a
vector subspace of Cn+1 is a projective variety, for which P consists of linear forms. 4

2.2.2 Projective varieties as topological spaces

Just like affine varieties, projective varieties are topological spaces where closed sets
are subvarieties.
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Definition 2.2.3 (Zariski topology on projective varieties). The Zariski topology
on Pn is the topology where the closed subsets are projective varieties. The Zariski
topology on a projective variety X ⊂ Pn is the induced topology on X as a closed
subset of Pn.

By Example 2.2.2, projective varieties satisfy the axioms on closed sets. As in the
affine case, a projective variety is called reducible if it can be written as a union of two
proper closed subsets. If a projective variety is not reducible, it is called irreducible.
We will also be interested in subsets of Pn that are almost projective varieties, but
not quite.

Definition 2.2.4 (Quasi-projective variety). A quasi-projective variety is an open
subset of a projective variety with its induced subspace topology.

2.2.3 Projective Nullstellensatz

A natural question to ask is whether we also have a nice correspondence between
radical ideals of S and projective varieties, as in the affine case (see Subsection 2.1.3).
A first observation is that ideals of S corresponding to a projective variety X should
have a special structure: their elements vanish on the affine cone over X in Cn+1.

Definition 2.2.5 (Homogeneous ideal). An ideal I ⊂ S is called homogeneous if it
can be generated by homogeneous elements of S. Equivalently, I is homogeneous if
and only if for every element f ∈ I with decomposition f = fd + · · ·+ f0, fi ∈ Si, we
have fi ∈ I, i = 0, . . . , d.

For a homogeneous ideal I = 〈P〉 ⊂ S generated by a set P of homogeneous
polynomials, we set VPn(I) = VPn(P). Given a projective variety X ⊂ Pn, we
can associate an ideal to it by defining

IS(X) = {f ∈ S | f(x0, . . . , xn) = 0,∀(x0 : · · · : xn) ∈ X}.

Ideals arising in this way are homogeneous (see [CLO13, Chapter 8, §3, Proposition
4]). They are also radical since either IS(X) ⊂ S is the vanishing ideal of the affine
cone over X or it is the ring S itself.3 We conclude that radical homogeneous ideals
define projective varieties, and projective varieties define radical homogeneous ideals.
The question is whether this correspondence is one-to-one. The following observation
shows that we should be careful.

Remark 2.2.1. The radical homogeneous ideal B = 〈x0, . . . , xn〉 defines the affine
variety VCn+1(B) = {0}, but VPn(B) = ∅. However, also VPn(S) = ∅. 4

3Here’s a proof. If X is empty, IS(X) = S. Otherwise every f = fd + · · · + f0 ∈ IS(X) is such
that fi ∈ IS(X),∀I. In particular f0 ∈ IS(X) and since X 6= ∅ this implies f0 = 0 and f vanishes at
the origin in Cn+1.
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Theorem 2.2.1 (Projective Nullstellensatz). Let I ⊂ S = C[x0, . . . , xn] be a
homogeneous ideal and let X = VPn(I) ⊂ Pn. If X 6= ∅, we have

VPn(IS(X)) = X and IS(VPn(I)) =
√
I.

Proof. The first statement follows from VPn(IS(X)) = X = X where X is the closure
of X in Pn in its Zariski topology. The second statement follows from Theorem 2.1.1
and from the fact that IS(X) is the vanishing ideal of the affine cone over X (see
above).

Note that the ideal B ⊂ S from Remark 2.2.1 is left out of the correspondence between
radical homogeneous ideals and projective varieties in Theorem 2.2.1. Because this
ideal has no corresponding closed subset, it is called the irrelevant ideal of S.

2.2.4 Homogeneous coordinate rings

For an affine variety Y ⊂ Cn, we defined its coordinate ring as C[Y ] = R/IR(Y )
where R = C[x1, . . . , xn] = C[Cn]. Similarly, for a projective variety X we define the
homogeneous coordinate ring of X as C[X] = S/IS(X). If X 6= ∅, C[X] is the ring of
polynomial functions on the affine cone over X.

For any homogeneous ideal I ⊂ S, the grading on S induces a grading on I:

I =
⊕
d∈Z

Id, where Id = I ∩ Sd.

The grading on S also induces a grading on the quotient ring S/I:

S/I =
⊕
d∈Z

(S/I)d, where (S/I)d = Sd/Id.

Therefore the homogeneous coordinate ring C[X] of X has the natural structure of a
graded ring.

Closed subsets of a projective variety X are given by homogeneous ideals of C[X]: for
I = 〈f1 + IS(X), . . . , fs + IS(X)〉 ⊂ C[X] we define

VX(I) = {(x0 : · · · : xn) ∈ X | fi(x0, . . . , xn) = 0, i = 1, . . . , s}.

Conversely, a closed subset X ′ ⊂ X gives a homogeneous ideal

IC[X](X ′) = {f + IS(X) ∈ C[X] | f(x0, . . . , xn) = 0,∀(x0 : · · · : xn) ∈ X ′}.
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2.2.5 Affine coverings

In the introduction to this chapter we claimed that varieties locally look like affine
varieties. We will make this precise for projective varieties in this subsection. We
define the Zariski open subsets

Ui = {(x0 : · · · : xn) ∈ Pn | xi 6= 0}, i = 0, . . . , n

of Pn. These correspond to the Zariski open subsets

U ′
i = {x ∈ Cn+1 | xi 6= 0}

of Cn+1 via Ui = U ′
i/ ∼. As we saw in Example 2.1.12, U ′

i is an affine variety with
coordinate ring C[U ′

i ] = Sxi
(the localization of S at xi). The grading on S induces

a grading on Sxi
, such that if a nonzero element of Sxi

is represented by f/x`i , its
degree is deg(f)− `. The rational functions in Sxi that give well defined functions on
Ui are those of the form f/x`i with deg(f) = `. Indeed, if deg(f) = ` then

f

x`i
(λx) = λ`f(x)

λ`x`i
= f

x`i
(x).

These are the elements of degree zero, denoted by (Sxi
)0 = C[U ′

i ]0. Note that

C[U ′
i ]0 =

{
f

x`i
| f ∈ S`, ` ∈ N

}
= C

[
x0

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

]
.

By the results of Subsection 2.1.4, the inclusion of finitely generated, nilpotent free
C-algebras C[U ′

i ]0 → C[U ′
i ] gives a morphism U ′

i → Cn given by

(x0, . . . , xn) 7→
(
x0

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

)
.

This morphism factors through Ui: U ′
i → Ui → Cn and Ui → Cn is clearly bijective.

The following theorem tells us that it also identifies Ui and Cn as topological spaces.

Theorem 2.2.2. The map φi : Ui → Cn given by

(x0 : . . . : xn) 7→
(
x0

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

)
(2.2.2)

is a homeomorphism of topological spaces with respect to the Zariski topology on both
Ui and Cn.

Proof. We need to show that closed subsets of Ui are identified with closed subsets
of Cn under φi. We identify Cn with MaxSpec C[y0, . . . , yi−1, yi+1, yn]. Let Xi ⊂ Ui
be a closed subset with closure X = Xi in Pn. The projective variety X gives a
homogeneous ideal I = IS(X) = 〈f1, . . . , fs〉 ⊂ S with fj homogeneous j = 1, . . . , s.
We set

f̂ij = fj(y1, . . . , yi−1, 1, yi+1, . . . , yn). (2.2.3)
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and find that φi(Xi) = VCn(f̂i1, . . . , f̂is). Conversely, for a closed subset Y =
VCn(f̂i1, . . . , f̂is) ⊂ Cn let dj be the smallest integer such that

fj = x
dj

i f̂ij

(
x0

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

)
(2.2.4)

is a homogeneous polynomial. We have that φ−1
i (Y ) = VPn(f1, . . . , fs) ∩ Ui.

Theorem 2.2.2 shows that the affine variety Cn can be identified as a topological space
with an open subset of Pn. This makes Cn into a quasi-projective variety. Also, an
affine variety Y ⊂ Cn corresponds to a closed subset Xi ⊂ Ui, which is open in its
closure X = Xi in Pn. Therefore, any affine variety is a quasi-projective variety.

The theorem also shows that Pn =
⋃n
i=0 Ui writes Pn as a union of affine spaces. Each

of the Ui is Zariski open in Pn and every x ∈ Pn belongs to at least one of the Ui.
We say that {U0, . . . , Un} is an affine open covering of Pn. The Ui are called the
affine charts of Pn. More generally, any projective variety X ⊂ Pn can be written as
X =

⋃n
i=0(X ∩ Ui). As X ∩ Ui is closed in Ui, Theorem 2.2.2 shows that it can be

identified with an affine variety Yi ⊂ Cn. We say that {X ∩ U0, . . . , X ∩ Un} is an
affine open covering of X (X ∩ Ui is closed in Ui, but open in X). The Yi are called
the affine charts of X. It is slightly less straightforward that any quasi-projective
variety has an affine open covering.

Theorem 2.2.3. Any quasi-projective variety X ⊂ Pn can be written as X =
⋃s
i=1 Yi

where Y1, . . . , Ys are isomorphic to affine varieties. The set {Y1, . . . , Ys} is called an
affine open covering of X.

Proof. First, we write X =
⋃n
i=0 X ∩Ui, which writes X as a union of open subsets of

affine varieties. By Hilbert’s basis theorem, every open subset U of an affine variety Y
can be written as a finite union U = Yf1 ∪ . . .∪ Yfs′ for some f1, . . . , fs′ ∈ C[Y ] where

Yfi
= {x ∈ Y | fi(x) 6= 0}.

By Example 2.1.12, each Yfi is affine, which proves the theorem.

Example 2.2.4 (The projective line). The projective line P1 is covered by two copies
of C:

U0 = {(x0 : x1) ∈ Pn | x0 6= 0}, U1 = {(x0 : x1) ∈ Pn | x1 6= 0}.

Note that P1 \ U0 = {(0 : 1)}. We can send C into P1 by identifying it with U0. This
gives the map φ : t 7→ (1 : t). Note that the point (0 : 1) = limt→∞ φ(t). For this
reason, if C is identified with U0, the point (0 : 1) ∈ Pn is called the point at infinity
and with a slight abuse of notation we write P1 as the disjoint union P1 = C t {∞}.
If we choose to identify C with U1 ⊂ P1, the point (1 : 0) is the point at infinity. 4
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Example 2.2.5 (Affine stratification of Pn). The construction in Example 2.2.4
generalizes to higher dimensions. If we choose to identify Cn with U0, the complement
H0 = Pn \ U0 is called the hyperplane at infinity. This is the closed subspace

H0 = VPn(x0) = {(0 : x1 : · · · : xn) ∈ Pn | (x1 : · · · : xn) ∈ Pn−1} = Pn−1.

This shows that Pn can be written as the disjoint union

Pn = Cn tH0 = Cn t Pn−1 = Cn t Cn−1 t Cn−2 t · · · t C t {∞},

where P1 = C t {∞} as in Example 2.2.4. This is called an affine stratification of
Pn. 4

Example 2.2.6. Consider the homogeneous polynomial f = xy − z2 ∈ S2 with
S = C[x, y, z]. We consider the projective variety X = VP2(f). In the affine chart
Ux = {(x : y : z) ∈ P2 | x 6= 0}, X ∩ Ux = Yx has equation y − z2 = 0 and looks like
a parabola. On the other hand, Yz ' X ∩ Uz has equation xy − 1 = 0, which is a
hyperbola. A picture of (the real part of) these affine charts can be obtained by cutting
the affine cone over X with the planes with equation x = 1 and z = 1 respectively.
This is illustrated in Figure 2.7. We note that in P2, hyperbolas and parabolas look
exactly the same, and they all look like an ellipse. The reason is that any ternary
quadric corresponds to a symmetric 3× 3 matrix, and any full rank 3× 3 matrix is
similar to any other full rank symmetric 3× 3 matrix. Since full rank symmetric 3× 3
matrices are exactly the ellipses/parabolas/hyperbolas in P2, they are all equal up
to a change of coordinates. Rank two symmetric 3 × 3 matrices correspond to the
union of two different lines (i.e. 2 copies of P1, e.g. VP2(xy)) in P2, and the rank one
case corresponds to a line with multiplicity 2 (e.g. VP2(x2)). See [Eis13, Exercise 1.15].

4

Remark 2.2.2. Note that for any nonzero polynomial h = c0x0 + . . .+ cnxn ∈ S1,
Uh = Pn\VPn(h) is an affine space. To see this, we can either consider a transformation
of coordinates such that xi ← c0x0 + . . .+ cnxn or consider the map Uh → Cn+1

(x0 : · · · : xn) 7→
(

x0

h(x0, . . . , xn) , . . . ,
xn

h(x0, . . . , xn)

)
which identifies Uh with VCn+1(h− 1) ' Cn and proceed as in the proof of Theorem
2.2.2. 4

The maps (2.2.3) and (2.2.4) establish an isomorphism of vector spaces

ηd : R≤d =
{∑

a

cay
a ∈ R | max

ca 6=0
|a| ≤ d

}
→ Sd,

where R = C[y1, . . . , yn] is the polynomial ring in n variables, |a| = a1 + . . . + an
and S = C[x0, . . . , xn]. The map ηd is defined by sending f̂ij ∈ R≤d to fj ∈ Sd as in
(2.2.4), but with dj replaced by d. This map is called homogenization of degree d, and
its inverse η−1

d is called dehomogenization.
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Figure 2.7: Two affine charts of X = VP2(xy − z2) as in Example 2.2.6.

Example 2.2.7 (Projective closure of an affine variety). It is sometimes useful to
think of an affine variety as an affine chart of a projective variety. Let Y ⊂ Cn be an
affine variety. We identify Y with the closed subset of U0 ⊂ Pn given by X0 = φ−1

0 (Y ),
where φ0 is the map from Theorem 2.2.2. We define the projective closure of Y to be
the Zariski closure X = X0 in Pn. Given equations for Y ⊂ Cn, we would like to know
homogeneous equations for X. Suppose Y = VCn(f̂1, . . . , f̂s) and let di ∈ N be the
smallest number such that f̂i ∈ R≤di

. A first guess would be that X = VPn(f1, . . . , fs)
where fi = ηdi

(f̂i). This is not true in general. It does work if Y = VCn(f) is an
affine variety defined by only one equation. For instance, the projective closure of
Y = VC2(y−z2) is X = VP2(xy−z2) = Y t{(0 : 1 : 0)} (with homogeneous coordinates
(x : y : z) on P2), see [SKKT04, Section 3.3]. An example where this doesn’t work is
the twisted cubic (see Example 2.1.3). This is the affine variety Y = VC3(y−x2, z−x3).
Using homogeneous coordinates (x : y : z : w) on P3 and thinking of Y as a subset
of Uw, the projective variety X = VP3(wy − x2, w2z − x3) is a union of the closure
of the twisted cubic and the line {(0 : y : z : 0) | (y : z) ∈ P1} ' P1. As the twisted
cubic is irreducible in C3, so should its projective closure be in P3. The reason for this
‘extra’ component is that this is not a good representation of the vanishing ideal of the
twisted cubic for the purpose of taking its projective closure. For more information,
the reader can consult [CLO13, Chapter 8, §4]. 4

2.2.6 Regular functions and morphisms

In Subsection 2.1.4 we defined rings of polynomial functions on affine varieties and
morphisms between affine varieties. Since affine varieties are quasi-projective varieties,
we are now looking at a strictly larger class of objects. In this subsection, our goal
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is to define the ring of regular functions of quasi-projective varieties, and morphisms
between them. The most important results of this subsection for the purpose of this
thesis are the rings of regular functions in Example 2.2.8 and the fact that there is a
notion of (iso-)morphisms which generalizes (iso-)morphisms in the affine setting.

We have established earlier that the only polynomial functions on Pn are the constants.
However, if we consider open subsets and allow rational functions that are well defined
on these subsets, we get much larger rings of functions. Just like elements of (Sxi)0
give well-defined functions on Ui, rational functions of the form

f

g
, f, g ∈ S` for some `

give well defined functions on Pn \ VPn(g). The proof of Theorem 2.2.2 shows that
considering functions in (Sxi

)0 on Ui agrees with considering the polynomial functions
on the affine variety Cn as we did in the previous section. The following definition
associates the ring (Sxi)0 to Ui as its ring of regular functions.

Definition 2.2.6 (Regular functions). Let X ⊂ Pn be a quasi-projective variety and
let U ⊂ X be an open subset. A function φ = U → C is called regular at x ∈ U if

φ(p) = f

g
(p), with f, g ∈ S` for some `,

for all p in an open subset U ′ ⊂ U containing x and such that VPn(g) ∩ U ′ = ∅. If φ
is regular at all x ∈ U , we say that φ is regular on U . The ring of all regular functions
on U is denoted by OX(U).

Note that an open subset U of a quasi-projective variety X is again a quasi-projective
variety and OU (U) = OX(U). If it is not important that we think of U as a subset of
X we will use the short notation O(U).

Remark 2.2.3. Definition 2.2.6 is quite technical. It is important that it has the
following consequences.

1. A regular function φ on an open subset U ⊂ X gives a regular function φ′ on a
smaller open subset U ′ ⊂ U by restricting φ to U ′.

2. Suppose an open subset U ⊂ X is covered by open subsets {U ′
i}i∈T for some

index set T (i.e. U =
⋃
i∈T U ′

i). If a regular function φ : U → C restricts to 0
on U ′

i , for all i ∈ T , then φ = 0.

3. If φ′
i is a regular function on U ′

i , for all i ∈ T , such that φ′
i|U ′

i
∩U ′

j
= φ′

j |U ′
i
∩U ′

j

for
all i, j ∈ T , then {φ′

i}i∈T ‘glue together’ to a regular function φ on U (given by
φ(x) = φ′

i(x) when x ∈ U ′
i). Indeed: at any point x ∈ U , choose i ∈ T such that

x ∈ U ′
i . Since φ′

i is regular, it looks like a rational function on an open subset
of U ′

i containing x, which is open in U . Since the φ′
i(x) agree on overlaps, the

value of φ(x) is independent of the choice of i.
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4

Example 2.2.8. If Y ⊂ Cn is affine, we have OY (Y ) = C[Y ]. If f is a nonzero
element of C[Y ], consider the open set

Yf = {x ∈ Y | f(x) 6= 0}.

Then we have OY (Yf ) = C[Y ]f = C[Yf ] and we can think of the canonical map
C[Y ]→ C[Y ]f as the restriction of a function on Y to the open subset Yf . For any
nonempty projective variety X ⊂ Pn, OX(X) = C. For f ∈ C[X], the quasi-projective
variety

Xf = {(x0 : · · · : xn) | f(x) 6= 0}

has ring of regular functions OX(Xf ) = (C[X]f )0. Restriction from X to Xf is given
by the inclusion C→ (C[X]f )0. 4

In the affine case, we defined morphisms Y → Y ′ between affine varieties as maps
that pull back to C-algebra homomorphisms C[Y ′]→ C[Y ]. This definition is valid
for morphisms between open subsets of the form Yf , since these are again affine (see
Example 2.1.12). We extend this definition to general open subsets of affine varieties
first.

Definition 2.2.7. Let U ⊂ Y, U ′ ⊂ Y ′ be open subsets of affine varieties Y, Y ′.
A function Φ : U → U ′ is a morphism if the composition of any regular function
φ′ : U ′ → C with Φ is a regular function φ = φ′ ◦ Φ : U → C. Equivalently, Φ is a
morphism if φ′ 7→ φ′ ◦ Φ is a map of rings Φ∗ : OY ′(U ′)→ OY (U).

Remark 2.2.4. The map sending a function φ′ to a composition φ′ ◦ Φ is always a
C-algebra homomorphism: (cφ′) 7→ (cφ′) ◦ Φ = c(φ′ ◦ Φ), c ∈ C. 4

Definition 2.2.8. Let X ⊂ Pn, X ′ ⊂ Pm be quasi-projective varieties. Let
{Y1, . . . , Ys} and {Y ′

1 , . . . , Y
′
s′} be affine open coverings of X and X ′ respectively.

A function Φ : X → X ′ is a morphism if for all i, j,

ΦYi∩Φ−1(Y ′
j

) : Yi ∩ Φ−1(Y ′
j )→ Y ′

j

is a morphism as defined in Definition 2.2.7.

Two quasi-projective varieties X,X ′ are isomorphic if there exist morphisms Φ : X →
X ′ and Ψ : X ′ → X such that Φ ◦Ψ = idX′ and Ψ ◦ Φ = idX .

Example 2.2.9. The homeomorphism φi in Theorem 2.2.2 is an isomorphism of
quasi-projective varieties, since φ∗

i (f) ∈ (Sxi
)0 = O(Ui) = (C[Pn]xi

)0 for all f ∈
O(Cn) = C[Cn] = C[y1, . . . , yn]. 4

Example 2.2.10. A composition of morphisms is a morphism and the identity map
idX : X → X is an isomorphism. Every inclusion U ⊂ U ′ of open subsets of X is a
morphism which gives a restriction map OX(U ′)→ OX(U), and if U = U ′ this is the
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identity map idOX (U). In the language of category theory, OX is a contravariant functor
from ‘open subsets U of X with inclusion maps’ to ‘rings OX(U) with restriction maps’.
This, together with the observations in Remark 2.2.3, makes OX into a sheaf of rings
on X, called the structure sheaf of X. Going more into detail would take us to far.
We refer the reader to [EH06, Section I.1.3], [Har77, Chapter 2] or [Ser55]. 4

2.2.7 Dimension and degree

In this subsection we introduce the concepts of dimension and degree for a projective
variety. For the dimension, we could use a topological definition such as Definition
2.1.7. Instead (but equivalently), we will use the definition of dimension for affine
varieties.

Definition 2.2.9 (Dimension of a quasi-projective variety). The dimension of a
quasi-projective variety X, denoted dimX, with affine open covering {Y1, . . . , Ys} is
maxi dimYi (as affine varieties). The codimension of a quasi-projective variety X ⊂ Pn
is codimX = n− dimX.

Theorem 2.2.4. Let X,X ′ ⊂ Pn be irreducible projective varieties of dimension k, `
respectively. Then every irreducible component of the projective variety X ∩X ′ ⊂ Pn
has dimension at least k + `− n. In particular, if k + ` ≥ n then X ∩X ′ 6= ∅.

Proof. See [Har77, Chapter 1, Theorem 7.2].

Example 2.2.11. Two lines in the projective plane P2 always meet, which corresponds
to the intuition that parallel lines in C2 meet ‘at infinity’. 4

The degree of a projective variety tells us ‘how far’ the variety is from being linear
(i.e. given by linear equations). A first definition is very intuitive but hard to make
rigorous.

Definition 2.2.10 (Degree of a projective variety). Let X ⊂ Pn be a projective
variety such that all irreducible components of X have dimension k. The degree of
X, denoted degX, is the number of intersection points of X with a ‘general’ linear
subvariety of Pn of codimension k.

A linear subvariety or linear subspace of Pn is a projective subvariety defined by linear
equations (i.e. elements of S1). The problem with Definition 2.2.10 is that it is rather
complicated to make the word ‘general’ precise. We will mention an algebraic definition
of degree below, but Definition 2.2.10 will often be more useful for our purposes as it is
more intuitive. The reader should think of a ‘general’ linear subvariety as one defined
by linear equations with random complex coefficients (e.g. with real and imaginary
part drawn from a normal distribution).
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Example 2.2.12. If f ∈ S \ {0}, deg(f) = d, then VPn(f) is called a hyperplane if
d = 1 and a hypersurface of degree d for general d. For n = 2, a hypersurface is called
a curve. A curve of degree 2, 3, 4, . . . is called a plane conic, cubic, quartic, . . . . For
n = 3, a hypersurface is called a surface. A surface of degree 2, 3, 4, . . . is called a
quadratic, cubic, quartic, . . . surface. 4

An algebraic definition of dimension and degree for projective varieties is provided by
an important tool called the Hilbert function. It is defined as follows.

Definition 2.2.11 (Hilbert function). Let I ⊂ S be a homogeneous ideal of S. The
Hilbert function of I is

HFI : Z→ N given by HFI(d) = dimC(S/I)d.

The Hilbert function of a projective variety X is HFX = HFIS(X), i.e. HFX(d) =
dimC C[X]d.

The Hilbert function can be defined for any graded S-module, but considering modules
of the form S/I for some homogeneous ideal I ⊂ S suffices for us. Remarkably, the
Hilbert function HFX of a projective variety carries a lot of geometric information.

Theorem 2.2.5 (Hilbert-Serre). Let I ⊂ S be a homogeneous ideal and let X =
VPn(I). There exists a unique polynomial HPI ∈ Q[t] such that for some ` ∈ N,
HFI(d) = HPI(d) for all d ≥ `. Moreover, the degree of HPI(t) is dimX and if
I = IS(X), the degree of X is defined as the leading coefficient of HPI(t), multiplied
with (dimX)!. That is,

HPIS(X)(t) = degX
(dimX)! t

dimX + lower order terms.

If all irreducible components of X have the same dimension, this definition of degree
agrees with Definition 2.2.10.

Proof. See [CLO06, Chapter 6, §4, Proposition 4.7] for the existence of HPI , [Har77,
Chapter 1, Theorem 7.5] for the statement about dimX and [Cut18, Theorem 16.9]
for the equivalence of the definitions for degX.

The polynomial HPI in Theorem 2.2.5 is called the Hilbert polynomial of I, and the
Hilbert polynomial of a projective variety X ⊂ Pn is defined as HPX = HPIS(X). The
theorem implies by the projective Nullstellensatz that deg HPI = deg HP√

I .

Remark 2.2.5. In the notation of Theorem 2.2.5, if I ( IS(X), the leading coefficient
of HPI encodes the degree of the projective scheme associated to I. This takes into
account, for instance, that certain irreducible components of VPn(I) may occur with
arbitrary multiplicities. For more information, see [EH06, Chapter 3]. 4
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Example 2.2.13 (The Hilbert function of Pn). The Hilbert function of the projective
space Pn is given by

HFPn(d) = dimC(Sd) =
(
n+ d
n

)
where

(
`
k

)
=
{

`!
k!(`−k)! ` ≥ k
0 otherwise

.

In this case HFPn(d) = HPPn(d) for d ≥ 0. 4

Example 2.2.14 (The Hilbert function of a hypersurface). Let X = VPn(f) for
f ∈ Sdf

homogeneous and of degree df . Assume moreover that f is square-free, which
means that IS(VPn(f)) = 〈f〉. For I = 〈f〉, we have

dimC Id = dimC{gf | g ∈ Sd−df
} =

{
HFPn(d− df ) d ≥ df
0 otherwise

.

Since HFX(d) = dimC(S/I)d = dimC Sd − dimC Id we get

HFX(d) =
{

HFPn(d) d < df

HFPn(d)−HFPn(d− df ) d ≥ df

and the Hilbert polynomial HPX agrees with the Hilbert function for d ≥ df . It is
given by

HPX(d) =
(
n+ d
n

)
−
(
n+ d− df

n

)
= df

(n− 1)!d
n−1 + . . . .

4

2.3 Abstract varieties

In the previous section we have started by defining the projective n-space Pn and
showed that it is covered by affine open subsets which overlap on Zariski open subsets.
In this section, we will go the other way around and define a topological space by
‘gluing together’ affine varieties. This construction will give us a good way of thinking
about toric varieties, which will play an important role in later chapters.

Consider a set {Yi}i∈T of affine varieties for some index set T . Suppose that for
all pairs i, j ∈ T , we have isomorphic Zariski open subsets Yij ⊂ Yi, Yji ⊂ Yj . Let
{φij}i,j∈T be isomorphisms such that for all i, j, k ∈ T ,

1. φij : Yij → Yji and φji : Yji → Yij satisfy φij ◦ φji = idYji
, φji ◦ φij = idYij

,

2. φij(Yij ∩ Yik) = Yji ∩ Yjk,

3. φik = φjk ◦ φij on Yik ∩ Yij .
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The disjoint union
⊔
i∈T Yi is the set

X̂ =
⊔
i∈T

Yi = {(x, Yi) | i ∈ T , x ∈ Yi}.

It is a topological space with the disjoint union topology, which is such that the open
subsets of X̂ are disjoint unions of open subsets in the Yi. We define an equivalence
relation ∼ on X̂ by setting (x, Yi) ∼ (y, Yj) if x ∈ Yij , y ∈ Yji and φij(x) = y. The
first condition on the φij makes ∼ reflexive and symmetric, the second and third
conditions make it transitive. We consider the quotient space X = X̂/ ∼ with its
quotient topology, in which

Ui = {[(x, Yi)] | x ∈ Yi} ⊂ X

are open subsets isomorphic to Yi (here we denoted [·] for an equivalence class in
the quotient). The topological space X is called the gluing of the affine varieties in
{Yi}i∈T and {Yi}i∈T , {φij}i,j∈T are called the gluing data.

Example 2.3.1 (Gluing of P1). The projective line P1 is covered by P1 = Ux ∪ Uy
where

Ux = {(x : y) ∈ P1 | x 6= 0}, Uy = {(x : y) ∈ P1 | y 6= 0}.

Consider the isomorphisms

hx : Ux → Ct and hy : Uy → Cu,

where Ct is C with coordinate t and analogously for u, given by hx(x : y) = y/x and
hy(x : y) = x/y (these are the maps φi in Theorem 2.2.2). For a point (x : y) ∈ Ux∩Uy,
we have hx(x : y) = hy(x : y)−1. Let

Ctu = C∗
t = Ct \ {0}, Cut = C∗

u = Cu \ {0}

and φtu : Ctu → Cut given by φtu(t) = t−1, φut = φ−1
tu . This gives the following

commutative diagram.
Ux ∩ Uy Ctu

Cut

hx

hy
φtu

φut

The projective line P1 is a gluing of two copies of C with gluing data {Ct,Cu}
and {φtu, φut}. The two affine lines Ct and Cu are glued together along the open
subsets C∗

t and C∗
u to get the open subset Ux ∩ Uy ⊂ P1. The missing points

P1 \ (Ux ∩Uy) = {(1 : 0), (0 : 1)} correspond to the origin in Ct and Cu. If we consider
P1 as the projective closure of Ct, the point at infinity (see Example 2.2.4) corresponds
to the origin in Cu. This gluing construction is illustrated in Figure 2.8. 4
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Figure 2.8: Illustration of the construction of P1 as the gluing of two affine lines. The
affine lines are represented as circles with a missing point (‘at infinity’). The origin in
each line is indicated with a black dot and the gluing isomorphism is illustrated by
black line segments.

Example 2.3.2 (Gluing of P2). One can repeat Example 2.3.1 for higher dimensional
projective spaces. For P2, we consider the isomorphisms

hx : Ux → C2
t , hy : Uy → C2

u, and hz : Uz → C2
v

where C2
t is the affine plane with coordinates t1, t2 (analogously for u, v) and

hx(x : y : z) = (y/x, z/x), hy(x : y : z) = (x/y, z/y), hz(x : y : z) = (x/z, y/z).

The gluing morphisms φtv = φ−1
vt come from identifying the images of points in Ux∩Uz

under hx and hz, e.g. on C2
tv = C2

t \ V (t2)

φtv(t1, t2) = (t−1
2 , t1t

−1
2 ) comes from

(x
z
,
y

z

)
=
(( z

x

)−1
,
(y
x

)( z
x

)−1
)
.

The morphism sends the parabola Yx from Example 2.2.6 (more precisely, its
intersection with C2

tv) to the hyperbola Yz (intersected with C2
vt). 4

All quasi-projective varieties can be obtained via the gluing construction. From now
on, we will use the word variety for any topological space that is obtained from a
gluing of affine varieties as described in this section. Using Definitions 2.2.6, 2.2.7 and
2.2.8 it is straightforward to define regular functions on open subsets of varieties and
morphisms between varieties. Dimension can also be defined locally. An analogous
construction can be used for gluing affine schemes together to obtain general schemes
[EH06, Section I.2.4]. As mentioned before, an important application in the context of
this thesis is the gluing of a complete toric variety from a set of affine toric varieties.
In this case, the gluing data has a particularly nice description in terms of a polytope
(or in its normal fan). This construction generalizes Examples 2.3.1 and 2.3.2 and is
described in Appendix E.





Chapter 3

Zero-dimensional varieties

In this chapter we discuss zero-dimensional subvarieties of Cn and Pn. These are
varieties consisting of finitely many points. Understanding their coordinate rings allows
us to compute coordinates for these points via eigenvalue computations. In the affine
case, this is a result called the classical eigenvalue, eigenvector theorem. Together with
a description of the multiplicity (or scheme) structure of zero-dimensional algebras and
an affine version of Bézout’s theorem, this is the subject of Section 3.1. In Section 3.2,
after introducing the necessary theory on Hilbert functions and Bézout’s theorem, we
formulate a projective version of the eigenvalue, eigenvector theorem and we discuss
the effects of homogenizing a given set of affine equations. Among the methods for
polynomial system solving that exploit these results are Gröbner and border basis
techniques and Macaulay resultants. Since these approaches are strongly related to
the framework of truncated normal forms, introduced in the next chapter, we will give
an overview in Sections 3.3 and 3.4.
We use the following notation for some basic concepts from linear algebra. For a
finite dimensional C-vector space W , we write W∨ = HomC(W,C) for the dual vector
space. For a vector space endomorphism φ : W → W , a right eigenpair is a tuple
(λ,w) ∈ C × (W \ {0}) satisfying φ(w) = λw. Similarly, a left eigenpair is a tuple
(v, λ) ∈ (W∨ \ {0})× C such that v ◦ φ = λv. The C-linear span of a subset W ⊂W
is denoted by spanC(W) ⊂W .

3.1 Points in affine space

Throughout this section, let R = C[x1, . . . , xn] be the n-variate polynomial ring over
C and for f1, . . . , fs ∈ R let I = 〈f1, . . . , fs〉 ⊂ R be an ideal. We assume that the
affine variety defined by I consists of finitely many points:

V (I) = VCn(I) = {z1, . . . , zδ} ⊂ Cn.

45
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Ideals of R satisfying this assumption are called zero-dimensional, which reflects the
dimension of V (I) as an algebraic variety and, equivalently, the Krull dimension of R/I
(see Subsection 2.1.5). We remark, for the reader who is familiar with commutative
algebra, that by [AM69, Theorem 8.5] these are exactly the ideals of R for which R/I
is Artin.

3.1.1 The eigenvalue, eigenvector theorem

In this subsection we will make the extra assumption that I =
√
I is a radical ideal.

This is equivalent to the assumption that R/I is nilpotent free or reduced. We will
discuss the more general case in Subsection 3.1.3. By the Nullstellensatz (Theorem
2.1.1), the assumption I =

√
I implies

I = I(V (I)) = {f ∈ R | f(zi) = 0, i = 1, . . . , δ}.

This makes it particularly easy to describe the quotient ring R/I. The following lemma
will be helpful.

Lemma 3.1.1. For a collection of δ <∞ points {z1, . . . , zδ} ⊂ Cn, there is a linear
form h = h1x1 + · · ·+ hnxn ∈ R such that h(zi) 6= h(zj), i 6= j.

Proof. If δ = 1, there is nothing to prove. For δ > 1, the condition that h(zi) =
h(zj), i 6= j is a (nonzero) linear condition on the coefficients h1, . . . , hn. Let

C =
(
δ
2

)
= δ!

2(δ − 2)! .

In total, this gives at most C pairwise linearly independent conditions, which means
that the points (h1, . . . , hn) ∈ Cn for which h does not satisfy the desired property
are on the union of at most C hyperplanes through the origin in Cn.

The proof of Lemma 3.1.1 shows that almost all linear forms h = h1x1 + · · ·+hnxn ∈ R
satisfy h(zi) 6= h(zj), i 6= j. We say that a generic linear form has this property. We
will say more about the notion of genericity in Subsection 3.1.2.

Definition 3.1.1 (Evaluation map). Let I =
√
I be a zero-dimensional ideal with

V (I) = {z1, . . . , zδ}. For i = 1, . . . , δ, we define evzi ∈ (R/I)∨ by evzi(f + I) = f(zi).
Furthermore, we define the evaluation map ψ : R/I → Cδ by ψ = (evz1 , . . . , evzδ

),
that is

ψ(f + I) = (f(z1), . . . , f(zδ)).

Note that the map ψ : R/I → Cδ is well-defined: if f, g ∈ R are such that f − g ∈ I,
then f(zi) = g(zi), i = 1, . . . , δ. Moreover, the map ψ is C-linear. Lemma 3.1.1 allows
us to construct polynomials whose residue classes map to the standard basis vectors
of Cδ under ψ.
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Lemma 3.1.2. Consider the evaluation map from Definition 3.1.1. There exist
polynomials `1, . . . , `δ ∈ R satisfying

`i(zj) =
{

1 i = j

0 i 6= j
. (3.1.1)

Polynomials satisfying (3.1.1) are called Lagrange polynomials for {z1, . . . , zδ}.

Proof. Let h be as in Lemma 3.1.1 and set

`i =
∏
i 6=j(h(x)− h(zj))∏
i 6=j(h(zi)− h(zj))

.

Proposition 3.1.1. For a zero-dimensional ideal I =
√
I, an element f + I ∈ R/I

is completely determined by the values f(z1), . . . , f(zδ). In particular, the evaluation
map ψ : R/I → Cδ is an isomorphism of C-vector spaces.

Proof. Since I =
√
I, the map ψ is injective: ψ(f + I) = 0 implies f ∈ I. To show

that it is also surjective, let V (I) = {z1, . . . , zδ} and let `1, . . . , `δ ∈ R be a set of
Lagrange polynomials of V (I) (these exist by Lemma 3.1.2). Then surjectivity follows
from ψ(`i + I) = ei, where ei = (0, . . . , 1, . . . , 0) (1 in the i-th position) is the i-th
standard basis vector of Cδ.

Proposition 3.1.1 establishes the fact that, under the assumptions of this subsection,
R/I has dimension δ as a C-vector space (we write dimCR/I = δ, whereas dimR/I = 0
denotes the Krull dimension) and the evaluation map gives us one way to define
coordinates on R/I. It also shows that {`1 + I, . . . , `δ + I} is a C-basis for R/I with
dual basis {evz1 , . . . , evzδ

} for (R/I)∨. The next step is to understand the structure
of R/I as an R-module in terms of linear algebra operations.

Definition 3.1.2 (Multiplication map). For any g ∈ R we define the multiplication
map representing multiplication with g as the C-linear map

Mg : R/I → R/I with Mg(f + I) = fg + I.

Note that the multiplication maps define the structure of R/I as an R-module, in the
sense that scalar multiplication is given by R×R/I → R/I with (g, f+I) 7→Mg(f+I).
Since Mg is a C-linear endomorphism on a finite dimensional vector space, it can
be represented by a matrix once we fix coordinates. With the very special choice of
coordinates discussed above, these matrices are diagonal. This leads immediately to a
proof of the main theorem of this subsection.

Theorem 3.1.1 (Eigenvalue, eigenvector theorem). Let I =
√
I be a zero-dimensional

ideal of R with V (I) = {z1, . . . , zδ}. The multiplication maps Mg : R/I → R/I are
pairwise commuting and have left and right eigenpairs

(evzi , g(zi)), (g(zi), `i + I), i = 1, . . . , δ.
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Proof. The fact that Mg1 ◦Mg2 = Mg2 ◦Mg1 for any g1, g2 ∈ R follows directly from
Definition 3.1.2. The statement about the eigenpairs follows from the fact that ψ is a
vector space isomorphism and the diagram

R/I R/I

Cδ Cδ

Mg

ψ ψ

∆

commutes, where ∆ is the linear map corresponding to the diagonal matrix
diag(g(z1), . . . , g(zδ)).

Remark 3.1.1. The name of Ludwig Stickelberger is often attached to this theorem.
See [Cox20b] for a discussion on why, and for an overview of the theorem’s origins. 4

Example 3.1.1 (Companion matrices for n = 1). Let f = c0 +c1x+ · · ·+cδx
δ ∈ C[x]

with cδ 6= 0 and I = 〈f〉 ⊂ C[x]. Moreover, suppose that I =
√
I such that f has δ

distinct roots V (f) = {z1, . . . , zδ}. The algebra C[x]/I has dimension δ as a C-vector
space and the Lagrange polynomials

`i =
∏
i 6=j(x− zj)∏
i 6=j(zi − zj)

, i = 1, . . . , δ

give the C-basis {`1 + I, . . . , `δ + I} for C[x]/I. However, in order to compute
the `i, we need to know the roots. An alternative basis for C[x]/I is given by
{1 + I, x + I, . . . , xδ−1 + I}. It is easy to check that these monomials are indeed
C-linearly independent modulo I. Let us construct the matrix representation of
Mx : C[x]/I → C[x]/I in this basis. By Mx(xa + I) = xa+1 + I and xδ + I =
−c−1

δ (c0 + c1x+ · · ·+ cδ−1x
δ−1) + I, we get that

Mx =


−c0/cδ

1 −c1/cδ
1 −c2/cδ

. . . ...
1 −cδ−1/cδ

 ,

where ei ∈ Cδ is identified with xi−1 + I. This is the so-called Frobenius companion
matrix of f , whose eigenvalues are well-known to be the roots of f . This observation
is at the heart of many numerical algorithms for univariate root finding, such as
[AMVW15]. The roots z1, . . . , zδ are indeed the values g(z1), . . . , g(zδ) for g = x, and
Theorem 3.1.1 also characterizes the left and right eigenvectors of this matrix. 4

With a slight abuse of notation, where there is no confusion possible we let Mg denote
both the linear map Mg : R/I → R/I and its matrix representation in some basis.
Theorem 3.1.1 tells us that a matrix representation Mg has eigenvalue decomposition
(see Appendix B)

DMgD
−1 = diag(g(z1), . . . , g(zδ)),



POINTS IN AFFINE SPACE 49

−4 −2 0 2 4

0

2

4

6

x

y

Figure 3.1: Picture in R2 of the algebraic curves V (f1) (in blue) and V (f2) (in orange)
from Example 3.1.2.

where the rows of D represent the linear functionals evzi and diag(g(z1), . . . , g(zδ)) is
a δ × δ diagonal matrix with the values g(zi) on its diagonal. Note that the matrix
D does not depend on g. Indeed, {Mg | g ∈ R} is a commuting family of matrices
which share eigenvectors. This naturally leads to the following pseudo-algorithm for
computing coordinates of z1, . . . , zδ.

1. For some basis of R/I, compute the matrices Mx1 , . . . ,Mxn
.

2. Diagonalize them simultaneously (compute DMxi
D−1 = diag(z1i, . . . , zni), i =

1, . . . , n) and read off the coordinates from the diagonal.

Among the classical methods for performing step 1 are Gröbner basis, border basis or
resultant techniques, as we will discuss in Sections 3.3 and 3.4. Section 4.2 is devoted
to developing the framework of truncated normal forms, which generalizes the above
mentioned approaches and is highly flexible for taking numerical stability into account.
In this thesis, we leave step 2 mostly to a ‘numerical linear algebra blackbox’ which
uses the standard techniques for computing (joint) eigenvalue decompositions. We
will say a little more about this in Section 4.3.

Example 3.1.2 (Intersecting two conics in the plane). This is an example taken from
[TMVB18]. Let R = C[x, y] and consider the ideal I = 〈f1, f2〉 with

f1 = 7 + 3x− 6y − 4x2 + 2xy + 5y2,

f2 = −1− 3x+ 14y − 2x2 + 2xy − 3y2.

As illustrated in Figure 3.1, the two curves V (f1) and V (f2) meet in four real points
z1 = (−2, 3), z2 = (3, 2), z3 = (2, 1), z4 = (−1, 0) and these are the only points in
V (I) ⊂ C2. A C-basis for R/I is B = {x+ I, y + I, x2 + I, xy + I} and one can check
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the identities

x3 + I = −2x+ 12y − 3x2 + 6xy + I

x2y + I = −15
4 x+ 33

2 y −
15
4 x

2 + 5xy + I

in R/I. Using the basis B (with its elements ordered as above) we obtain the matrix
representation

Mx =


0 0 −2 −15/4
0 0 12 33/2
1 0 −3 −15/4
0 1 6 5

 .
This matrix has right eigenvector (−3/8, 5/4,−3/8, 1/2)> corresponding to the
eigenvalue 3, which is x evaluated at z2. This represents the Lagrange polynomial

`2 = −3
8 x+ 5

4y −
3
8x

2 + 1
2xy.

4

3.1.2 Genericity and Bézout’s theorem

Throughout this thesis we will work with polynomial systems on which we make certain
genericity assumptions. More specifically, we usually assume that the polynomial
system belongs to some family of polynomial systems, and it has the properties
of a general or generic member of the family. We have already encountered some
examples of genericity assumptions. In Lemma 3.1.2 we considered a linear polynomial
h = h1x1 + · · ·+hnxn from the family of all linear polynomials satisfying the condition
of Lemma 3.1.1. The proof of Lemma 3.1.1 showed that almost all members of
the family satisfy this condition. In our definition of degree for a projective variety
(Definition 2.2.10) we considered ‘general linear subvarieties of codimension k’. These
correspond to general members of the family of polynomial systems given by k linear
equations.

Definition 3.1.3 (Families and genericity). Let R be a polynomial ring over C and
let W1, . . . ,Ws ⊂ R be finite dimensional C-vector subspaces of R. For some p ∈ N,
let

φ : Cp →W1 × · · · ×Ws

be a morphism (W1×· · ·×Ws is thought of as an affine variety). We think of an element
in imφ as a polynomial system given by f1 = · · · = fs = 0 where (f1, . . . , fs) = φ(a)
for some a ∈ Cp. We say that the image of φ is a family of polynomial systems
parametrized by Cp. A property of a polynomial system is said to hold for a generic
or general member of the family imφ if there is a nonzero polynomial f ∈ C[Cp] such
that the property holds for all φ(a) with a ∈ Cp \ VCp(f).
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We note that if property A and property B hold for a generic member of a family,
then so does property ‘A and B’ (the intersection of two nonempty open subsets of
Cp is again open and nonempty). Working over the complex numbers allows us to
think of many of the properties of polynomial systems we are interested in as generic
properties. An important example is the number of solutions of the system. Here is
an example for n = 1.

Example 3.1.3. Consider the family of polynomials given by φ : C3 → C[x]≤2 given
by

φ(a, b, c) = ax2 + bx+ c.

Generically, a member of this family has two solutions in C. Indeed, φ(a, b, c) has two
solutions unless f(a, b, c) = a(b2−4ac) = 0. It is also true that a general member of this
family has two solutions in C∗ = C\{0}. This happens whenever ac(b2−4ac) 6= 0. 4

To give examples for larger n, we need to specify which family of systems we want to
consider. A first example of a family of multivariate polynomial systems is the family
of so-called total degree systems. As in Subsection 2.2.5, let

R≤d =
{∑

a

cax
a ∈ R | max

ca 6=0
|a| ≤ d

}
.

Definition 3.1.4 (Total degree systems). For an ordered tuple (d1, . . . , ds) ∈ Ns, the
family of total degree polynomial systems of degree (d1, . . . , ds) is the image of

φ : Cp1 × · · · × Cps → R≤d1 × · · · ×R≤ds
, where pi =

(
n+ di
n

)
and φ((c1,a)|a|≤d1 , . . . , (cs,a)|a|≤ds

) =
(∑

|a|≤d1
c1,ax

a, . . . ,
∑

|a|≤ds
cs,ax

a
)

. Here |a| ≤
di means that a runs over all tuples a = (a1, . . . , an) ∈ Nn satisfying |a| = a1+· · ·+an ≤
di. We will denote this family by

FR(d1, . . . , ds) = imφ = R≤d1 × · · · ×R≤ds .

When n = s, the family FR(d1, . . . , dn) is called a family of square total degree systems.
An important property that holds for general members (f1, . . . , fn) ∈ FR(d1, . . . , dn)
is given by Bézout’s theorem in Cn.

Theorem 3.1.2 (Bézout’s theorem in Cn). For any member (f1, . . . , fn) ∈
FR(d1, . . . , dn) we have that the number of isolated points in V (f1, . . . , fn), counted
with multiplicities (see Subsection 3.1.3), is bounded by

∏n
i=1 di. For a general member

(f1, . . . , fn) ∈ FR(d1, . . . , dn) we have that

1. the affine variety V (f1, . . . , fn) ⊂ Cn consists of finitely many points,

2. the ideal 〈f1, . . . , fn〉 is radical,
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3. the number of points in V (f1, . . . , fn), counting multiplicities, is
∏n
i=1 di.

Note that the theorem implies that a general member of FR(d1, . . . , dn) has
∏n
i=1 di

isolated solutions, all these solutions have multiplicity one and there are no positive
dimensional components. We omit the proof of this theorem for now and we will say
more about this result in the projective setting in Section 3.2. The theory of resultants
will allow us to describe exactly when the generic properties of Theorem 3.1.2 fail to
hold.

Remark 3.1.2. When s < n and di > 0, i = 1, . . . , s, we have that for a general
member (f1, . . . , fs) ∈ FR(d1, . . . , ds), dimVCn(f1, . . . , fs) = n − s. When s > n,
a general member has no solutions: VCn(f1, . . . , fs) = ∅, which implies by the
Nullstellensatz that 〈f1, . . . , fs〉 = R. 4

Example 3.1.4. The system in Example 3.1.2 is a general member of FR(2, 2), in
the sense that all three generic properties of Theorem 3.1.2 are satisfied. 4

3.1.3 Multiplicity

In this subsection, our aim is to generalize the results from Subsection 3.1.1 to the
case where I is zero-dimensional, but not necessarily radical. An example for n = 1
gives us an idea of what to expect.

Example 3.1.5. Let R = C[x] and I = 〈f〉 where f = x2(x− 1). Note that I (
√
I,

since g = x(x− 1) /∈ I but g2 ∈ I. The variety V (f) consists of δ = 2 points {0, 1}.
However, the dimension dimCR/I = 3: the residue classes 1 + I, x + I, x2 + I are
C-linearly independent in R/I and they generate R/I over C. The reason for this
discrepancy is that the point 0 in this example should be counted twice. That is,
the point 0 has multiplicity 2 as a root of f . One way to see this is by decomposing
R/I into smaller rings, each of which ‘contributes’ one root to V (I). Observe that
I = 〈x2〉∩〈x− 1〉 and 〈x2〉 and 〈x− 1〉 are coprime ideals since x2− (x−1)(x+1) = 1.
By the Chinese remainder theorem (Theorem A.1.3) the map

R/I → R/〈x2〉 ×R/〈x− 1〉 given by f + I 7→ (f + 〈x2〉, f + 〈x− 1〉)

is an isomorphism. This shows that

dimCR/I = dimCR/〈x2〉+ dimCR/〈x− 1〉 = 2 + 1,

where the root 0 contributes the term 2 in this sum. 4

For general n, if V (I) = {z1, . . . , zδ} the Nullstellensatz tells us that
√
I = p1 ∩ · · · ∩ pδ (3.1.2)
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where pi is the maximal ideal for which V (pi) = zi. Since pi + pj = R for i 6= j, we
can apply the Chinese remainder theorem to write

R/
√
I ' R/p1 × · · · ×R/pδ ' C× · · · × C ' Cδ.

The decomposition (3.1.2) of
√
I into prime (in this case, maximal) ideals corresponds

to the decomposition of V (I) into irreducible varieties. The generalization of this
operation for arbitrary ideals is given by the primary decomposition (see Theorem
A.1.2). In our case, the primary decomposition writes I as an intersection

I = Q1 ∩ · · · ∩Qδ (3.1.3)

where the Qi are primary ideals such that
√
Qi = pi, i = 1, . . . , δ. We say that Qi is

pi-primary. Since V (Qi +Qj) = ∅, i 6= j, we have that the primary ideals Q1, . . . , Qs
are pairwise coprime. By the Chinese remainder theorem this gives

R/I ' R/Q1 × · · · ×R/Qδ. (3.1.4)

We are now ready to define the multiplicity of the points in V (I), generalizing the
observations of Example 3.1.5.

Definition 3.1.5. Let I ⊂ R be a zero-dimensional ideal with V (I) = {z1, . . . , zδ} ⊂
Cn. Let pi = I({zi}), i = 1, . . . , δ be the corresponding maximal ideals of R and
consider the primary decomposition I = Q1 ∩ · · · ∩Qδ such that Qi is pi-primary. For
each i, the multiplicity µi of the point zi as a solution of I is given by

µi = dimCR/Qi.

We denote δ+ = µ1 + · · · + µδ = dimCR/I. Recall that in the case where I =
√
I,

µi = 1, i = 1, . . . , δ and

f ∈ I ⇐⇒ evzi
(f + I) = f(zi) = 0, i = 1, . . . , δ.

In words, to check whether f ∈ I, it is enough to check whether f vanishes at all points
of V (I). In the case where n = 1 and I is not necessarily radical, the multiplicities of
z1, . . . , zδ impose vanishing conditions on the derivatives of f in order for f to be in
the ideal:

f ∈ I ⇐⇒ d`f

dx`
(zi) = 0, ` = 0, . . . , µi − 1, i = 1, . . . , δ.

This generalizes nicely for general n: the decomposition (3.1.4) of the algebra R/I
gives a way of writing the condition f ∈ I in terms of the vanishing of some differential
operators. We now describe how this works.
For an n-tuple a = (a1, . . . , an) ∈ Nn we define the C-linear map ∂a : R→ R given by

∂a(f) = 1
a1! · · · an!

∂a1+···+anf

∂xa1
1 · · · ∂x

an
n
.
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These differential operators generate the C-vector space

D =
{∑
a∈Nn

ca∂a | finitely many ca are nonzero
}
.

For each a ∈ Nn, we also define the antidifferentiation operator sa : D → D by

sa

(∑
b

cb∂b

)
=
∑
b−a≥0

cb∂b−a,

where the sum on the right hand side ranges over all b = (b1, . . . , bn) ∈ Nn such that
bi−ai ≥ 0, i = 1, . . . , n. These operators allow for a very simple formulation of Leibniz’
rule, which says that for ∂ ∈ D ,

∂(fg) =
∑
b∈Nn

∂b(g)(sb(∂))(f). (3.1.5)

Definition 3.1.6. A C-vector subspace D ⊂ D is closed if dimC(D) < ∞ and for
each ∂ ∈ D and each a ∈ Nn, sa(∂) ∈ D.

Note that if D ⊂ D is closed, then ∂0 = idR ∈ D (here idR is our notation for the
identity map f 7→ f on R). The motivation for defining closed subsets of D in this
way is the fact that they ‘annihilate’ zero-dimensional primary ideals of R.

Theorem 3.1.3. Let z = (z1, . . . , zn) ∈ Cn. There is a one-to-one correspondence
between 〈x− z1, . . . , x− zn〉-primary ideals Q of R and closed subspaces D of D.
Explicitly, the correspondence is given by

Q 7→ {∂ ∈ D | ∂(f)(z) = 0, for all f ∈ Q}

and
D 7→ {f ∈ R | ∂(f)(z) = 0, for all ∂ ∈ D}.

Moreover, we have that dimCD = dimCR/Q.

Proof. See [MMM93, Theorem 2.6].

It follows from Theorem 3.1.3 that the ideals Qi from (3.1.4) give closed subspaces

Di = {∂ ∈ D | ∂(f)(zi) = 0, for all f ∈ Qi}.

Note that any ∂ ∈ Di gives a well-defined functional

evzi
◦ ∂ : R/I → C with (evzi

◦ ∂)(f + I) = ∂(f)(zi).

This follows from the fact that Di can be identified with (R/Qi)∨ ⊂ (R/I)∨ via

∂ 7→ (f +Qi 7→ ∂(f)(zi)).
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In particular, the theorem also implies that dimCDi = µi. For a differential operator
∂ =

∑
a ca∂a ∈ D we define ord(∂) = maxca 6=0 |a|. We denote by (Di)≤d = {∂ ∈

Di | ord(∂) ≤ d} the subspace of differential operators in Di of order bounded by d.
For giving explicit descriptions of the eigenstructure of multiplication maps (defined
below), it is convenient to work with a special type of basis for the spaces Di (see
[MS95, Section 5]).
Definition 3.1.7. An ordered tuple (∂i1, . . . , ∂iµi

) with ∂ij ∈ Di is called a consistently
ordered basis for Di if for every d ≥ 0 there is jd such that {∂i1, . . . , ∂ijd

} is a C-vector
space basis for (Di)≤d.

Note that a consistently ordered basis always exists for any closed subspace D, its
first differential operator is always ∂0 and it is a C-vector space basis for D.
Lemma 3.1.3. For i = 1, . . . , δ, let (∂i1, . . . , ∂iµi) be a consistently ordered basis for
Di. The linear map R/I → Cδ+ given by

f+I 7→ ((evz1 ◦ ∂11)(f), . . . , (evz1 ◦ ∂1µ1)(f), . . . , (evzδ
◦ ∂δ1)(f), . . . , (evzδ

◦ ∂δµδ
)(f))

is an isomorphism of vector spaces.

Proof. The map is injective because f ∈ I ⇔ f ∈ Q1 ∩ · · · ∩Qδ, which is equivalent to
(evzi

◦ ∂)(f) = 0,∀∂ ∈ Di, i = 1, . . . , δ. The lemma follows since dimCR/I = δ+.

Note that if I =
√
I, the map from Lemma 3.1.3 is the map ψ from Proposition 3.1.1.

As in Lemma 3.1.3, for i = 1, . . . , δ, let (∂i1, . . . , ∂iµi) be a consistently ordered basis
for Di. Note that by Leibniz’ rule, for all f + I ∈ R/I we have

((evzi ◦ ∂ij) ◦Mg)(f + I) = evzi(∂ij(fg) + I)

= evzi

(∑
b∈Nn

∂b(g)sb(∂ij)(f) + I

)
(3.1.6)

=
∑
b∈Nn

∂b(g)(zi) · (evzi
◦ sb(∂ij))(f + I). (3.1.7)

In particular, for ∂i1 = ∂0 = idR we get

evzi
◦ Mg = g(zi) evzi

,

which shows that the evaluation functionals evzi
are (left) eigenvectors of Mg with

eigenvalues g(zi). In general, by the property of being closed, sb(∂ij) can be written as
a C-linear combination of ∂i1, . . . , ∂iµi

. For b 6= 0, by the property of being consistently
ordered and ord(sb(∂)) < ord(∂), sb(∂ij) can be written as a C-linear combination
of ∂i1, . . . , ∂i,j−1 (in fact, we only need the differentials of order strictly lower than
ord(∂ij)). Therefore, we can write

∑
b∈Nn

∂b(g)(zi) · (evzi
◦ sb(∂ij)) = g(zi)(evzi

◦ ∂ij) +
j−1∑
k=1

c
(k)
ij (evzi

◦ ∂ik).
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Then, in matrix notation, (3.1.6) becomes

Di◦Mg =


evzi ◦ ∂i1
evzi ◦ ∂i2

...
evzi ◦ ∂iµi

◦Mg =


g(zi)
c

(1)
i2 g(zi)
...

. . .
c

(1)
iµi

c
(2)
iµi

. . . g(zi)




evzi ◦ ∂i1
evzi ◦ ∂i2

...
evzi ◦ ∂iµi

 = Li◦Di. (3.1.8)

Here the notation Di is (ab-)used for the linear map represented by a consistently
ordered basis for Di composed with evzi . Putting the equations (3.1.8) together for
i = 1, . . . , δ we get 

D1
D2
...
Dδ


︸ ︷︷ ︸
D

◦Mg =


L1

L2
. . .

Lδ


︸ ︷︷ ︸

L

◦


D1
D2
...
Dδ


︸ ︷︷ ︸
D

. (3.1.9)

By observing that the map D in (3.1.9) is exactly the map from Lemma 3.1.3, we
get that any matrix representation of Mg is similar to the lower triangular matrix L,
whose diagonal is

g(z1), . . . , g(z1)︸ ︷︷ ︸
µ1 times

, . . . , g(zδ), . . . , g(zδ)︸ ︷︷ ︸
µδ times

.

The following theorem follows easily.

Theorem 3.1.4. For any matrix representation of the multiplication map Mg : R/I →
R/I, we have that

det(λ idCδ+ −Mg) =
δ∏
i=1

(λ− g(zi))µi .

Remark 3.1.3. Describing the multiplicity structure by means of differential operators
has the advantage that it gives a very explicit description of the invariant subspaces of
the multiplication operators. An alternative way of decomposing the algebra R/I into
subalgebras coming from the different points in V (I) is via localization. This is the
approach taken in, for instance, [CLO06, Chapter 4, §2]. The key idea is to establish
an isomorphism

R/I → Rp1/IRp1 × · · · ×Rpδ
/IRpδ

,

where Rpi is the localization of R at the maximal ideal pi = I({zi}) (see Subsection
A.1.4). The equivalence of the approaches follows from the exact sequence

0→ Qi → R→ Rpi/IRpi → 0,

from which R/Qi ' Rpi
/IRpi

. This is discussed in [CLO06, Chapter 4, §2, Exercise
11]. 4
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Remark 3.1.4. A solution zj ∈ V (I) = V (f1, . . . , fs) has multiplicity µj > 1 if and
only if there is a differential operator ∂ =

∑n
i=1 ci∂ei ∈ D with ord(∂) = 1 such that

∂ ∈ Dj . This is equivalent to the condition that ∂(fi)(zj) = 0 for i = 1, . . . , s, which
means that the Jacobian

J(zi) =
(
∂fk
∂x`

(zi)
)

1≤k≤s,1≤`≤n

has the vector c = (c1, . . . , cn)> in its kernel: J(zi)c = 0. In particular, if n = s, the
root zi has multiplicity µi > 1 if and only if det J(zi) = 0. 4

Given an isolated point zi ∈ V (I), there is a numerical linear algebra based algorithm
for computing a basis of Di [DZ05]. A description of this algorithm is outside the
scope of this thesis.
Example 3.1.6. Consider the ideal I = 〈f1, f2〉 ⊂ R = C[x, y] generated by

f1 = x+ 1
3y

2 − x2, f2 = −1
3 x+ 1

3x
2.

The variety V (I) = {z1, z2} consists of the two points z1 = (1, 0), z2 = (0, 0). One can
easily check that

(evzj ◦ ∂(0,1))(fi) = ∂fi
∂y

(zj) = 0, i = 1, 2, j = 1, 2.

It follows that V1, V2 have at least dimension two, and by Bézout’s theorem (Theorem
3.1.2), the sum of these dimensions is at most 4. We conclude that {∂(0,0), ∂(0,1)} ⊂ D
is a basis for D1 as well as for D2. In the algebra R/I we have the equalities

y2 + I = 0 + I, x2 + I = x+ I,

and B = {1 + I, y + I, xy + I, x2 + I} is a C-basis for R/I. Using the basis B with its
elements in this order we find that ‘multiplication with y’ is given by

My =


0 0 0 0
1 0 0 0
0 0 0 1
0 0 0 0

 .
The matrix D from (3.1.9) is given by

D =
[
D1
D2

]
=


evz1 ◦ ∂(0,0)
evz1 ◦ ∂(0,1)
evz2 ◦ ∂(0,0)
evz2 ◦ ∂(0,1)

 =


1 0 0 1
0 1 1 0
1 0 0 0
0 1 0 0

 .
Note that D is indeed invertible (Lemma 3.1.3). For j = 1, 2 and any g ∈ R we have

(evzj ◦ ∂(0,0)) ◦Mg(f + I) = g(zj)(evzj ◦∂(0,0))(f + I),

(evzj ◦ ∂(0,1)) ◦Mg(f + I) = g(zj)(evzj ◦∂(0,1))(f + I) + ∂g

∂y
(zj)(evzj ◦∂(0,0))(f + I).
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In matrix notation, this gives DMg = LD where

L =


g(z1)
∂g
∂y (z1) g(z1)

g(z2)
∂g
∂y (z2) g(z2)

 .
In particular, for g = y this gives

1 0 0 1
0 1 1 0
1 0 0 0
0 1 0 0




0 0 0 0
1 0 0 0
0 0 0 1
0 0 0 0

 =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0




1 0 0 1
0 1 1 0
1 0 0 0
0 1 0 0

 .
4

3.2 Points in projective space

In this section, we work in the Z-graded ring S = C[x0, . . . , xn] and consider zero-
dimensional homogeneous ideals of S (see Section 2.2). These are the homogeneous
ideals I ⊂ S such that VPn(I) = {ζ1, . . . , ζδ} consists of finitely many points. Each
of the points ζi ∈ VPn(I) can be represented by a set of homogeneous coordinates
zi = (zi0, . . . , zin) ∈ Cn+1 \ {0} such that ζi = (zi0 : . . . : zin) and zi ∈ VCn+1(I). Our
motivation for studying zero-dimensional homogeneous ideals is twofold. Firstly, the
solutions of some problems coming from applications have a natural interpretation
as points in Pn. Think for instance about the case where solutions are elements in
the kernel of some matrix, eigenvectors of a (nonlinear) eigenvalue problem [GT17]
or conics in P2 [BST19]. Secondly, it is sometimes beneficial to reinterpret equations
on Cn as equations on Pn via a process called homogenization. After describing
some basic properties of zero-dimensional homogeneous ideals and formulating a
projective eigenvalue, eigenvector theorem in Subsections 3.2.1 and 3.2.2, we will
discuss homogenization in Subsection 3.2.3.

3.2.1 The Hilbert function and Bézout’s theorem

Let I = 〈f1, . . . , fs〉 ⊂ S be a zero-dimensional homogeneous ideal with VPn(I) =
{ζ1, . . . , ζδ} and such that di = deg(fi), i = 1, . . . , s. Our goal in this subsection is to
say something more about the expected value of δ in this setting. In the language of
Subsection 3.1.2, we want to understand the number of solutions of a general member
of the following family of homogeneous polynomial systems.
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Definition 3.2.1 (Homogeneous systems). For an ordered tuple (d1, . . . , ds) ∈ Ns,
the family of homogeneous polynomial systems of degree (d1, . . . , ds) is the image of

φ : Cp1 × · · · × Cps → Sd1 × · · · × Sds
, where pi =

(
n+ di
n

)
and φ((c1,a)|a|=d1 , . . . , (cs,a)|a|=ds

) =
(∑

|a|=d1
c1,ax

a, . . . ,
∑

|a|=ds
cs,ax

a
)

. Here |a| =
di means that a runs over all tuples a = (a0, a1, . . . , an) ∈ Nn+1 satisfying |a| =
a0 + a1 + · · ·+ an = di. We will denote this family by

FS(d1, . . . , ds) = imφ = Sd1 × · · · × Sds .

The most interesting scenario happens when n = s, which is the case covered by
Bézout’s theorem in projective space. The tool we will use for understanding this
theorem is the Hilbert function, see Subsection 2.2.7.
First, we define the concept of multiplicity for a point in VPn(I). We do this by
restricting the equations to an affine chart. As in Section 2.2, let

Ui = {(x0 : · · · : xn) ∈ Pn | xi 6= 0} ' Cn.

A first observation is that for i = 0, . . . , n, the ideal I gives an ideal

I (Ui) ⊂ OPn(Ui) = C
[
x0

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

]
= C[y0, . . . , yi−1, yi+1, . . . , yn]

by dehomogenization. Here’s how this works. For j = 1, . . . , s let

f̂ij = η−1
dj

(fj) = fj(y0, . . . , yi−1, 1, yi+1, . . . , yn),

where ηdj
: OPn(Ui)≤dj

→ Sdj
is the homogenization isomorphism (see Subsection

2.2.4). We define I (Ui) = 〈f̂i1, . . . , f̂is〉. Note that the polynomials fj do not define
functions on Pn, but the functions f̂ij do define functions on Ui and on the overlaps
Ui ∩ Uk, k 6= i, the functions f̂ij and f̂kj agree on where they are zero.1 Indeed, for
x ∈ Ui ∩ Uk we have

f̂ij(x) =
(
xk
xi

)dj

f̂ik(x),

where it should be clear that f̂ij(x) = f̂ij(x0/xi, . . . , xi−1/xi, xi+1/xi, . . . , xn/xi), and
the analogous notation is used for f̂ik.
The points ζj ∈ VPn(I) can be assigned a multiplicity as in the affine case (see
Subsection 3.1.3). The multiplicity of a point is defined locally, so for some affine chart
Ui ⊂ Pn containing ζj , we can define the multiplicity µj of ζj as the multiplicity of

1For the reader who is familiar with vector bundles, we are describing fj as a global section of
the line bundle with sheaf of sections OPn (dj) on Pn with transition functions (xk/xi)dj . The tuple
(f1, . . . , fs) can be seen as a global section of the rank s algebraic vector bundle with sheaf of sections
OPn (d1) ⊕ · · · ⊕ OPn (ds).
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this point as a solution of I (Ui). This is independent of the choice of Ui containing
ζj . We do not go into detail here.
Another concept which we have to introduce before talking about Hilbert functions is
that of saturation with respect to the irrelevant ideal. Recall from Section 2.2 that the
irrelevant ideal B = 〈x0, . . . , xn〉 plays a special role in our graded ring: it is a proper
ideal whose projective variety is the empty set. Here’s an example of the kind of issues
that this causes, similar to Remark 2.2.1 but for a nonempty projective variety.

Example 3.2.1. Let S = C[x0, x1] and consider I = 〈x0x1, x
2
1〉 with VP1(I) =

{(1 : 0)}. Dehomogenizing this to the chart U0 where x0 6= 0, we get the ideal
I (U0) = 〈y1, y

2
1〉 = 〈y1〉 ⊂ C[y1], which shows that the point (1 : 0) has multiplicity 1.

Therefore, the geometric object associated to I is exactly the same as the one associated
to 〈x1〉 ⊂ S, which is a strictly larger ideal of S. Note that I (U1) = OP1(U1), which
reflects the fact that there are no points in VP1(I) ∩ U1. 4

The reason for the ambiguity in Example 3.2.1 is that the affine scheme defined by
〈x0x1, x

2
1〉 in C2 consists of the line x1 = 0 with an ‘extra’, ‘distinguished’, or embedded

point at the origin. Think for instance of 〈x0x1, x
2
1〉 as the limit of 〈(x0 − t)x1, x

2
1〉

for t→ 0. This embedded point is no longer visible when moving to projective space.
A remedy for this is provided by ‘dividing the ideal B out’. This is a process called
saturation.

Definition 3.2.2 (Saturation). For a homogeneous ideal I ⊂ S, the saturation of I
(with respect to B) is the homogeneous ideal

(I : B∞) = {f ∈ S | for all b ∈ B, b`f ∈ I for some ` ∈ N} ⊂ S.

If I = (I : B∞), we say that I is (B-)saturated.

For any homogeneous ideal I ⊂ S, there is some ` ∈ N such that the saturation of I
equals the ideal quotient

(I : B∞) = (I : B`)
of I by the ideal B` = 〈b1 · · · b` | bi ∈ B, i = 1, . . . , `〉 = 〈S`〉 (see [CLO13, Chapter 4,
§4, Proposition 9]). The fact that the ideals I and (I : B∞) carry the same geometric
information is reflected in their behavior for high degrees.

Proposition 3.2.1. Let I ⊂ S be a homogeneous ideal. For some ` ∈ N, we have that

Id = (I : B∞)d, d ≥ `.

Proof. The inclusion I ⊂ (I : B∞) is clear (in all degrees). For the opposite inclusion,
let ˆ̀ be such that (I : B∞) = (I : Bˆ̀). Since S is Noetherian, (I : B∞) = 〈g1, . . . , gs′〉
is finitely generated, where we can take gi homogeneous of degree di. Take ` ∈ N such
that ` = maxi=1,...,s′ ˆ̀+ di. Then

(I : B∞)` = {h1g1 + · · ·+ hs′gs′ | hi ∈ S`−di}
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and since `−di ≥ ˆ̀, i = 1, . . . , s′, we have for each f = h1g1 + · · ·+hs′gs′ ∈ (I : B∞)`
that f ∈ I`, since hi ∈ B

ˆ̀.

Recall that in the affine setting, a zero-dimensional ideal is radical if and only if all
the points in its variety have multiplicity 1. In the projective setting, we have to take
the irrelevant ideal B into account.

Proposition 3.2.2. Let I = 〈f1, . . . , fs〉 be zero-dimensional. If VPn(I) = {ζ1, . . . , ζδ}
with multiplicities µi = 1, i = 1, . . . , δ, then (I : B∞) = IS(VPn(I)) =

√
(I : B∞).

Proof. Let g ∈ (I : B∞). Without loss of generality, we may assume that g is
homogeneous. By definition, we know that for some ` ∈ N and for i = 0, . . . , n,
x`ig ∈ I. For all ζj ∈ VPn(I), pick i such that ζj ∈ Ui. Now x`ig = h1f1 + · · ·+ hsfs
vanishes at ζj , but x`i does not. We conclude that g(ζj) = 0, and hence g ∈ IS(VPn(I)).
To prove the opposite inclusion, take g ∈ IS(VPn(I)) homogeneous. For i = 0, . . . , n,
let ĝi = g(x0/xi, . . . , xi−1/xi, 1, xi+1/xi, . . . , xn/xi) be the dehomogenization. For
each ζj ∈ Ui, since all multiplicities are one we have

ĝi(ζj) = 0 ⇒ ĝi ∈ I (Ui) = 〈f̂i1, . . . , f̂is〉.

It follows that for some ĥi, i = 1, . . . , s we can write

ĝi = ĥ1f̂i1 + · · ·+ ĥsf̂is. (3.2.1)

There exists ` ∈ N such that multiplying both sides of the equation (3.2.1) with
x`i clears the denominators and `i ≥ max(deg(g), deg(f1), . . . , deg(fs)). Since g =
x

deg(g)
i ĝi and fij = x

deg(fj)
i f̂ij we find that x

`i−deg(g)
i g ∈ I. It follows that for

` = maxi=0,...,n `i − deg(g), x`ig ∈ I, i = 0, . . . , n, which implies g ∈ (I : B∞).

The following theorem shows that for a zero-dimensional homogeneous ideal I ⊂ S,
the Hilbert function HFI stabilizes for high degrees, and it reveals the number of
points in VPn , counted with multiplicity.

Theorem 3.2.1. Let I ⊂ S be a B-saturated, zero-dimensional homogeneous ideal.
Denote VPn(I) = {ζ1, . . . , ζδ} where ζi has multiplicity µi and δ+ = µ1 + · · ·+ µδ. For
some ` ∈ N, the Hilbert function HFI satisfies

HFI(d) = dimC(S/I)d = δ+, d ≥ `.

Moreover, HFI(d), d = 0, 1, 2, . . . is a non-decreasing sequence.

Proof. See [EH06, Proposition III-59]. The fact that HFI(d) is constant for large
enough d follows from Theorem 2.2.5.
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d 0 1 2 3 4 · · ·
HFI(d) 1 2 1 1 1 · · ·
HF(I:B∞)(d) 1 1 1 1 1 · · ·

Table 3.1: Hilbert function of the ideals from Example 3.2.2.

Example 3.2.2. The ideal I = 〈x0x1, x
2
1〉 ⊂ S from Example 3.2.1 is not saturated:

its saturation is (I : B∞) = 〈x1〉. Some values of the Hilbert functions of these
ideals are shown in Table 3.1. The table illustrates that HFI stabilizes for d ≥ 2, and
HF(I:B∞) stabilizes for d ≥ 0. By Proposition 3.2.1, the Hilbert functions must agree
for large enough degrees. This happens for d = 2 in this example: I2 = (I : B∞)2 is
the C-vector space spanned by x0x1 and x2

1. 4

An important and fascinating consequence of Theorem 3.2.1 is that if I = 〈f1, . . . , fn〉
(note that s = n) is zero-dimensional, the number of points in V (I) (counting
multiplicities) only depends on the degrees d1, . . . , dn of the generators. In other words,
it only depends on the family FS(d1, . . . , dn).

Theorem 3.2.2 (Bézout’s theorem in Pn). Let (f1, . . . , fn) ∈ FS(d1, . . . , dn) be such
that I = 〈f1, . . . , fn〉 ⊂ S is zero-dimensional and di > 0, i = 1, . . . , n. Denote
VPn(I) = {ζ1, . . . , ζδ} where ζi has multiplicity µi and δ+ = µ1 + · · ·+ µδ. We have
that δ+ =

∏n
i=1 di. Moreover, both the property that I is zero-dimensional and the

property that µi = 1, i = 1, . . . , δ hold for general members of FS(d1, . . . , dn).

Proof. The proof of this theorem will be our first application of the Koszul complex
(see Subsection A.2.5). Since S is Cohen-Macaulay and codimPn VPn(I) = n is the
number of homogeneous equations, f1, . . . , fn is a regular sequence in S, see [Ben19,
Proposition 2.7.13] or the discussion in [EH06, page 144]. As a consequence (Theorem
A.2.6), the augmented Koszul complex

K̂(f1, . . . , fn) : 0 −→ Kn
φn−→ Kn−1

φn−1−→ · · · φ2−→ K1
φ1−→ S −→ S/I −→ 0 (3.2.2)

where
K` =

⊕
1≤i1≤···≤i`≤n

S(−di1 − · · · − di`)

is exact. Also, all homomorphisms φ` are graded of degree 0. Restricting the sequence
(3.2.2) to the degree d part and applying Theorem A.2.3 we find that

HFI(d) = dimC(S/I)d = dimC Sd +
n∑
`=1

(−1)` dimC(K`)d.

In this formula, the dimensions of Sd and (K`)d are easy to compute: these are all
twisted free graded S-modules. One can work out the combinatorics (see [EH06, page
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144-145]) to obtain

HFI(d) =
n∏
i=1

di, d ≥ d1 + · · ·+ dn − n. (3.2.3)

This proves the first statement. The proof of the rest of the theorem uses resultants
(among other things). This is covered in [CLO06, Chapter 3, §5, Exercise 6].

Remark 3.2.1. There are versions of Bézout’s theorem for positive dimensional
solution sets. See for instance [EH06, Theorem III-71] or [Har77, Chapter I, Theorem
7.7]. 4

3.2.2 Projective eigenvalue, eigenvector theorem

In this subsection, we will assume for simplicity that I = 〈f1, . . . , fs〉 ⊂ S is a zero-
dimensional ideal with VPn(I) = {ζ1, . . . , ζδ} where each of the ζi has multiplicity one.
This implies that the saturation (I : B∞) is radical (Proposition 3.2.2). All results can
be generalized to the case with arbitrary multiplicities. We would like to mimic the
approach taken in Subsection 3.1.1 to construct matrices representing ‘multiplication
with a function’ whose eigenvalues are the evaluations of that function at the points
of VPn(I). Since the only regular functions on Pn are the constants, we will allow
rational functions defined on VPn(I). A first thing to generalize is the evaluation map
from Definition 3.1.1.
Definition 3.2.3 (Homogeneous evaluation maps). For d ∈ N and h ∈ Sd such that
h(ζi) 6= 0, i = 1, . . . , δ, we define evζi

∈ (S/I)∨
d , i = 1, . . . , δ by evζi

(f + Id) = f
h (ζi).

Furthermore, we define the homogeneous evaluation map ψd : (S/I)d → Cδ by
ψd = (evζ1 , . . . , evζδ

). That is,

ψd(f + Id) =
(
f

h
(ζ1), · · · , f

h
(ζδ)

)
.

The maps ψd are well-defined because f and h are homogeneous of the same degree
and h does not vanish at any of the points ζi. Note that for each d it is possible to
find h ∈ Sd satisfying the condition of Definition 3.2.3. In fact, a general member
of FS(d) satisfies the condition, for all d ∈ N. A crucial property of the evaluation
map from Definition 3.1.1 is that it can be used to define coordinates on the (affine)
coordinate ring of a set of points in Cn. The same happens in the homogeneous case
for large enough degrees. We characterize what ‘large enough’ means first.
Definition 3.2.4 (Regularity). The regularity Reg(I) of I is defined as

Reg(I) = {d ∈ Z | HFI(d) = δ and Id = (I : B∞)d}.

By the results from Subsection 3.2.1, we know that there is ` ∈ N such that d ∈ Reg(I)
for all d ≥ `. For the case we are most interested in, the regularity has an easy
description.



64 ZERO-DIMENSIONAL VARIETIES

Theorem 3.2.3 (Regularity for square systems). If I = 〈f1, . . . , fn〉 with fi ∈ Sdi ,
di > 0, i = 1, . . . , n is zero-dimensional, then Reg(I) ⊃ {d ∈ Z | d ≥ d1 + · · ·+dn−n}.

Proof. The fact that HFI(d) = δ for d ≥ d1 + . . .+ dn − n follows from the proof of
Theorem 3.2.2. The condition that Id = (I : B∞)d turns out to be satisfied for all d
in this case. See Theorem 5.5.10.

Proposition 3.2.3. If I ⊂ S is zero-dimensional such that all points in VPn(I) have
multiplicity 1, then for all d ∈ Reg(I) the evaluation map ψd : (S/I)d → Cδ from
Definition 3.2.3 is an isomorphism of C-vector spaces.

Proof. It follows from d ∈ Reg(I) that dimC(S/I)d = δ. Moreover, d ∈ Reg(I) also
implies that ψd is injective, since f(ζi) = 0, i = 1, . . . , δ means f ∈ (

√
(I : B∞))d =

(I : B∞)d = Id.

It is now clear what the generalization of the Lagrange polynomials in Subsection
3.1.1 should be.

Definition 3.2.5 (Homogeneous Lagrange polynomials). For d ∈ Reg(I) and j =
1, . . . , δ, let `j ∈ Sd be any representative of the class ψ−1

d (ej) ∈ (S/I)d. That is, any
homogeneous polynomial satisfying

`j(zj) = h(zj), `j(zi) = 0, i 6= j

for any set of homogeneous coordinates zj of ζj , where h ∈ Sd is used to define the
evaluation map ψd (Definition 3.2.3).

Note that the elements evζi
, i = 1, . . . , δ from Definition 3.2.3 form the dual basis of

(S/I)∨
d with respect to the homogeneous Lagrange polynomials. The next step is to

define multiplication maps for homogeneous polynomials.

Definition 3.2.6 (Homogeneous multiplication map). Fix d, d0 ∈ N. For any g ∈ Sd0

we define the multiplication map representing multiplication with g as the C-linear
map

Mg : (S/I)d → (S/I)d+d0 with Mg(f + Id) = fg + Id+d0 .

The following lemma will be used to state the main result of this subsection.

Lemma 3.2.1. Let d, d0 ∈ N be such that d, d+ d0 ∈ Reg(I). For any h0 ∈ Sd0 such
that h0(ζi) 6= 0, i = 1, . . . , δ we have that the multiplication map Mh0 : (S/I)d →
(S/I)d+d0 is an isomorphism of vector spaces.

Proof. Let h ∈ Sd such that h(ζi) 6= 0, i = 1, . . . , δ and use h to define ψd. Since hh0
does not vanish at any of the ζi, we can use it to define ψd+d0 . The lemma follows
from ψd+d0 ◦Mh0 = diag(h0(ζ1), . . . , h0(ζδ)) ◦ ψd and Proposition 3.2.3.
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Theorem 3.2.4 (Projective eigenvalue, eigenvector theorem). Let d, d0 ∈ N be such
that d, d+ d0 ∈ Reg(I) and take h0 ∈ Sd0 as in Lemma 3.2.1. Then for any g ∈ Sd0 ,
Mg/h0 = M−1

h0
◦Mg : (S/I)d → (S/I)d has eigenpairs(
g

h0
(ζj), `j + Id

)
,

(
evζj ,

g

h0
(ζj)

)
, j = 1, . . . , δ,

where the `j + Id are cosets of homogeneous Lagrange polynomials of degree d and the
evζj

form the dual basis of (S/I)∨
d .

Proof. The map Mh0 is an isomorphism by Lemma 3.2.1. We define ψd, ψd+d0 as in
Definition 3.2.3 with h ∈ Sd, hh0 ∈ Sd+d0 respectively. A straightforward computation
shows that ψd+d0 ◦Mh0(`j + Id) = ej . Analogously, we have ψd+d0 ◦Mg(`j + Id) =
g
h0

(ζj)ej . It follows that

Mg/h0(`j + Id) = g

h0
(ζj)(`j + Id),

which proves the statement about the right eigenpairs, since the `j + Id are linearly
independent. For the statement about the left eigenpairs, note that for any f ∈ Sd

evζj ◦Mg/h0(f + Id) = evζj ◦M−1
h0

(gf + Id+d0)

and since Mh0 is an isomorphism, there is f̃ ∈ Sd such that gf − h0f̃ ∈ Id+d0 .
Therefore, for each ζj ∈ VPn(I) we have

gf − h0f̃

h0h
(ζj) = 0⇒ f̃

h
(ζj) = g

h0
(ζj)

f

h
(ζj)

and thus, since M−1
h0

(gf + Id+d0) = f̃ + Id, we have

evζj
◦Mg/h0(f + Id) = evζj

(f̃ + Id) = g

h0
(ζj) evζj

(f + Id).

The evζj
are linearly independent, so this concludes the proof.

As in the affine case, this suggests the following pseudo-algorithm for computing
homogeneous coordinates of ζ1, . . . , ζδ.

1. For d, d + 1 ∈ Reg(I) and for some basis of (S/I)d, pick a generic linear form
h0 ∈ S1 and compute matrix representations of Mx0/h0 , . . . ,Mxn/h0 .

2. Diagonalize these matrices simultaneously, i.e. compute

DMxi/h0D
−1 = diag

(
xi
h0

(ζ1), . . . , xi
h0

(ζδ)
)
, i = 0, . . . , n,

and read off the homogeneous coordinates from the diagonal.
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3.2.3 Homogenization

In Subsection 3.2.1 we have discussed how a zero-dimensional homogeneous ideal
I ⊂ S gives ideals I (Ui) ⊂ O(Ui) = C[Cn] defining points in an affine chart of Pn by
dehomogenizing the generators. This is used to obtain local information such as the
multiplicities of the points defined by I. In this subsection we will study the way of
obtaining a homogeneous ideal I ⊂ S = C[x0, . . . , xn] by homogenizing the generators
of a zero-dimensional ideal in R = C[Cn] = C[y1, . . . , yn]. Recall that homogenization
of degree d is defined as

ηd : R≤d → Sd with ηd(f̂(y1, . . . , yn)) = xd0f̂

(
x1

x0
, . . . ,

xn
x0

)
.

Let J = 〈f̂1, . . . , f̂s〉 ⊂ R and define di as the smallest integer such that f̂i ∈ R≤di
.

We consider the homogeneous ideal I ⊂ S obtained as

I = 〈f1, . . . , fs〉 ⊂ S, with fi = ηdi
(f̂i), i = 1, . . . , s.

With the notation of Subsection 3.2.1, it is clear that J = I (U0). If J is zero-
dimensional, it is clear that VPn(I)∩U0 = VCn(J) and the isolated points in VPn(I)∩U0
have the same multiplicity as the corresponding points in VCn(J) (for the reader
who knows about schemes: J and I define the same zero-dimensional subscheme of
U0 ' Cn). For the rest of this subsection, we will consider the case where s = n.

A first observation is that generically nothing happens when going from J to I, in
the sense that the only points in VPn(I) are the ones corresponding to VCn(J). To be
more precise, let (f̂1, . . . , f̂s) ∈ FR(d1, . . . , dn) be a general member in the sense that
VCn(J) consists of d1 · · · dn points with multiplicity 1 (Theorem 3.1.2). Homogenization
establishes an isomorphism between FR(d1, . . . , dn) and FS(d1, . . . , dn). By Theorem
3.2.2 our general member (f̂1, . . . , f̂s) ∈ FR(d1, . . . , dn) homogenizes to a general
member (f1, . . . , fs) ∈ FS(d1, . . . , dn) in the sense that VPn(I) consists of d1 · · · dn
isolated points with multiplicity 1. It is clear that these points are in one-to-one
correspondence. Homogenization can sometimes be useful to understand the case
where (f̂1, . . . , f̂s) ∈ FR(d1, . . . , dn) does not behave like a general member (in terms
of the Bézout root count), but the homogenization (f1, . . . , fs) ∈ FS(d1, . . . , dn) does.

Example 3.2.3. Consider the ideal J = 〈f̂1, f̂2〉 ⊂ R = C[y1, y2] given by

f̂1 = y2
1 − 3y1y2 + 2y2

2 + 1, f̂2 = y2
1 − y2

2 − 3y2 + 1.

The solutions (y1, y2) in C2 are (
√
−1, 0), (−

√
−1, 0) and (3, 2). Note that this is one

less than expected: the Bézout root count is d1d2 = 4. To see where this ‘missing’
solution has gone, we homogenize to obtain

f1 = x2
1 − 3x1x2 + 2x2

2 + x2
0, f2 = x2

1 − x2
2 − 3x0x2 + x2

0.

The solutions (x0 : x1 : x2) in P2 are (1 :
√
−1 : 0), (1;−

√
−1 : 0), (1 : 3 : 2) and

(0 : 1 : 1). The first three in this list correspond to the affine solutions, and the fourth
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one lies in the line defined by x0 = 0, which is the complement of U0 in P2. In this
setting, this is the line at infinity, and the system of equations f̂1 = f̂2 = 0 is said
to have a solution at infinity. Note that (f1, f2) ∈ FS(2, 2) is a generic member, in
the sense of Bézout’s theorem. We remark that from a numerical point of view, it
makes sense to compute such ‘excess solutions’ as well, rather than ignoring them.
Indeed, the slightest perturbation of the coefficients of f̂1, f̂2 will move the solution
(0 : 1 : 1) ∈ P2 into U0, causing f̂1 = f̂2 = 0 to have four solutions in C2, one of which
has ‘large’ coordinates. 4

Another reason one might want to use Pn as a solution space instead of Cn is that
we can compute representatives z1, . . . , zδ of the solutions ζ1, . . . , ζδ of I in any affine
subspace of Pn. More precisely, the solutions of J correspond to points in U0 ⊂ Pn,
which in turn correspond to lines through the origin of Cn+1 that hit the hyperplane
VCn+1(x0−1). This hyperplane is identified with Cn: the coordinates (y1, . . . , yn) ∈ Cn
of the affine solutions are the x1, . . . , xn coordinates of the intersection of these lines
with VCn+1(x0 − 1). Instead of choosing the hyperplane VCn+1(x0 − 1), we could pick
a different linear form h0 ∈ S1 and identify Cn with VCn+1(h0 − 1) via the map from
Remark 2.2.2. This may be advantageous if the coordinates for x0 = 1 of a solution
are very large (solutions ‘near’ infinity). In this case we can compute the coordinates
for h0 = 1 with h0 chosen randomly (such that there is no reason to expect that
the coordinates will be large) and afterwards we simply scale them to have x0 = 1.
More concretely, solutions on or near infinity cause numerical issues for computing the
multiplication matrices Myi from Subsection 3.1.1, which are actually the matrices
Mxi/x0 from Subsection 3.2.2. Choosing a random element h0 can help us get rid of
this issue completely. We will say more about this in Section 4.5.

As we have noted in Example 2.2.7, homogenizing the generators of J may enlarge
the variety by adding components contained in Pn \ U0. This is also what happened
in Example 3.2.3. The fact that an extra point was added after homogenizing in
Example 3.2.3 was due to the equations f̂1, f̂2 being non-generic in a sense. Indeed,
the 4 solutions of a general member of FR(2, 2) all lie in C2. Sometimes, however,
extra points in Pn \ U0 are introduced as an artifact of homogenization, possibly even
destroying the zero-dimensionality. This is illustrated by the following example.
Example 3.2.4. Let R = C[y1, y2, y3] and consider the equations

f̂1 = a1 + a2y1 + a3y2 + a4y3 + a5y1y2 + a6y1y3 + a7y2y3 + a8y1y2y3,

f̂2 = b1 + b2y1 + b3y2 + b4y3 + b5y1y2 + b6y1y3 + b7y2y3 + b8y1y2y3,

f̂3 = c1 + c2y1 + c3y2 + c4y3 + c5y1y2 + c6y1y3 + c7y2y3 + c8y1y2y3.

Homogenizing these equations and setting x0 = 0 we obtain

f1(0, x1, x2, x3) = a8x1x2x3,

f2(0, x1, x2, x3) = b8x1x2x3,

f3(0, x1, x2, x3) = c8x1x2x3.
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This shows that for any choice of the parameters ai, bi, ci, VPn(I) contains the three
lines {(0 : 0 : x2 : x3)}, {(0 : x1 : 0 : x3)}, {(0 : x1 : x2 : 0)} (each of which is isomorphic
to P1). 4

Example 3.2.4 is an illustration of how homogenization has some undesirable properties
for systems coming from a subfamily F ′ ⊂ FR(d1, . . . , dn) which is such that generic
elements of the subfamily do not behave like generic elements of FR(d1, . . . , dn). We
argue that in this kind of situations, Pn is not the right solution space to consider.
This raises the question ‘which one is?’. For an important class of subfamilies F ′ ⊂
FR(d1, . . . , dn), containing the family considered in Example 3.2.4, the answer is a
compact toric variety which is naturally associated to F ′. This is the subject of
Chapter 5. For now, we will work with the isomorphic families FR(d1, . . . , dn) and
FS(d1, . . . , ds) and solution spaces Cn or Pn.

3.3 Gröbner and border bases

To use the results of the previous subsections for solving polynomial systems we
need algorithmic tools for doing computations modulo an ideal I. The theory of
Gröbner bases provides us with such a tool. Gröbner bases have led to great advances
in computational algebraic geometry and computer algebra and give rise to a good
example of what is called a normal form with respect to an ideal. This is a concept
that plays an important role in this thesis. Border bases generalize Gröbner bases in
several ways. In particular, they remove some of the restrictions that Gröbner bases
impose on the basis of the quotient ring R/I in which we can work. Our aim is to
present the main ideas. For references that cover Gröbner and border bases in more
detail, see Subsection 1.3.1. Throughout this subsection we work with zero-dimensional
ideals I ⊂ R = C[x1, . . . , xn]. In the context of Gröbner bases it is more common to
work over fields that are more fit for symbolic computation, such as Q or finite fields.
We stick to the complex numbers for the sake of consistency. The reader can safely
replace C in this section with their favorite field.

3.3.1 Gröbner bases

The discussion on Gröbner bases included here is partly inspired by some lectures
by Frank Sottile on Algorithmic Algebraic Geometry, attended by the author at FU
Berlin in the fall semester of 2019.
In the case where n = 1, all ideals in R = C[x] are principal. If f = c0 +c1x+ · · ·+cdxd
with cd 6= 0 and I = 〈f〉, a canonical choice of basis for R/I is B = {1 + I, x +
I, . . . , xd−1 + I}. A well known way of expanding the residue class of any polynomial
g ∈ R in this basis is given by the Euclidean division algorithm. This algorithm writes
g as

g = qf + r,
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where r, q ∈ R and the degree of r is smaller than d. It follows easily that g+ I = r+ I
and the coefficients of r (in the monomial basis) give the expansion of g + I in terms
of B. One can think of the Euclidean division as a way of using f to rewrite g modulo
I using ‘smaller’ monomials. Here smaller is with respect to the total order

1 < x < x2 < x3 < · · ·

on the monoid of monomials in R, or equivalently, with respect to the canonical total
order on the natural numbers N. A first step to generalize this to the multivariate
case is to define what we mean by ‘small’ monomials. For n > 1, there is no canonical
total ordering on the monomials in Rn.

Definition 3.3.1 (Monomial order). A monomial order is a total order ‘≺’ on the
monomials of R such that for any a, b, c ∈ Nn

1. 1 � xa for any a ∈ Nn,

2. xa ≺ xb implies xa+c ≺ xb+c.

Example 3.3.1 (Monomial orders). Some important examples of monomial orders
are

1. the lexicographic order, where xa �lex x
b if the first nonzero entry of a − b is

positive,

2. the degree lexicographic order, where xa �deglex x
b if |a| > |b| or |a| = |b| and

xa �lex x
b,

3. the degree reverse lexicographic order, where xa �drl x
b if |a| > |b| or |a| = |b|

and the last nonzero entry of a− b is negative.

For example, in R = C[x1, x2], x1 �lex x
2
2, yet x1 ≺deglex x

2
2. In R = C[x1, x2, x3] we

have

x3
1x2x

3
3 �lex x1x

4
2x

2
3, x3

1x2x
3
3 �deglex x1x

4
2x

2
3 and x3

1x2x
3
3 ≺drl x1x

4
2x

2
3.

4

In what follows, if we do not specify the monomial order we will assume that some
monomial order ‘≺’ is fixed.

Definition 3.3.2 (Initial monomial). For a polynomial f =
∑
a∈Nn cax

a ∈ R we
define the initial monomial of f as

in≺(f) = xa where xa is the maximal element w.r.t. ≺ such that ca 6= 0.

Theorem 3.3.1 (Multivariate division algorithm). There exists an algorithm which
takes as an input the polynomials g, f1, . . . , fs ∈ R and a monomial order ‘≺’ and
gives as an output a set of polynomials q1, . . . , qs, r ∈ R satisfying
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1. g = q1f1 + · · ·+ qsfs + r,

2. in≺(g) � in≺(r),

3. in≺(g) � in≺(qifi), i = 1, . . . , s,

4. no term of r is divisible by any of the initial monomials in≺(fi), i = 1, . . . , s.

Proof. The algorithm is a straightforward generalization of the Euclidean division
algorithm for n = 1. It is given explicitly in the proof of Theorem 3 in [CLO13,
Chapter 2, §3].

It is clear that if I = 〈f1, . . . , fs〉 and the algorithm of Theorem 3.3.1 allows us to
write g = q1f1 + · · ·+ qsfs + r, then g + I = r + I in R/I. Unfortunately, in general
this does not give a unique way of representing g modulo I. The output depends on
the choice of generators f1, . . . , fs of I and on the way they are ordered. The following
is Example 5 in [CLO13, Chapter 2, §3]. It shows that the conditions imposed on the
output of the multivariate division algorithm do not guarantee that r is unique.

Example 3.3.2. Let R = C[x, y] with lexicographic monomial order where x � y.
For g = xy2 − x, f1 = xy − 1, f2 = y2 − 1, the polynomials

q1 = y, q2 = 0, r = −x+ y

satisfy the conditions of Theorem 3.3.1, and so do the polynomials

q′
1 = 0, q′

2 = x, r′ = 0.

In fact, (q1, q2, r) is the output of the algorithm in [CLO13, Chapter 2, §3], whereas
(q′

1, q
′
2, r

′) is the output when the order of f1, f2 is changed. 4

This ‘imperfection’ of the multivariate division algorithm can be removed by imposing
some conditions on f1, . . . , fs such that r is unique under the conditions of Theorem
3.3.1. Such ‘special’ sets of generators for I are called Gröbner bases.

Definition 3.3.3 (Gröbner basis). A finite subset G ⊂ I is called a Gröbner basis for
I with respect to ‘≺’ if the initial ideal

in≺(I) = 〈xa | xa = in≺(g) for some g ∈ I〉

satisfies in≺(I) = 〈in≺(f) | f ∈ G〉.

It is a direct consequence of Dickson’s lemma [CLO13, Chapter 2, §4, Theorem 5]
that every ideal in R has a finite Gröbner basis. The terminology ‘Gröbner basis’ is
justified by the fact that any Gröbner basis of an ideal I is a basis for the ideal, i.e.
the elements of a Gröbner basis generate the ideal [CLO13, Chapter 2, §5, Corollary
6].
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Proposition 3.3.1. If {f1, . . . , fs} is a Gröbner basis for I = 〈f1, . . . , fs〉, then g ∈ I
if and only if the polynomial r returned by the multivariate division algorithm is
the zero polynomial. Moreover, for each g ∈ R there is a unique polynomial r ∈ R
satisfying r + I = g + I and condition 4 of Theorem 3.3.1.

Proof. It is clear that if r = 0, g ∈ I. Conversely, if r 6= 0, then by the fourth condition
of Theorem 3.3.1 no term of r lies in in≺(I). It follows that r /∈ I, which implies g /∈ I
since g = q1f1 + · · ·+ qsfs + r. To prove the second statement, suppose that

g = q1f1 + · · ·+ qsfs + r = q′
1f1 + · · ·+ q′

sfs + r′.

Then r − r′ ∈ I. If r = r′, we’re done. If r 6= r′, we arrive at a contradiction because
none of the terms in r − r′ are in in≺(I).

The unique polynomial r returned by the multivariate division algorithm for a
polynomial g ∈ R and a Gröbner basis G ⊂ R of an ideal I is called the remainder
upon division of g by G. We denote r = NG(g). The set of monomials

B≺ = {xa | xa /∈ in≺(I)}

is called the set of standard monomials of I with respect to ≺. Their C-linear span is
denoted by

B≺ = spanC(B≺) =

 ∑
xa∈B≺

cax
a | finitely many ca are nonzero

 ⊂ R.
It follows from Proposition 3.3.1 that the map NG : R→ B≺ is C-linear and NG(b) = b
for all b ∈ B≺.
Theorem 3.3.2. Let G = {f1, . . . , fs} be a Gröbner basis for I. We have the short
exact sequence of C-vector spaces

0 −→ I −→ R
NG−→ B≺ −→ 0.

Proof. The fact that kerNG = I follows immediately from Proposition 3.3.1.
Surjectivity of NG : R→ B≺ follows from B≺ ⊂ R and NG(b) = b for b ∈ B≺.

Corollary 3.3.1. If I ⊂ R is a zero-dimensional ideal with VCn(I) = {z1, . . . , zδ}
such that zi has multiplicity µi and δ+ = µ1 + · · ·+ µδ, then for any monomial order
‘≺’, the set of standard monomials B≺ consists of δ+ monomials whose residue classes
in R/I form a C-basis of R/I.

Remark 3.3.1. A Gröbner basis G = {f1, . . . , fs} is called reduced if for i = 1, . . . , s,
the coefficient standing with the monomial in≺(fi) equals 1 and no monomial occurring
in fi can be divided by any of the leading terms of the other elements of G (i.e. all
monomials of fi are not contained in 〈in≺(fj) | j 6= i〉. Reduced Gröbner bases have
the nice property that every ideal I ⊂ R has a unique reduced Gröbner basis for any
monomial ordering [CLO13, Chapter 2, §7, Theorem 5]. 4



72 ZERO-DIMENSIONAL VARIETIES

Remark 3.3.2. The remainder upon division r of a polynomial g by a Gröbner basis
G = {f1, . . . , fs} can be defined as the result of the multivariate division algorithm
because of the uniqueness property in Proposition 3.3.1. However, the polynomials
q1, . . . , qs satisfying the conditions of Theorem 3.3.1 are not unique (for instance, replace
qi by qi + fj and qj by qj − fi). However, the polynomial h = q1f1 + · · ·+ qsfs = g− r
can be defined from any output of the multivariate division algorithm and is again
unique. The map g 7→ h+ r makes the isomorphism R ' I ⊕B≺ explicit. 4
Remark 3.3.3. Gröbner bases, along with an algorithm for computing them, were
introduced by Bruno Buchberger. In his Ph. D. thesis [Buc06], the focus was on the zero-
dimensional case. The general theory was developed in [Buc70]. Many improvements
to the original algorithm have been made to reduce the complexity and memory usage.
We have listed some references in Subsection 1.3.1. A more complete overview is given
in [CLO13, Chapter 2, §10]. The development of specialized Gröbner basis methods is
ongoing research. See, for instance, the Ph. D. thesis of Zuzana Kukelova [Kuk13] for
Gröbner basis methods in computer vision, and the Ph. D. thesis of Matías Bender
[Ben19] for specialized algorithms dealing with sparse polynomials. 4
Example 3.3.3. As an illustration, we compute Gröbner bases for the ideal of
Example 3.1.2 using the computer algebra software Macaulay2 [GS] for two different
monomial orderings. Using the (default) degree reverse lexicographic order, we obtain
G = {6xy−y2−3x+22y+5, 3x2 +4y2 +3x−10y+4, 98y3−363y2−189x+888y+107},

where we have underlined the initial monomials. Here in≺drl(I) = 〈xy, x2, y3〉 and
B≺drl = {1, y, y2, x}. For a lexicographic order with y �lex x we obtain
G = {49x4 + 374x3 + 913x2 + 840x+ 1260, 906y − 196x3 − 859x2 − 747x− 1272}.

Here in≺lex(I) = 〈x4, y〉 and B≺lex = {1, x, x2, x3}. We note that these computations
happened in exact arithmetic: if the ideal can be generated by polynomials with
coefficients in a field K, then it is a direct consequence of Buchberger’s algorithm that
the ideal has a Gröbner basis with coefficients in K (here K = Q, for instance). Figure
3.2 shows how the partitioning of the monomials of C[x, y] into B and the monomials
in in≺(I) leads to a typical staircase pattern, which depends on the monomial order.
In this type of figures, we identify a ∈ N2 with the monomial xa1ya2 . 4

What is essential for us is that a map NG having the property of Theorem 3.3.2 allows
us to compute the multiplication maps from Subsection 3.1.1. Indeed, multiplication
with g in the basis B≺ = {xa1 , . . . , xaδ} looks like

Mg =


xa1 ··· xaδ

xa1

... NG(gxa1) · · · NG(gxaδ )
xaδ


where the columns are the expansions of {NG(gxa) | xa ∈ B≺} in the basis B≺. A
map satisfying the property of Theorem 3.3.2 is what we will define to be a normal
form. We will see another example in the next subsection.
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Figure 3.2: Illustration of the staircase patterns of a ≺drl (left) and a ≺lex (right)
Gröbner basis for the ideal of Example 3.3.3. The initial terms in the Gröbner basis
(i.e. the generators of in≺(I) are indicated with small boxes.

3.3.2 Border bases

The staircase patterns arising from Gröbner bases depend on the choice of monomial
order, but they also depend on the ideal. This is natural in the sense that the subsets
of monomials of R whose images in R/I can be used as a basis for R/I depends on
I. However, the dependence of B≺ on the ideal has some specific features that are
artifacts of working with a monomial order ‘≺’ and can have bad consequences for the
behavior of Gröbner bases in a numerical context. Here’s an example that illustrates
this.

Example 3.3.4. Let R = C[x, y] and consider the degree reverse lexicographic
monomial order ‘≺drl’ with y ≺drl x. We consider the ideal I = 〈f1, f2〉 from Example
3.1.6 with

f1 = x+ 1
3y

2 − x2, and f2 = −1
3 x+ 1

3x
2.

The resulting reduced Gröbner basis is G = {x2−x, y2} and B≺drl = {1, x, y, xy}. If we
perturb the polynomials f1 and f2 slightly to obtain I ′ = 〈f ′

1, f
′
2〉 with f ′

1 = f1−10−7xy,
f ′

2 = f2 + 10−7xy, the new reduced Gröbner basis becomes

G′ =
{
xy + 107

6 y2, x2 − 1
2y

2 − x, y3 + 30000000
49999999999991y

2
}

with set of standard monomials B′
≺drl

= {1, x, y, y2}. In order to obtain the first two
elements of G′, we can use the equations f ′

1, f
′
2 to write that (modulo I ′)[

−10−7 −1
10−7 1/3

] [
xy
x2

]
= −

[
0 1 0 1/3
0 −1/3 0 0

] [
1 x y y2]> ,

from which we get[
xy
x2

]
= −

[
−10−7 −1
10−7 1/3

]−1 [0 1 0 1/3
0 −1/3 0 0

] [
1 x y y2]> =

[
−107/6y2

1/2y2 + x

]
.
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The reader who is familiar with numerical analysis notices that this computation is
not very suitable for finite precision arithmetic: we are inverting an ill-conditioned
matrix (see Appendix B). Indeed, performing this computation in double precision
arithmetic with the help of the following Matlab [MAT17] commands

A = [-1e-7 -1;1e-7 1/3]; B = [0 1 0 1/3;0 -1/3 0 0];

we get a relative forward error

>> norm(-A\B - [0 0 0 -1e7/6; 0 1 0 1/2])/norm(A)

of size 4.4177e-10, which is roughly 106 times larger than our working precision! It
is interesting to see what the analogous computation looks like when we stick to our
set of standard monomials {1, x, y, xy} from before. We now get[

−1 1/3
1/3 0

] [
x2

y2

]
= −

[
0 1 0 −10−7

0 −1/3 0 10−7

] [
1 x y xy

]>
,

which leads to x2−x+3 ·10−7xy ∈ I ′ and y2 +6 ·10−7xy ∈ I ′. The coefficient matrix is
now perfectly well conditioned and the set of polynomials H = {x2−x+3 ·10−7xy, y2 +
6 · 10−7xy} can be computed up to machine precision. Note that the polynomials in
H are slightly perturbed versions of the polynomials in G. They are a basis for the
ideal I ′ as they are just an invertible linear combination of f ′

1 and f ′
2. Although not a

Gröbner basis, the set H can be used to rewrite any polynomial g ∈ R as a C-linear
combination of the monomials in B modulo the ideal (as we will see). Even though the
slightly perturbed polynomials f ′

1, f
′
2 lead to a slightly perturbed set of polynomials

H that allow us to compute modulo I ′ in the basis {1 + I ′, x+ I ′, y + I ′, xy + I ′} of
R/I ′, the Gröbner basis G′ and its corresponding set of standard monomials change
completely. Moreover, we are forced to solve a nearly degenerate system of linear
equations in order to compute G′. The reason for this is that the monomial order ‘≺drl’
really prefers y2 over xy as a candidate for the set of standard monomials. By adding
the monomial xy to the equations, xy ‘replaces’ y2 in the initial ideal. This causes an
artificial discontinuity in the set of standard monomials picked by a Gröbner basis.
Note that the condition number of the coefficient matrix in this example governs the
magnitude of the coefficients in the reduced Gröbner basis. Also, the size 10−7 of the
perturbation can be taken smaller: the situation can be made arbitrarily bad. 4

Similar examples of the bad behavior of Gröbner bases in a numerical context can
be found, for instance, in the introductions of [Ste97, Mou99]. Border bases have
been developed to remedy this type of behavior. For instance, the set H of Example
3.3.4 is part of a border basis. The idea of the multivariate division algorithm is to
use the elements f1, . . . , fs to reduce a polynomial g, where ‘reduce’ means ‘lower’ its
initial monomial with respect to the chosen monomial order. A reduced Gröbner basis
G = {f1, . . . , fs} is such that

fi = in≺(fi)−
∑
xa∈B

cax
a (3.3.1)
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gives an explicit way of rewriting in≺(fi) as
∑
xa∈B cax

a modulo the ideal 〈f1, . . . , fs〉.
The initial monomial of any polynomial g that is not in B≺ divides one of the in≺(fi).
This means that there is an appropriate term cxa such that g − cxafi lies ‘closer’ to
B≺ than g does, in the sense that in≺(g − cxafi) ≺ in≺(g). Border bases give a way
of ‘reducing’ any polynomial g modulo I without the use of a monomial order. More
precisely, for a C-vector subspace B ⊂ R satisfying some properties, a B-border basis
for a zero-dimensional ideal I is a basis H of I that induces a map NH : R→ B such
that g −NH(g) ∈ I and g 7→ (g −NH(g),NH(g)) gives an isomorphism R ' I ⊕ B.
In particular, a Gröbner basis G gives a border basis with NH = NG . We will now fill
in the gaps in this definition. First of all, let us specify which conditions the subspace
B should satisfy. Two different definitions are commonly used in the literature, and
we will give them both.

Definition 3.3.4 (Order ideal). A nonempty subset B of monomials in R is called
an order ideal or a closed subset if for each xb ∈ B and xb

′ such that xb′ divides xb,
we have xb′ ∈ B.

Note that every order ideal contains 1. For instance, the references [MMM91, Ste97,
KKR05, KK05] work with B-border bases where B is the C-linear span of an order
ideal.

Definition 3.3.5 (Connected to 1). A C-vector subspace B ⊂ R is connected to 1 if
for every b ∈ B there exist b1, . . . , bn ∈ B such that

b =
n∑
i=1

xibi.

Every connected to 1 subspace B ⊂ R contains 1. Moreover, the C-span of every
order ideal is connected to 1. An example of a set of monomials that is an order
ideal and one that is not, but its span is still connected to 1, are shown in Figure 3.3.
The connected to 1 property is the restriction on B for the B-border bases discussed
in [Mou99, MT05, LLM+13]. Since subspaces that are connected to 1 contain the
subspaces coming from an order ideal, we will work with this assumption in the
remainder of this subsection. Next, in order to specify what we mean by ‘reducing’
a polynomial g with respect to B, we need a way of determining how far g is from
being in B. To that end, following the approach in [Mou99], for any subspace B ⊂ R
we define

B+ = B + x1 ·B + · · ·+ xn ·B

where xi ·B = {xib | b ∈ B} ⊂ R, and we let B[d] be the result of applying the operator
(·)+ d times to B. We set B[0] = B by convention and we define B[?] =

⋃∞
d=0 B

[d].

Definition 3.3.6 (B-index). For a polynomial g ∈ R and a subspace B ⊂ R, we
define the B-index indB(g) of g as the smallest d ∈ N such that g ∈ B[d]. If such a d
does not exist, we set indB(g) = −∞.
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Figure 3.3: Illustration of an order ideal (left) and the ‘connected to 1’ property (left
and right).

Note that if 1 ∈ B, every g ∈ R has a finite B-index and B[?] = R. Also, if L ⊂ R is
spanned by H = {f1, . . . , fs} over C, then L[?] = 〈H〉 = 〈f1, . . . , fs〉.

Lemma 3.3.1. If 1 ∈ B and L is such that B+ = B + L, then every element g with
indB(g) = d can be written as g = h+ r where h ∈ L[d−1] and r ∈ B.

Proof. The proof is by induction on d [Mou99, Lemma 2.3].

The process of writing g = h+r in Lemma 3.3.1 is called B-reduction of g along L. This
is to border basis algorithms what the multivariate division algorithm is to Gröbner
bases. Here B plays the role of B≺ and L plays the role of the C-linear span of the
generators of the ideal I. With the right assumptions on B and L we will have that the
B-reduction along L is canonical, i.e. for each d ∈ N and each g ∈ R with indB(g) = d
there is a unique way of writing g = h + r with h ∈ L[d−1], b ∈ B. Equivalently,
B-reduction along L defines a map NH : R→ B where NH(g) = (g −NH(g),NH(g))
is an isomorphism R ' 〈H〉 ⊕B (here H is a C-basis for L).

Definition 3.3.7 (Border basis). Let I ⊂ R be a zero-dimensional ideal. A border
basis of I is a pair (B,H) where

1. B ⊂ R such that dimCB = dimCR/I and B is connected to 1,

2. L = I ∩B+ is supplementary to B in B+: B+ = B ⊕ L,

3. H is a C-basis for L.

We say that H is a B-border basis of I.
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As we will see in Section 4.2, for a border basis (B,H) of I we have that the B-reduction
NH : R → B along L = I ∩ B+ is canonical and 〈L〉 = 〈H〉 = I, so H is indeed an
ideal basis of I. In [Mou99] an algorithm is described for computing a border basis of
I, based on Mourrain’s criterion for normal form algorithms [Mou99, Theorem 3.1].

Definition 3.3.7 is mostly based on the results from [Mou99], even though in this
article the terminology border basis is not used. To justify this definition, we remark
the following. Definition 3.3.7 defines a border basis as any C-basis H for L = I ∩B+.
However, for every subspace ∂B ⊂ B+ such that B+ = B ⊕ ∂B and for every choice
of C-basis ∂B for ∂B there is a canonical choice for H. This choice of H leads to the
definition of ‘B-border basis’ in [KK05, KKR05, KK06, Ste97] if B is a C-basis for B
which is an order ideal and that of a ‘border basis for B’ in [MT08] if B consists of
monomials and B = spanC(B) is connected to 1. For a border basis (B,H) we say
that H is a reduced B-border basis with respect to a basis ∂B = {g1, . . . , gs} of ∂B if
H = {f1, . . . , fs} with

fi = gi −NH(gi), i = 1, . . . , s.
Note that {f1, . . . , fs} give an explicit way of rewriting the ‘border’ ∂B of B modulo
the ideal.
Example 3.3.5. Let G = {f1, . . . , fs} be a reduced Gröbner basis for I with respect
to a monomial order ‘≺’. The border ∂B≺ contains the initial monomials in≺(fi). Let
∂B≺ = {xa | xa ∈ B+ but xa /∈ B}. Then ∂B≺ is a basis for ∂B≺, the set

H = {xa −NG(xa) | xa ∈ ∂B≺}

contains G and is a reduced B≺-border basis with respect to ∂B≺. 4

Example 3.3.6. Let B ⊂ R = C[x, y] be the C-span of {1, x, y, xy} and consider the
basis ∂B = {x2, y2, x2y, xy2} of ∂B ' B+/B. A reduced B-border basis with respect
to ∂B for the perturbed ideal I ′ from Example 3.3.4 is given by

H′ = {x2 − x+ 3 · 10−7xy, y2 + 6 · 10−7xy,

x2y − 1
1− 18 · 10−14xy, xy

2 + 6 · 10−7

1− 18 · 10−14xy}.

This is a slightly perturbed version of the B-border basis

H = {x2 − x, y2, x2y − xy, xy2}

of I from the same example. Note that the reduced Gröbner basis G is contained in H
and the B-border basis varies continuously in a ‘neighborhood’ of I. 4

Just like for Gröbner bases, the fact that the map NH identifies B with R/I allows us
to compute multiplication with g in R/I as

Mg =


b1 ··· bδ

b1

... NH(gb1) · · · NH(gbδ)
bδ





78 ZERO-DIMENSIONAL VARIETIES

in a C-basis B = {b1, . . . , bδ} for B. The columns are the expansions of {NH(gb) | b ∈
B} in this basis.

3.4 Resultants and Macaulay matrices

In this section, we discuss a different algebraic technique for computing points defined
by zero-dimensional ideals, based on resultants. More specifically, we consider projective
resultants and postpone the discussion on (more general) toric resultants to Chapter 5.
As the name suggests, the natural solution space for studying these resultants is the
projective space. Throughout this section, we work with (homogeneous) polynomials
in S = C[x0, . . . , xn] = C[Pn]. The main results and their proofs can be found in
[Jou91, GKZ94, Mac02] and [CLO06, Chapter 3] contains an accessible treatment
with a view towards computations. First, we state the definition and some properties
of resultants. This will allow us to describe very explicitly when a member of the
square family FS(d1, . . . , dn) is ‘generic’ with respect to some properties. That is, we
will give equations for the variety of members that are not. Next, in Subsection 3.4.2
we will describe a construction due to Macaulay to compute the resultant and a way
of constructing (homogeneous) multiplication maps using resultants.

3.4.1 Definition and properties

We consider the family of homogeneous polynomial systems FS(d0, . . . , dn) ' Sd0 ×
· · · × Sdn

given by n + 1 homogeneous equations f0 = · · · = fn = 0 over Pn, with
fi ∈ Sdi . Note that this is not a square family: we are considering n+ 1 equations
on an n-dimensional solution space. Recall that FS(d0, . . . , dn) is isomorphic to the

affine space Cp = Cp0 × · · · × Cpn where pi =
(
n+ di
n

)
via

φ((c0,a)|a|=d0 , . . . , (cn,a)|a|=dn
) =

 ∑
|a|=d0

c0,ax
a, . . . ,

∑
|a|=dn

cn,ax
a

 .

Here |a| = di means that a runs over all tuples a = (a0, a1, . . . , an) ∈ Nn+1 satisfying
|a| = a0 + · · ·+ an = di. Let us denote

A = C[Cp] = C[(c0,a)|a|=d0 , . . . , (cn,a)|a|=dn
]

for the ring of polynomials whose variables represent the coefficients of a member of
FS(d0, . . . , dn). A property is said to hold for a generic member of FS(d0, . . . , dn)
if there is some polynomial g ∈ A such that the property holds for φ(Cp \ VCp(g)).
Resultants are a powerful tool for finding such a polynomial g for many interesting
properties of polynomial systems.
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Definition 3.4.1 (Resultant). A resultant of the family FS(d0, . . . , dn) with di ≥
1, i = 0, . . . , n is a polynomial Resd0,...,dn ∈ A such that Resd0,...,dn(a) = 0 if and only if
φ(a) represents a homogeneous system which has a solution in Pn and Resd0,...,dn

(a) = 1
for the point a ∈ Cp with a = φ−1(xd0

0 , . . . , x
dn
n ).

Note that the second condition on the polynomial Resd0,...,dn ∈ A is just a scaling
condition. We will use the notation Resd0,...,dn

(a) = Resd0,...,dn
(f0, . . . , fn) =

Res(f0, . . . , fn) for a = φ−1(f0, . . . , fn). The following theorem tells us that Definition
3.4.1 makes sense and it gives a selection of some of the interesting properties of the
resultant.

Theorem 3.4.1. For any tuple (d0, . . . , dn) ∈ Nn+1
>0 a resultant Res = Resd0,...,dn

exists and it is unique. Moreover, it has the following properties:

1. Res has coefficients in Z,

2. Res is an irreducible polynomial,

3. each term of Res has degree d0 · · · di−1di+1 · · · dn in the variables (ci,a)|a|=di
.

Proof. All of these statements and more are discussed in [CLO06, Chapter 3, §2 and
3] with proofs or full references.

Example 3.4.1 (Sylvester resultant). Let S = C[x, y] and consider two general
homogeneous polynomials

f0 = a0y
d0 + a1xy

d0−1 + · · ·+ ad0x
d0 , f1 = b0y

d1 + b1xy
d1−1 + · · ·+ bd1x

d1 .

In this example A = C[a0, . . . , ad0 , b0, . . . , bd1 ]. It is a classical result that f0 and f1
have a common root in P1 if and only if the determinant of the (d0 + d1)× (d0 + d1)
matrix

Syl(f0, f1) =



yd1−1 xyd1−2 ··· xd1−1 yd0−1 ··· xd0−1

yd0+d1−1 a0 b0

xyd0+d1−2 a1 a0 b1
. . .

...
... a1

. . . ... . . . b0

xd0yd1−1 ad0

... . . . a0
... b1

xd0+1yd1−2 ad0 a1 bd1

...
... . . . ... . . . ...

xd0+d1−1 ad0 bd1


(3.4.1)

with coefficients ai appearing in the first d1 columns and bi in the last d0 columns, is
zero (see [CLO06, Chapter 3, §1] and [CLO13, Chapter 3, §6] for the affine version).
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The indexing of the rows and columns by monomials comes from the interpretation of
Syl(f0, f1) as the matrix representation of the linear map

Sd1−1 × Sd0−1 → Sd0+d1−1 given by (q0, q1) 7→ q0f0 + q1f1

in monomial bases for Sd1−1 × Sd0−1 and Sd0+d1−1 (e.g. for Sd1−1 the basis
{yd1−1, xyd1−2, . . . , xd1−1} is used). We set Resd0,d1 = det(Syl(f0, f1)) and one can
trivially check that Res satisfies the scaling condition Res(yd0 , xd1) = 1 (we let x play
the role of x1 and y the role of x0 in Definition 3.4.1). 4

Example 3.4.2 (The determinant of a square matrix). The resultant Res1,1,...,1 is the
determinant of the matrix (ci,ej )0≤i,j≤n where ej is the exponent vector corresponding
to xj . 4

Remark 3.4.1. To gain some more insight in property 3 of Theorem 3.4.1, suppose
that we let the coefficients of the polynomials f1, . . . , fn take on generic values
(c∗
i,a)|a|=di

, i = 1, . . . , n. We investigate the condition on the coefficients (c0,a)|a|=d0 of
f0 such that f0 = f1 = . . . = fn has a solution in Pn. The condition that f0(ζ) = 0
for some ζ ∈ Pn imposes a linear condition on the (c0,a)|a|=d0 . Hence, for each of the
common zeros ζ ∈ VPn(f1, . . . , fn) we get a linear condition lζ ∈ C[(c0,a)|a|=d0 ]. Then
we have that VPn(f0)∩VPn(f1, . . . , fn) is nonempty if and only if

∏
ζ∈VPn (f1,...,fn) lζ = 0.

By Bézout’s theorem 3.2.2 this is a homogeneous polynomial of degree d1 · · · dn. 4

To conclude this subsection, we state some genericity conditions which we have used
in previous subsections in terms of resultants.

• In Subsection 3.2.3 we stated that for a general member (f̂1, . . . , f̂n) ∈
FR(d1, . . . , dn) the homogenization (f1, . . . , fn) = (ηd1(f̂1), . . . , ηdn

(f̂n)) does
not ‘add’ anything to the variety defined by f̂1 = · · · = f̂n = 0, in the sense that
VPn(f1, . . . , fn) is generically contained in U0. This is justified by the fact that
VPn(f1, . . . , fn) contains a point outside of U0 if and only if

f1(0, x1, . . . , xn) = . . . = fn(0, x1, . . . , xn) = 0

has a common solution in the hyperplane ‘at infinity’. Note that the
fi(0, x1, . . . , xn) are homogeneous of degree di in x1, . . . , xn and they have a
common solution in Pn−1 if and only if

Resd1,...,dn(f1(0, x1, . . . , xn), . . . , fn(0, x1, . . . , xn)) = 0.

This imposes a polynomial condition on the coefficients of f̂1, . . . , f̂n standing
with the monomials of degree d1, . . . , dn respectively.

• A homogeneous version of the Jacobian condition of Remark 3.1.4 for a root
ζ ∈ VPn(f1, . . . , fn) to have multiplicity > 1 is the following. For any set of
homogeneous coordinates z ∈ Cn+1 of ζ the gradient vectors

∇fi =
(
∂fi
∂x0

(z), . . . , ∂fi
∂xn

(z)
)
∈ Cn+1
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must be linearly dependent. This gives 2n+ 1 homogeneous equations

f1 = · · · = fn = 0, y1∇f1 + · · ·+ yn∇fn = 0

in the 2n+1 variables x0, . . . , xn, y1, . . . , yn. These equations have more structure:
they are homogeneous in the two sets of variables {x0, . . . , xn} and {y1, . . . , yn}
separately. The meaningful solutions correspond to points in the product of
projective spaces Pn × Pn−1. The existence of such solutions corresponds to the
vanishing of a multihomogeneous resultant. We omit the details and refer to
[CLO06, Chapter 3, §5, Exercise 6]).

• Theorem 3.2.2 asserts that generic members of FS(d1, . . . , dn) have a zero-
dimensional solution set. The condition for VPn(f1, . . . , fn) to be positive
dimensional is the following. For any hyperplane given by f0 = 0, f0 ∈ S1
there is a nonempty intersection VPn(f0) ∩ VPn(f1, . . . , fn). This only happens
for coefficients (c∗

i,a)|a|=di
, i = 1, . . . , n that make the resultant Res1,d1,...,dn

identically equal to zero. This is equivalent to the vanishing of the coefficients
of a degree d1 · · · dn polynomial in c0,e0 , . . . , c0,en

where ei is the exponent
vector corresponding to xi and each of these coefficients is a polynomial in
the (c∗

i,a)|a|=di
, i = 1, . . . , n. In particular, the subvariety of FS(d1, . . . , dn)

corresponding to systems with a positive dimensional solution set is contained in
the variety of systems whose solution set intersects VPn(x0). These are exactly
the systems with solutions at infinity, whose variety we described above.

3.4.2 Macaulay matrices

There are several ways of using resultants for solving a system of polynomial equations
numerically. One approach is via u-resultants which recover the coordinates of the
points in VPn(I) via a generalized eigenvalue problem (see e.g. [JV05]). Another
approach uses hidden variable resultants to eliminate variables from the equations.
This leads to a polynomial eigenvalue problem which can be solved via, for instance,
linearization or numerical contour integration techniques [GT17]. The hidden variable
resultant approach has been studied quite extensively in the context of numerical
computation, using different resultant constructions (Sylvester/Macaulay type as well
as Bézoutian resultant constructions). The technique turns out to be quite effective,
especially in the case where n = 2 [BKM05, SVBDL14, NNT15, Tel16]. We should
mention that, even though in practice they usually give satisfying results, the fact
that these methods ‘project some variables away’ makes them inherently numerically
unstable. A proof and examples of worst-case scenarios are given in [NT16].

We will limit ourselves to the description of a way to obtain multiplication matrices from
an important resultant construction of Macaulay. This is the resultant-based approach
for solving equations that is most directly related to the methods proposed in this thesis.
The Macaulay construction is a generalization of Sylvester’s matrix (3.4.1) for the
resultant of two homogeneous equations on P1. Our goal is to construct a matrix which
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we will call Macd0,...,dn whose entries are coefficients of f0, . . . , fn (that is, variables of
A), such that its determinant det Macd0,...,dn ∈ A is a nonzero (polynomial) multiple
of the resultant Resd0,...,dn

∈ A. As for the resultant, we will denote Macd0,...,dn
(a) =

Macd0,...,dn
(f0, . . . , fn) = Mac(f0, . . . , fn) for a = φ−1(f0, . . . , fn). In the case where

n = 1, we will have that Mac(f0, f1) = Syl(f0, f1). Note that the image of the
map represented by Syl(f0, f1) represents the degree ρ̂ = d0 + d1 − 1 part of the
homogeneous ideal 〈f0, f1〉. Indeed, the columns are obtained by taking all monomial
multiples of f0, f1 that result in a homogeneous equation of this degree. In the
generalized construction, the columns of our matrix will represent polynomials in
〈f0, . . . , fn〉ρ̂ ⊂ Sρ̂ where

ρ̂ = d0 + d1 + · · ·+ dn − n. (3.4.2)

More precisely, they will be monomial multiples of f0, . . . , fn. In general, we will
not multiply fi with all monomials of degree ρ̂ − di, since this would not lead to a
square matrix Macd0,...,dn

(and we cannot take the determinant). We denote the set of
monomials of degree ρ̂− di by which we multiply fi to obtain columns of Macd0,...,dn

by Σi. The set {Σ0, . . . ,Σn}, indexing the columns of Macd0,...,dn
, will correspond

to a partitioning of the monomials of Sρ̂, indexing the rows of Macd0,...,dn . They are
defined as follows:

Σ′
n = {xa ∈ Sρ̂ | xdn

n divides xa},
Σ′
n−1 = {xa ∈ Sρ̂ | xdn

n does not divide xa but xdn−1
n−1 does },

...
Σ′

0 = {xa ∈ Sρ̂ | xdi
i does not divide xa for i = 1, . . . , n but xd0

0 does },

and Σi = {xa/xdi
i | xa ∈ Σ′

i}.

Example 3.4.3. Let n = 2, d0 = 1, d1 = 3, d2 = 2. In this case, ρ̂ = 4 and we get

Σ2 = {x2
0, x0x1, x0x2, x

2
1, x1x2, x

2
2}, Σ1 = {x0, x1, x2},

Σ0 = {x3
0, x

2
0x1, x0x

2
1, x

2
0x2, x0x1x2, x

2
1x2}.

The corresponding partitioning of the monomials in S4 into Σ′
0,Σ′

1 and Σ′
2 is illustrated

in Figure 3.4. In the figure, the monomial x4−a1−a2
0 xa1

1 xa2
2 is identified with the lattice

point (a1, a2). Denoting

f0 = a0x0 + a1x1 + a2x2,

f1 = b0x
3
0 + b1x

2
0x1 + b2x

2
0x2 + b3x0x

2
1 + b4x0x1x2 + b5x0x

2
2 + b6x

3
1 + b7x

2
1x2

+ b8x1x
2
2 + b9x

2
2,

f2 = c0x
2
0 + c1x0x1 + c2x0x2 + c3x

2
1 + c4x1x2 + c5x

2
2,
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we obtain the matrix Macd0,d1,d2 shown below.



x3
0 x2

0x1 x2
0x2 x0x

2
1 x0x1x2 x2

1x2 x0 x1 x2 x2
0 x0x1 x0x2 x2

1 x1x2 x2
2

x4
0 a0 b0 c0

x3
0x1 a1 a0 b1 b0 c1 c0

x3
0x2 a2 a0 b2 b0 c2 c0

x2
0x

2
1 a1 a0 b3 b1 c3 c1 c0

x2
0x1x2 a2 a1 a0 b4 b2 b1 c4 c2 c1 c0

x0x
2
1x2 a2 a1 a0 b7 b4 b3 c4 c3 c2 c1

x0x
3
1 a1 b6 b3 c3 c1

x4
1 b6 c3

x3
1x2 a1 b7 b6 c4 c3

x2
0x

2
2 a2 b5 b2 c5 c2 c0

x0x1x
2
2 a2 b8 b5 b4 c5 c4 c2 c1

x0x
3
2 b9 b5 c5 c2

x2
1x

2
2 a2 b8 b7 c5 c4 c3

x1x
3
2 b9 b8 c5 c4

x4
2 b9 c5


Note that the columns of Macd0,d1,d2 are indexed by {Σ0,Σ1,Σ2} and the rows by
{Σ′

0,Σ′
1,Σ′

2} (recall that Σ′
i = xdi

i · Σi). The column corresponding to x2
0x2 ∈ Σ0

represents the polynomial x2
0x2f0 in the monomial basis for S4. 4

Figure 3.4: Illustration of the partitioning of S4 into Σ′
0 (blue), Σ′

1 (yellow) and Σ′
2

(orange) from Example 3.4.3.

Let us define the row vectors φΣi(x0, . . . , xn) = (xa | xa ∈ Σi) where the ordering of
the monomials is compatible with the indexing of the columns of Macd0,...,dn

. That is,
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the columns are indexed by the vector

[φΣ0(x0, . . . , xn) · · · φΣn(x0, . . . , xn)].

In the same way, we define the row vectors φΣ′
i
(x0, . . . , xn) = (xa | xa ∈ Σ′

i) such
that the order of the monomials is compatible with the row indexing of Macd0,...,dn

.
Constructing the matrix Macd0,...,dn

as illustrated in Example 3.4.3, one can check
that Mac(xd0

0 , . . . , x
dn
n ) is the identity matrix. This shows that det Macd0,...,dn ∈ A is

not the zero polynomial. Moreover, if ζ ∈ Pn is such that f0(ζ) = · · · = fn(ζ) = 0,
then for any set of homogeneous coordinates z ∈ Cn+1 \ {0} of ζ, we have that

[φΣ′
0
(z) · · · φΣ′

n
(z)] Mac(f0, . . . , fn) = [f0(z)φΣ0(z) . . . fn(z)φΣn

(z)] = 0.

This shows that if f0 = · · · = fn = 0 has a solution in Pn, det Mac(f0, . . . , fn) = 0,
which implies that

det Macd0,...,dn ∈ 〈Resd0,...,dn〉
by the Nullstellensatz and the fact that Resd0,...,dn is irreducible. Therefore, there is a
nonzero polynomial E such that det Macd0,...,dn = E ·Resd0,...,dn . This polynomial E is
called the extraneous factor. In his paper [Mac02], Macaulay identifies the extraneous
factor as the determinant of a submatrix of Macd0,...,dn

, see also [CLO06, Chapter 3,
§4].

In the construction of Macd0,...,dn
, the set Σ′

0 consists of the d1 · · · dn elements

Σ′
0 = {xρ̂−a1−···−an

0 xa1
1 · · ·xan

n | ai < di, i = 1, . . . , n}.

Therefore, the number of elements in Σ′
0 (and in Σ0) is the Bézout number for the

family FS(d1, . . . , dn). We will see that this is no coincidence. In what follows, fix
(f0, . . . , fn) ∈ FS(d0, . . . , dn) and define I = 〈f1, . . . , fn〉. We partition the matrix
Mac(f0, . . . , fn) into 4 submatrices as follows:

Mac(f0, . . . , fn) =



Σ0 {Σ1,...,Σn}

Σ′
0 M00 M01

{Σ′
1,...,Σ

′
n} M10 M11

.
Here M00 and M11 are square matrices. Just like the Sylvester matrix, the matrix
Mac(f0, . . . , fn) can be interpreted as a map

Mac(f0, . . . , fn) : Λ0 × Λ1 × · · · × Λn → Λ

where Λ = Sρ̂, Λi = spanC(Σi), given by Mac(f0, . . . , fn)(q0, . . . , qn) = q0f0 + · · · qnfn.
The second block column of Mac(f0, . . . , fn) is the restriction of this map to Λ1 ×
· · · × Λn: [

M01
M11

]
= Mac(f0, . . . , fn)|Λ1×···×Λn

.
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Note that the image of Mac(f0, . . . , fn)|Λ1×···×Λn
is contained in Iρ̂. The following is

the main result of this subsection. It uses some terminology from Subsection 3.2.2.

Theorem 3.4.2. For any (d0, . . . , dn) ∈ Nn+1
>0 , let (f0, . . . , fn) ∈ FS(d0, . . . , dn).

Suppose that I = 〈f1, . . . , fn〉 ⊂ S is such that VPn(I) = {ζ1, . . . , ζδ} consists of
δ = d1 · · · dn points with multiplicity 1 and the submatrix M11 of Mac(f0, . . . , fn) is
invertible. Then

1. VPn(I) ⊂ U0,

2. {xa + Iρ | xa ∈ Σ0} is a C-basis for (S/I)ρ where ρ = ρ̂− d0,

3. the Schur complement M00 −M01M
−1
11 M10 is the homogeneous multiplication

map M
f0/x

d0
0

: (S/I)ρ → (S/I)ρ in this basis,

4. det Mac(f0, . . . , fn) = det(M11)
∏δ
i=1

f0

x
d0
0

(ζi).

Proof. For the first statement, suppose that ζ ∈ VPn(I) ∈ Pn \ U0. For any set of
homogeneous coordinates z ∈ Cn+1 \ {0} for ζ, this gives

[φΣ′
0
(z) φΣ′

1
(z) · · · φΣ′

n
(z)]

[
M01
M11

]
= [0 φΣ′

1
(z) · · · φΣ′

n
(z)]

[
M01
M11

]
= [φΣ′

1
(z) · · · φΣ′

n
(z)]M11

= [f1(z)φΣ1(z) · · · fn(z)φΣn(z)] = 0.

Here φΣ′
0
(z) = 0 since Σ′

0 = xd0
0 ·Σ0 and ζ /∈ U0. This contradicts the assumption that

M11 is invertible.

To show the second statement, note that ρ, ρ̂ ∈ Reg(I) by Theorem 3.2.3. Since
HFI(ρ̂) = d1 · · · dn = #(Σ0) we have that the image of Mac(f0, . . . , fn)|Λ1×···×Λn

,
which has codimension d1 · · · dn in Sρ̂ by the assumption that M11 is full rank, is Iρ̂.
This also shows that the elements of {xa + Iρ̂ | xa ∈ Σ′

0} form a basis for (S/I)ρ̂.
The second statement now follows from the fact that M

x
d0
0

: (S/I)ρ → (S/I)ρ̂ is an
isomorphism (Lemma 3.2.1).

For the third statement, we define M
f0/x

d0
0

= M00 −M01M
−1
11 M10 and show that it is

indeed multiplication with f0/x
d0
0 in (S/I)ρ. For any set of homogeneous coordinates

z of ζ ∈ VPn(I) we observe that

[φΣ′
0
(z) φΣ′

1
(z) · · · φΣ′

n
(z)]

[
M00 M01
M10 M11

] [
id 0

−M−1
11 M10 id

]
= [φΣ′

0
(z) φΣ′

1
(z) · · · φΣ′

n
(z)]

[
M
f0/x

d0
0

M01

0 M11

]
= [f0(z)φΣ0(z) 0 · · · 0]

[
id 0

−M−1
11 M10 id

]
,
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where ‘id’ are identity matrices of the appropriate size. It follows that

φΣ′
0
(z)M

f0/x
d0
0

= f0(z)φΣ0(z).

Using φΣ′
0
(z) = xd0

0 φΣ0(z) we obtain

φΣ0(z)M
f0/x

d0
0

= f0

xd0
0

(z)φΣ0(z).

This shows that the eigenvalues of M
f0/x

d0
0

are indeed the evaluations of the rational
function f0/x

d0
0 at the roots of I. We now show that the eigenvectors are also the

correct ones. For any h ∈ Sρ such that h(ζ) 6= 0 for all ζ ∈ VPn(I), let evζ : (S/I)ρ → C
defined by f + Iρ 7→ (f/h)(ζ) be the corresponding element of (S/I)∨. We think of
evζ as a row vector, represented in the basis Σ0 of (S/I)ρ. Then φΣ0(z) = h(z) evζ
together with Theorem 3.2.4 shows the third statement.

The fourth statement is obtained from

det Mac(f0, . . . , fn) = det
([
M00 M01
M10 M11

] [
id 0

−M−1
11 M10 id

])
= det

[
M
f0/x

d0
0

M01

0 M11

]
.

Example 3.4.4. Consider the case where n = 1, f0 = x, f1 = c0y
d1 + c1y

d1−1x +
· · ·+ cd1x

d1 and we use x0 = y, x1 = x for the definition of the Macaulay construction.
We find ρ̂ = d1 and

Σ0 = {yd1−1, xyd1−2, . . . , xd1−1}, Σ1 = {1}

which gives

Syl(f0, f1) = Mac(f0, f1) =



yd1−1 xyd1−2 ... xd1−1 1

yd1 c0

xyd1−1 1 c1

xyd1−2 1 c2
... . . . ...
xd1 1 cd1


and the Schur complement M00 −M01M

−1
11 M10 is the Frobenius companion matrix of

f1(x, 1). 4

The condition that M11 is invertible clearly imposes a determinantal condition on the
coefficients of the fi. This determinant is not the zero polynomial, which makes sure
this condition holds for general members of FS(d0, . . . , dn) (see [Emi96, Lemma 4.4]).
We make three remarks and end the subsection with an extension of Example 3.4.3.
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Remark 3.4.2. Theorem 3.4.2 implies the following for systems of equations on Cn.
Suppose that for a member (f̂1, . . . , f̂n) ∈ FR(d1, . . . , dn) with R = C[y1, . . . , yn] the
homogenization (f1, . . . , fn) ∈ FS(d1, . . . , dn) defines a zero-dimensional projective
variety whose points have multiplicity one and for some f0 ∈ Sd0 the submatrix M11
of Mac(f0, f1, . . . , fn) is invertible. Then

{ya1
1 · · · yan

n + 〈f̂1, . . . , f̂n〉 | ai < di, i = 1, . . . , n}

is a basis for R/〈f̂1, . . . , f̂n〉 and the Schur complement M00 − M01M
−1
11 M01 is

multiplication with f0(1, y1, . . . , yn) in R/〈f̂1, . . . , f̂n〉 represented in this basis. This
is what we observed in Example 3.4.4 in the case where n = 1. 4

Remark 3.4.3. Note that in the situation of Theorem 3.4.2 the Schur complement
can be written as the matrix product

M00 −M01M
−1
11 M10 =

[
id −M01M

−1
11
] [M00
M10

]
,

where the first factor satisfies[
id −M01M

−1
11
] [M01
M11

]
= 0.

Since M11 is invertible, it follows that the kernel of the linear map
[
id −M01M

−1
11
]

is the image of Mac(f0, . . . , fn)|Λ1×···×Λn
: Λ1 × · · · × Λn → Λ, which is Iρ̂. That is,[

id −M01M
−1
11
]

represents a linear map N : Sρ̂ → Cδ such that

0 −→ Iρ̂ −→ Sρ̂
N−→ Cδ −→ 0

is a short exact sequence, and N
x

d0
0

: Sρ → Cδ given by N
x

d0
0

(f) = N(xd0
0 f) is onto.

Such a map will give rise to a homogeneous normal form, a concept that we will define
in Section 4.5. One can check that if, d0 = 1 and f0 = xi for some i, then

[
id −M01M

−1
11
] [M00
M10

]
is merely a ‘column selection’ of the matrix N . All this indicates that a homogeneous
normal form with respect to I (in a large enough degree ρ̂) gives us all the information
we need to compute the homogeneous multiplication operators. 4

Remark 3.4.4. Another, equivalent way to state that the kernel of N is the
image of Mac(f0, . . . , fn)|Λ1×···×Λn

is to say that N is the cokernel map of
Mac(f0, . . . , fn)|Λ1×···×Λn

. The terminology used in numerical linear algebra literature
is that N is the left nullspace of Mac(f0, . . . , fn)|Λ1×···×Λn

. Since the image of
Mac(f0, . . . , fn)|Λ1×···×Λn

is the same as the image of

Sρ̂−d1 × · · · × Sρ̂−dn
→ Sρ̂ with (q1, . . . , qn) 7→ q1f1 + · · ·+ qnfn, (3.4.3)
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N may also be obtained as the cokernel of this map. Examples 3.4.1 and 3.4.3
illustrate that the two maps are the same for n = 1, 2. The definition of the map
(3.4.3) seems slightly more natural or ‘intuitive’ than the one coming from the Macaulay
resultant matrix, which restricts this map to subspaces of the Sρ̂−di

which give the
same image. Computing the cokernel of (3.4.3) instead of Mac(f0, . . . , fn)|Λ1×···×Λn

,
although mathematically equivalent, gives better results numerically (even for generic
systems of equations). We will illustrate this in Example 4.3.1. The use of cokernels of
maps like (3.4.3) for polynomial root finding in affine and projective space is studied
extensively in a numerical linear algebra context in the work of Dreesen, Batselier and
De Moor [DBDM12, Dre13, Bat13, BDDM14]. 4

Example 3.4.5 (Example 3.4.3 continued). Theorem 3.4.2 tells us that if the
submatrix M11 of Mac(f0, . . . , fn) is invertible, there cannot be any roots at infinity
(the proof of this statement does not need the assumption of zero-dimensionality on
I = 〈f0, . . . , fn〉). This implies that if there are roots at infinity, detM11 must be zero.
So the assumption that M11 is invertible fails when f1 = · · · = fn has solutions at
‘infinity’ (i.e., outside of U0). However, this may not be the only case for which the
condition is not satisfied. We investigate this for the matrix of Example 3.4.3. As we
saw in Subsection 3.4.1, the equations f1 = f2 = 0 define solutions outside of U0 if
and only if the polynomial Res∞ ∈ A vanishes, where Res∞ is defined as

Res∞ = Res3,2(f1(0, x1, x2), f2(0, x1, x2)) = det


c3 b6
c4 c3 b7 b6
c5 c4 c3 b8 b7

c5 c4 b9 b8
c5 b9

 .
Using Macaulay2, we find that

detM11 = c5
(
b9c3c4 − b8c3c5 + b6c

2
5
)

Res∞ .

This confirms that detM11 vanishes whenever f1 = f2 = 0 has roots ‘at infinity’, but
it will also vanish when either c5 = 0 or b9c3c4 − b8c3c5 + b6c

2
5 = 0. 4



Chapter 4

Truncated normal forms

This chapter introduces a new algebraic approach for solving zero-dimensional systems
of polynomial equations. The key concept is that of a truncated normal form, which
generalizes Gröbner and border bases (Section 3.3) as well as the resultant method
described in Section 3.4. One of the main issues that is addressed by truncated normal
forms is the following. Neither Gröbner/border bases nor resultants allow for a way of
choosing a basis for the quotient algebra related to a zero-dimensional ideal based on the
numerical properties of the problem of computing multiplication operators in this basis.
This was mentioned as an open problem in [Mou07]. A solution is proposed in our first
paper [TVB18], where the system is assumed to be a generic member of FR(d1, . . . , dn)
in the sense that there are d1 · · · dn many roots in Cn, counting multiplicities. The key
idea is to let the basis be picked by a QR factorization with optimal column pivoting,
which is a standard tool in numerical linear algebra. It was pointed out to the author
by Tomas Pajdla that the bad numerical behavior of standard monomials coming
from Gröbner bases for the computation of multiplication matrices was also noticed in
the computer vision community. The authors of [BJA07, BJA08] use both QR and
SVD techniques for basis selection on some problem-specific matrix constructions.
The definition of truncated normal forms was first given in [TMVB18]. Next to
developing the theory of the truncated normal form framework, the article proposes
explicit algorithms for solving several families of systems, including FR(d1, . . . , dn),
for which the algorithm is a reinterpretation of the algorithm in [TVB18]. Other
families of systems considered in [TMVB18] are the polyhedral families discussed in
Chapter 5, the homogeneous families FS(d1, . . . , dn) and multihomogeneous families.
As mentioned above, the framework allows for a systematic way of selecting a basis
for the quotient algebra which behaves well for numerical computations. As we will
show in examples, these bases lead rarely to ‘connected to 1’ subspaces, let alone order
ideals (see Subsection 3.3.2 for definitions). In a follow-up paper [MTVB19] some
generalizations and modifications of the algorithms in [TMVB18] are proposed.
The content of this chapter is strongly based on the papers [TVB18, TMVB18,

89
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MTVB19]. In Section 4.1 we give a motivating example for developing the framework
of truncated normal forms, which is done in Section 4.2. We use the results of Section
4.2 to give an explicit numerical linear algebra based algorithm for solving generic
members of FR(d1, . . . , dn) in Section 4.3. Section 4.4 discusses some ideas to make
the algorithm more efficient and the use of non-monomial bases for the algebra R/I. In
particular, we consider bases coming from using the SVD for basis selection and (tensor
product) Chebyshev bases. Finally, Section 4.5 describes homogeneous normal forms
for root finding in Pn. The algorithms in this chapter focus on the isomorphic families
FR(d1, . . . , dn) and FS(d1, . . . , dn). Generalizations to other (polyhedral) families, as
introduced in [TMVB18, Section 4] and in [Tel20] for the homogeneous case, will be
given in Chapter 5.

4.1 A motivating example

Let R = C[x, y] and consider the family FR(2, 2) of polynomial systems with two
equations in two unknowns of degree at most two. A member (f1, f2) ∈ FR(2, 2) is
given by

f1 = a0 + a1x+ a2y + a3x
2 + a4xy + a5y

2,

f2 = b0 + b1x+ b2y + b3x
2 + b4xy + b5y

2.

For any values of ai, bi ∈ C, these two polynomials generate an ideal I = 〈f1, f2〉 ∈ R
for which we want to compute VC2(I). The ai, bi are the variables of the coordinate
ring A = C[a0, . . . , a5, b0, . . . , b5] of the affine variety C12 parametrizing our family.
Motivated by the results of Subsection 3.1.1, we want to compute the multiplication
maps Mx : R/I → R/I and My : R/I → R/I in some basis of R/I. With the
appropriate genericity assumptions (see Subsection 3.1.2), we know that this basis
should consist of four elements. Suppose we want to work with the basis B + I =
{b+ I | b ∈ B} where B = {1, x, y, xy}. If we can compute the representations

x2 + I = −c1,1 − c2,1x− c3,1y − c4,1xy + I,

y2 + I = −c1,2 − c2,2x− c3,2y − c4,2xy + I,

x2y + I = −c1,4 − c2,4x− c3,4y − c4,4xy + I,

xy2 + I = −c1,5 − c2,5x− c3,5y − c4,5xy + I

(4.1.1)

of x2, y2, x2y, xy2 modulo I (the indexing of the coefficients ci,j ∈ C and the minus
signs will soon make sense), then the multiplication matrices Mx,My in the basis
B + I are given by

Mx =


1 x y xy

1 0 −c1,1 0 −c1,4
x 1 −c2,1 0 −c2,4
y 0 −c3,1 0 −c3,4
xy 0 −c4,1 1 −c4,4

, My =


1 x y xy

1 0 0 −c1,2 −c1,5
x 0 0 −c2,2 −c2,5
y 1 0 −c3,2 −c3,5
xy 0 1 −c4,2 −c4,5

. (4.1.2)
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The coefficients ci,j depend, of course, on the specialization to C12 of the parameters
ai, bi. In order to compute (4.1.1), we consider the so-called resultant map

res : R≤1 ×R≤1 → R≤3 given by res(q1, q2) = q1f1 + q2f2.

Using the bases {1, x, y} for R≤1 and {1, x, y, xy, . . . , y3} for R≤3, this map is
represented by

res =



1 x y 1 x y

1 a0 b0
x a1 a0 b1 b0
y a2 a0 b2 b0
xy a4 a2 a1 b4 b2 b1

x2 a3 a1 b3 b1
y2 a5 a2 b5 b2
x3 a3 b3
x2y a4 a3 b4 b3
xy2 a5 a4 b5 b4
y3 a5 b5


.

Note that the columns of this matrix correspond to the polynomials

f1, xf1, yf1, f2, xf2, yf2 ∈ I ∩R≤3.

In fact, from the definition of res it is clear that im res ⊂ I ∩R≤3, so applying res to
any column vector of length 6 gives us an element in I ∩ R≤3. Assuming that the
considered member of FR(2, 2) is generic, the submatrix of res consisting of its last 6
rows is invertible (see Subsection 3.4.2) and we can find particularly nice elements of
I ∩R≤3 by computing



1 x y 1 x y

1 a0 b0
x a1 a0 b1 b0
y a2 a0 b2 b0
xy a4 a2 a1 b4 b2 b1

x2 a3 a1 b3 b1
y2 a5 a2 b5 b2
x3 a3 b3
x2y a4 a3 b4 b3
xy2 a5 a4 b5 b4
y3 a5 b5





a3 a1 b3 b1
a5 a2 b5 b2

a3 b3
a4 a3 b4 b3
a5 a4 b5 b4

a5 b5



−1

=



g1 g2 g3 g4 g5 g6

1 c1,1 . . . c1,6
x c2,1 . . . c2,6
y c3,1 . . . c3,6
xy c4,1 . . . c4,6

x2 1
y2 1
x3 1
x2y 1
xy2 1
y3 1


.

This gives the polynomials g1, . . . , g6, of which g1, g2, g4, g5 establish the representations
(4.1.1). Notice that, in particular, H = {g1, g2, g4, g5} is a reduced B-border basis for
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I, with B = spanC(B) ⊂ R (B has the connected to 1 property) and with respect to
the monomial basis ∂B = {x2, y2, x2y, xy2} of ∂B = B+/B. In this computation, we
have computed two ‘extra’ rewriting rules modulo I, given by g3, g6.

An important observation is that we could play the same game for any B consisting
of four monomials such that the square submatrix of res corresponding to the rows
not indexed by B is invertible. We will denote the determinant of this submatrix by
DB ∈ A, and the evaluation for a specific instance byDB(f1, f2). Another restriction we
impose on B is that the result of the computation allows us to construct multiplication
matrices as in (4.1.1) and (4.1.2). For this we need that the monomials in ∂B (i.e. the
monomials outside B obtained from multiplying the monomials in B with x and y)
are contained in R≤3. We conclude that we can pick any four element subset B of
W = {1, x, y, x2, xy, y2} such that DB(f1, f2) 6= 0. The algorithm goes as follows. Let
V = {1, x, y, x2, xy, y2, x3, x2y, xy2, y3} be the set of all monomials of degree at most
3. For any four element subset B ⊂ W such that DB(f1, f2) 6= 0, construct the matrix
of res such that its first 4 rows are indexed by B:

res =
[

B M01
V\B M11

]
.

Multiply res by M−1
11 (which makes sense because by construction DB(f1, f2) =

detM11) to obtain

resM−1
11 =

[
B M01M

−1
11

V\B id

]
=

[
B C

V\B id

]
.

The columns of the result give rewriting rules analogous to (4.1.1) for V \ B modulo I,
which directly gives us the multiplication matrices in the basis B+ I since ∂B ⊂ V \B.
Indeed, all that is left to do is plug in the (negative of the) entries of the matrix C
into Mx,My in the right place.

In Section 4.2 we will prove formally that this algorithm can indeed be used to compute
the multiplication matrices Mx,My for any four element subset B ⊂ W such that
DB(f1, f2) 6= 0. If B = spanC(B) is connected to 1, this gives a reduced B-border
basis for I and the correctness of the algorithm follows from the theory of border bases.
To show that this approach is indeed more general, we have computed DB for all 15
four element subsets of W using Macaulay2. Each of these 15 polynomials in the ring
A turns out to be nonzero, which means that for generic members of FR(2, 2), any
of these 15 possible choices of B works. Out of the 15 possible choices, only 5 satisfy
the connected to 1 property. These configurations are shown in Figure 4.1. Among
these five connected to 1 bases, there are only three order ideals. These are the three
leftmost bases depicted in Figure 4.1. Note that the basis used in Example 3.1.2 is not
in the picture. The computations in that example can be checked using the method
described here.
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Figure 4.1: All possible subsets B (blue dots) of monomials of degree at most two for
which B is connected to one. The border ∂B is indicated with small orange boxes.

Remark 4.1.1. In the case of FR(2, 2) we have shown that imposing the connected
to 1 condition on the basis B reduces the number of possible choices of monomial
bases of degree at most 2 from 15 to 5. To see how this scales with the degree of the
equations, we have performed an analogous computation for the families FR(2, 3) and
FR(3, 3). For (f1, f2) ∈ FR(2, 3), we consider the map res : R≤2 ×R≤1 → R≤4 given
by res(q1, q2) = q1f1 + q2f2 and we compute the determinants DB for all six element
subsets B of the 10 monomials of degree at most 3. There are 210 such subsets, out of
which 3 give a determinant DB = 0. These three ‘bad’ subsets1 are

{1, x, y, x2, xy, y2}, x · {1, x, y, x2, xy, y2}, y · {1, x, y, x2, xy, y2}.

Among the other 207 subsets B, which can be used as a basis B+ I for R/I for generic
members of FR(2, 3), there are only 19 subsets for which B is connected to 1, and only
6 of those are order ideals. For FR(3, 3), we consider the map res : R≤2 ×R≤2 → R≤5
given by res(q1, q2) = q1f1 + q2f2 and we compute the determinants DB for all 5005
nine element subsets B of the 15 monomials of degree at most 4. Out of all these
monomial bases, 4975 work for generic systems, of which 129 correspond to connected
to 1 subspaces and 12 are order ideals. 4

Now that we have established that there are, in general, 15 possible choices for B,
the question is which one to pick? The following numerical example makes it clear
that, when computing in finite precision arithmetic, some choices may be significantly
better than others.
Example 4.1.1. Consider the equations

f1 = x+ 1
3y

2 − x2, f2 = −1
3 x+ 1

3x
2 + y2,

for which 〈f1, f2〉 equals the ideal I in Examples 3.1.6 and 3.3.4. This represents a
member of FR(2, 2) which is non-generic in several ways. For instance, the roots have
multiplicity greater than one. It is also non-generic in the sense that 13 out of 15
determinants DB(f1, f2) vanish for this system. To make sure that we are dealing
with generic equations, we perturb f1 and f2 slightly to obtain

f ′
1 = f1 + e1, f ′

2 = f2 + e2,

1To see why these subsets cannot give bases for R/I, one can check that the vanishing of f1 ∈ R≤2
at all the points in VCn (I) implies that there cannot exist Lagrange polynomials supported in these
monomials.
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where (e1, e2) ∈ FR(2, 2) have random real coefficients which are all drawn from a
normal distribution with mean 0 and standard deviation 10−7. All determinants
DB(f ′

1, f
′
2) are nonzero. For all 15 choices of B, we use Julia to compute the condition

number κB of the matrix M11 from the algorithm explained above in double precision
arithmetic. The result is

κ{1,x,y,xy} = 2.6 · 100, κ{1,x,y,x2} = 2.9 · 108, κ{1,x,y,y2} = 1.3 · 107,
κ{1,x,x2,xy} = 1.8 · 108, κ{1,y,xy,y2} = 4.4 · 108, κ{x,x2,xy,y2} = 1.7 · 107,
κ{x,y,x2,xy} = 1.6 · 107, κ{x,y,x2,y2} = 2.3 · 107, κ{y,x2,xy,y2} = 8.4 · 107,
κ{x,y,xy,y2} = 1.4 · 108, κ{1,x2,xy,y2} = 1.1 · 107, κ{1,y,x2,y2} = 1.1 · 107,
κ{1,x,x2,y2} = 9.2 · 108, κ{1,y,x2,xy} = 1.0 · 100, κ{1,x,xy,y2} = 1.7 · 107.

Notice that for all choices of B except {1, x, y, xy} and {1, y, x2, xy}, the condition
number is of order at least 107. This means that in the computation of C via
M01M

−1
11 we can expect to lose about 7 digits of accuracy (see Section B.1). Using

B = {1, x, y, xy} or B = {1, y, x2, xy} the multiplication matrices would be computed
accurately up to machine precision. Note that this mirrors our conclusion in Example
3.3.4 that it is much better to stick with the basis B = {1, x, y, xy} instead of switching
to B = {1, x, y, x2} after perturbing the coefficients of f1 and f2 slightly. In fact,
B = {1, x, y, xy} is the only basis for which B is connected to one and M11 is well-
conditioned. Dropping the connected to 1 requirement, we see that there is another
option B = {1, y, x2, xy}, for which the condition number of M11 is nearly perfect. 4

Example 4.1.1 shows that the choice of the right monomial basis B might be crucial
for the accuracy with which we can compute the multiplication matrices. Let resW be
the submatrix of res with rows indexed by the monomials in W . We can formulate the
problem of ‘finding a good B’ as finding a submatrix of resW that is well-conditioned.
This is a problem that can be solved by a standard algorithm in numerical linear
algebra, called the QR decomposition with optimal column pivoting (see Section B.3).

We continue the discussion under the assumption that we chose the basis B =
{1, x, y, xy} when we write down the matrices that are involved explicitly. Computing
the matrix C = M01M

−1
11 leads directly to a cokernel map NR≤3 : R≤3 → B given by

NR≤3 =


1 x y xy x2 y2 x3 x2y xy2 y3

1 1 −c1,1 −c1,2 −c1,3 −c1,4 −c1,5 −c1,6
x 1 −c2,1 −c2,2 −c2,3 −c2,4 −c2,5 −c2,6
y 1 −c3,1 −c3,2 −c3,3 −c3,4 −c3,5 −c3,6
xy 1 −c4,1 −c4,2 −c4,3 −c4,4 −c4,5 −c4,6

.
To see that this is indeed the cokernel of res, recall that C = M01M

−1
11 and

[
id −C

]
res =

[
id −M01M

−1
11
] [M01
M11

]
= 0.

We have that kerNR≤3 = im res ⊂ I ∩R≤3 and (NR≤3)|B = idB . As we will see, under
the assumptions that I defines 4 points in C2 this implies that in fact we have the
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equality kerNR≤3 = I ∩ R≤3. Therefore, NR≤3 rewrites elements of R≤3 modulo I
as elements of B. A nice consequence is that the multiplication operators Mx and
My in the basis B + I can be read off directly from NR≤3 : We define Nx : B → B by
Nx(b) = NR≤3(xb) and Ny : B → B by Ny(b) = NR≤3(yb). This gives

Nx =


1 x y xy

1 0 −c1,1 0 −c1,4
x 1 −c2,1 0 −c2,4
y 0 −c3,1 0 −c3,4
xy 0 −c4,1 1 −c4,4

, Ny =


1 x y xy

1 0 0 −c1,2 −c1,5
x 0 0 −c2,2 −c2,5
y 1 0 −c3,2 −c3,5
xy 0 1 −c4,2 −c4,5

,
which are exactly the matrices of (4.1.2). This suggests a different (but equivalent)
way of obtaining the multiplication matrices. First, compute a cokernel matrix
N : R≤3 → C4 of res (e.g. using the singular value decomposition, see Section B.2).
The columns of N are indexed by the monomials in V. Next, select a submatrix NB
of N indexed by a 4 element subset B ⊂ W such that NB is invertible (NB is the
restriction of the map N to the subspace B = spanC(B) ⊂ R≤2). If necessary, permute
the columns of N such that the first 4 columns correspond to NB and set

NR≤3 = N−1
B N : R≤3 → B.

It is clear that after this procedure, kerNR≤3 = im res and (NR≤3)|B = idB. The
multiplication matrices can now be obtained as the matrices of Nx and Ny, as defined
above.

Just like in the first, equivalent approach, a choice of basis B has to be made. Again,
this comes down to finding an invertible submatrix and for numerical stability reasons
one should pick a well-conditioned submatrix using, for instance, QR with optimal
pivoting.

4.2 A general framework for normal form methods

In this section we introduce truncated normal forms (TNFs) as defined in [TMVB18].
We consider a zero-dimensional ideal I ⊂ R = C[x1, . . . , xn] such that V (I) = VCn(I) =
{z1, . . . , zδ} consists of δ < ∞ points and zi has multiplicity µi. We have seen in
Section 3.1 that this implies dimCR/I = δ+ = µ1 + · · ·+ µδ. In the same section, we
also concluded that (numerical approximations of) the coordinates of the points in V (I)
can be computed via eigenvalue computations, once we know matrix representations
of the multiplication operators

Mg : R/I → R/I defined by Mg(f + I) = fg + I.

If B ⊂ R is a subset of δ+ elements such that B + I = {b + I | b ∈ B} is a basis
for R/I, then the columns of a matrix representation of Mg in the basis B + I can
be computed by rewriting {gb | b ∈ B} as a linear combination of the elements in B
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modulo the ideal I. A map R→ B = spanC(B) with the right ‘rewriting properties’ is
called a normal form.

Definition 4.2.1 (Normal form). A normal form with respect to I is a C-linear map
N : R→ B where B ⊂ R is a C-vector subspace of dimension δ+ such that

0 −→ I −→ R
N−→ B −→ 0 (4.2.1)

is a short exact sequence of C-vector spaces and N|B = idB .

Definition 4.2.1 imposes the natural condition of linearity over C on a normal form N .
It follows that, as vector spaces over C, B ' R/I (Theorem A.2.2). However, since N
is a C-linear map whose kernel is an ideal, it also identifies B with R/I as R-modules.

Lemma 4.2.1. For a normal form N : R→ B with respect to I, define

R×B → B with (f, b) 7→ f · b = N (fb). (4.2.2)

Then (4.2.1) is a short exact sequence of R-modules.

Proof. We show that (4.2.2) satisfies the axioms of scalar multiplication (see Definition
A.2.1). For all f, g ∈ R and b, b′ ∈ B we have

1. f · (b+ b′) = N (f(b+ b′)) = N (fb) +N (fb′) = f · b+ f · b′,

2. (f + g) · b = N ((f + g)b) = N (fb) +N (gb) = f · b+ g · b,

3. (fg) · b = N (fgb) = N (fN (gb) + f(gb − N (gb))), and since N ◦ N = N by
N|B = idB, we have that gb − N (gb) ∈ kerN = I, so that f(gb − N (gb)) ∈ I
and (fg) · b = N (fN (gb)) = f · (g · b),

4. 1 · b = N (b) = b.

The map N is also R-linear, since N (fg) = f · N (g) (the argument is similar to the
one used in point 3 above).

The property N ◦N = N used in the proof of Lemma 4.2.1 is a projection property,
which is why normal forms are also called ideal projectors, see e.g. [DB04]. Notice
that we have encountered normal forms before: the map NG of ‘taking remainder
upon division by a Gröbner basis G’ and the map NH of ‘B-reduction along the
subspace L = spanC(H) for a B-border basis H’ both meet Definition 4.2.1. A direct
consequence of Lemma 4.2.1 is that for a normal form N : R → B, ‘multiplication
with g’ can be represented as the map B → B with b 7→ N (gb).

As we remarked in Subsection 3.1.1, in order to compute the coordinates of the points
in V (I) it is sufficient to have a matrix representation for the maps Mxi

, i = 1, . . . , n
representing multiplication with the coordinate functions. These maps are represented
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by b 7→ N (xib), b ∈ B. It is therefore sufficient to compute the restriction of a normal
form N to the finite-dimensional subspace

B+ = B + x1 ·B + · · ·+ xn ·B ⊂ R.

In practice, it will sometimes only be possible to compute N|B+ from N|V for some
finite dimensional subspace V ⊂ R containing B+. This redundancy may force us to
compute with larger matrices, but we can still extract the information we need. We
therefore make the following definition.

Definition 4.2.2 (Truncated normal form (TNF)). Let B, V be finite dimensional
C-vector subspaces of R such that B+ ⊂ V . A truncated normal form (TNF) on V
with respect to I is a C-linear map NV : V → B such that there is a normal form
N : R→ B with respect to I such that N|V = NV .

Some obvious properties of a TNF NV : V → B with respect to I are

Property 1. The sequence 0 −→ I ∩ V −→ V
NV−→ B −→ 0 is exact,

Property 2. (NV )|B = idB ,

Property 3. dimCB = δ+.

It is not so straightforward that the converse statement is also true: TNFs are
characterized by these properties.

Theorem 4.2.1. Let B, V be finite dimensional C-vector subspaces of R such that
B+ ⊂ V and let NV : V → B be a C-linear map. If NV , V,B satisfy Properties 1-3
above, then NV : V → B is a TNF with respect to I.

Before stating the proof of Theorem 4.2.1, it will be helpful to prove a lemma about
the following construction. Consider a map NV : V → B with B+ ⊂ V . For
u ∈ B, we define a linear map Nu : R → B by defining it on monomials first and
extending it linearly. For a monomial xa ∈ R that can be written as xi1 · · ·xis with
1 ≤ i1 ≤ · · · ≤ is ≤ n we set

Nu(xi1 · · ·xis) = NV (xi1NV (xi2NV (· · · NV (xisu) · · · ))), Nu(1) = u. (4.2.3)

Under the assumption that (NV )|B = idB, the resulting C-linear map Nu : R → B
has the following property.

Lemma 4.2.2. Let B, V ⊂ R be finite dimensional C-vector subspaces of R such that
B+ ⊂ V and let NV : V → B be a C-linear map satisfying (NV )|B = idB. For any
u ∈ B, the C-linear map Nu : R → B obtained by extending (4.2.3) linearly is such
that for any f ∈ R, Nu(f) + 〈kerNV 〉 = fu+ 〈kerNV 〉 in R/〈kerNV 〉.

Proof. It suffices to show the lemma for monomials, so we can assume f = xi1 · · ·xis
with 1 ≤ i1 ≤ · · · ≤ is ≤ n. For s = 0, the lemma holds trivially since Nu(1) = u.
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Since (NV )|B = idB , we have that NV (f)− f ∈ kerNV for all f ∈ V . Hence, for s = 1
we have Nu(xi) = NV (xiu) = xiu+ h for some h ∈ kerNV . For s > 1, the proof is by
induction on s. Suppose the lemma holds for all monomials of degree s− 1, then

Nu(xi1 · · ·xis) = NV (xi1NV (xi2 · · ·xis)),
= xi1NV (xi2 · · ·xis) + h for some h ∈ kerNV .

Since NV (xi2 · · ·xis) = xi2 · · ·xis + h′ for some h′ ∈ 〈kerNV 〉 we have

Nu(xi1 · · ·xis) = xi1 · · ·xis + xi1h
′ + h,

which concludes the proof.

Proof of Theorem 4.2.1. Our strategy is to construct explicitly a normal form N :
R→ B satisfying N|V = NV . First, observe that from

0 −→ I ∩ V −→ V
NV−→ B −→ 0 (4.2.4)

(Property 1) we have that B ' V/(I ∩ V ) as C-vector spaces. Since dimCB = δ+ =
dimCR/I (Property 3), the canonical inclusion V/(I ∩ V )→ R/I is an isomorphism.
This gives an isomorphism ι : B → R/I, so that every residue class f + I ∈ R/I has a
representative ι−1(f + I) ∈ B. We define

u = ι−1(1 + I) ∈ B

such that u + I = 1 + I. We define the map N : R → B as Nu from Lemma 4.2.2.
That is, for a monomial xi1 · · ·xis ∈ R, 1 ≤ i1 ≤ · · · ≤ is ≤ n we set

N (xi1 · · ·xis) = NV (xi1NV (xi2NV (· · · NV (xisu) · · · ))), (4.2.5)

and N (1) = u. We extend this map linearly to get a C-linear map N : R→ B.

We now show that N : R→ B is a normal form with respect to I. By Lemma 4.2.2, we
have that N (f) + I = f + I. Note that here we use Property 2. Using V = B⊕ (I ∩V )
(which follows from (4.2.4)), we get the following three statements.

• kerN = I. If f ∈ kerN , then f +I = 0+I. Conversely, if f ∈ I, then N (f) ∈ I,
and hence N (f) ∈ B ∩ (I ∩ V ) = {0}.

• N|B = idB . For any b ∈ B, N (b)− b ∈ B ∩ (I ∩ V ) = {0}.

• N (R) = B. This follows directly from N|B = idB .

This shows that N : R→ B is a normal form with respect to I and hence R = I ⊕B.
It remains to show that N|V = NV . For f ∈ V , we have that N (f) − f ∈ I and
NV (f)− f ∈ I ∩ V . Therefore N (f)−NV (f) ∈ B ∩ I = {0}.
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Example 4.2.1. A TNF associated to a border basis normal form NH : R→ B (with
B connected to 1) is (NH)|B+ = NB+ : B+ → B, given by ‘projection of B+ onto B
along L = I ∩B+’. The short exact sequence looks like this:

0 −→ L −→ B+ NB+−→ B −→ 0.

A Gröbner basis gives a TNF by extending it to a border basis as in Example 3.3.5
and applying the same construction to obtain NB+

≺
. The map NR≤3 : R≤3 → B from

Section 4.1 is TNF by Theorem 4.2.1. 4

Remark 4.2.1. In the proof of Theorem 4.2.1 we extended the linear map NV
satisfying Properties 1-3 to a C-linear map N : R→ C by defining it on monomials as
in (4.2.5). The definition seems to depend on the order of the variables xi1 , . . . , xis
in which the monomial is expanded. To show that the map does not depend on this
ordering, note that for each b ∈ B, by NV (f) = f + h for some h ∈ I ∩ V there are
hi, hj ∈ I ∩ V such that

NV (xiNV (xjb))−NV (xjNV (xib)) = NV (xixjb+ xihj − xjxib− xjhi)
= NV (xihj − xjhi)
= 0,

where the last equality follows from hi, hj ∈ I∩V ⇒ xihj−xjhi ∈ I and xihj−xjhi =
xiNV (xjb)) − xjNV (xib) ∈ V . This means that in the proof of Theorem 4.2.1, the
assumption that 1 ≤ i1 ≤ · · · ≤ is ≤ n was not strictly necessary: any other expansion
of a monomial xa ∈ R would give the same map N . The fact that for any b ∈ B,
NV (xiNV (xjb)) = NV (xjNV (xib)) corresponds to the pairwise commutativity of the
multiplication operators Mxi

◦Mxj
= Mxj

◦Mxi
. 4

Note that once we have picked a basis V for V and B for B, a TNF NV : V → B is
just a matrix. If we have computed such a matrix, it is straightforward to compute the
multiplication matrices Mxi

in the basis B + I by computing the maps b 7→ NV (xib).
In other words, we have reduced the root finding problem to the problem of computing
a TNF with respect to I. To prove that a map NV : V → B (with B+ ⊂ V ) is a
TNF, Theorem 4.2.1 shows that it suffices to show that is has Properties 1-3. In what
follows, we will replace property 1 by a property that may be more convenient to
check in practice.

In the following theorem, for u ∈ R and an ideal J ⊂ R we use the notation (J : u) =
{f ∈ R | fu ∈ J}.

Theorem 4.2.2. Let B, V be finite dimensional C-vector subspaces of R such that
B+ ⊂ V and let NV : V → B be a C-linear map. If NV , V,B are such that

1. kerNV ⊂ I ∩ V and there is u ∈ V such that u+ I is a unit in R/I,

2. (NV )|B = idB,
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3. dimCB = δ+,

then NV : V → B is a TNF with respect to I. Moreover, we have I = (〈kerNV 〉 : u).

Proof. If u+ I is a unit in R/I for some u ∈ V , then NV (u) + I is also a unit in R/I
since NV (u) − u ∈ kerNV ⊂ I ∩ V , which implies u + I = NV (u) + I. Hence, we
can pick an element u ∈ B such that u+ I is a unit in R/I. We define the C-linear
map Nu : R→ B by extending (4.2.3) linearly. We consider the sequence of C-vector
spaces

0 −→ kerNu −→ R
Nu−→ B −→ 0, (4.2.6)

which we now show to be exact. Exactness at kerNu and R is clear. To show that Nu
is surjective, we consider the C-linear map φ : B → R/I given by φ(b) = b + I. By
the assumption that kerNV ⊂ I ∩ V , Lemma 4.2.2 tells us that Nu(f) + I = fu+ I.
Hence, we have that φ(Nu(f)) = fu+ I. This shows that φ(imNu) = R/I and hence
dimC(imNu) ≥ dimCR/I = dimCB, which implies imNu = B.

The fact that Nu(f) + I = fu+ I also shows that kerNu ⊂ I. Indeed, if Nu(f) = 0,
then fu+ I = 0 + I which implies that f ∈ I since u+ I is a unit. Exactness of the
sequence (4.2.6) implies that dimCR/ kerNu = dimCB = dimCR/I, which together
with kerNu ⊂ I means that I = kerNu.

We now define N : R → B by N (f) = Nu(fu−1) for any u−1 ∈ R such that
u−1u+ I = 1+ I. To show that N is a normal form with respect to I whose restriction
to V is NV , we prove the following two things.

• kerN = I. This follows from the fact that Nu(fu−1) = 0 is equivalent to
fu−1 ∈ I, which is in turn equivalent to fu−1u+ I = f + I = 0 + I in R/I.

• N|V = NV . For f ∈ V we have NV (f) = f + h for some h ∈ kerNV ⊂ I ∩ V
and N (f) = Nu(fu−1) = fu−1u+ h′ for some h′ ∈ 〈kerNV 〉 ⊂ I (see Lemma
4.2.2). Therefore N (f) −NV (f) ∈ B ∩ I = {0} by (4.2.6). In particular, this
implies that N|B = (NV )|B = idB .

This shows thatNV : V → B is a TNF. It remains to show that I = (〈kerNV 〉 : u). The
inclusion kerNV ⊂ I ∩ V implies 〈kerNV 〉 ⊂ I and thus (〈kerNV 〉 : u) ⊂ (I : u) = I
(fu ∈ I implies f ∈ I since u+I is a unit in R/I). The opposite inclusion follows from
the fact that if f ∈ I then Nu(f) = 0, and thus 0 = fu+ h for some h ∈ 〈kerNV 〉 by
Lemma 4.2.2. We conclude that f ∈ (〈kerNV 〉 : u).

The following corollary of Theorem 4.2.2 will be important for the numerical stability
of algorithms based on TNFs.

Corollary 4.2.1. Let V be a finite dimensional C-vector subspace of R and let W ⊂ V
be its largest subspace such that W+ ⊂ V (see Remark 4.2.2). If the space V and a
C-linear map N : V → Cδ+ satisfy the following properties:
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1. kerN ⊂ I ∩ V and there is u ∈ V such that u+ I is a unit in R/I,

2. N|W : W → Cδ+ is surjective,

then for any δ+-dimensional subspace B ⊂ W such that N|B is invertible, NV =
(N|B)−1 ◦N : V → B is a TNF with respect to I.

Proof. Note that surjectivity of N|W ensures that there exists some B ⊂ W of
dimension δ+ such that N|B is invertible. It suffices to check that NV = (N|B)−1 ◦
N,B, V satisfy the assumptions of Theorem 4.2.2, which follows trivially from kerNV =
kerN .

Remark 4.2.2 (Existence of W ). The vector space W ⊂ V in Corollary 4.2.1 is

W = {f ∈ V | xif ∈ V, i = 1, . . . , n}.

To see this, note that W is closed under addition and scalar multiplication. Moreover,
for each subspace T satisfying W ( T ⊂ V we can find an element t ∈ T \W for which
xit /∈ V for some i, which implies T+ 6⊂ V . We conclude that W is indeed the largest
subspace of V such that W+ ⊂ V . A different way of thinking about W that does not
require taking elements was pointed out to the author by David Cox. Define W to
be the sum of all subspaces T ⊂ V such that T+ ⊂ V (this is a nonempty collection,
containing {0}). By (U + T )+ = U+ + T+, we see that W+ ⊂ V , and W+ is clearly
the maximal such subspace. 4

The word any in Corollary 4.2.1 is very important: the space B is not required to
come from a monomial order, to be spanned by an order ideal or to be connected
to 1. The map N : V → Cδ+ from Corollary 4.2.1 can be thought of as a ‘TNF in
disguise’: all we need to do to turn it into a TNF is to compose it with N−1

|B for any
δ+-dimensional subspace B ⊂ R such that N|B is invertible. The terminology used in
[TMVB18] is that N covers a TNF.
Definition 4.2.3. For a finite dimensional C-vector subspace V of R, a map N : V →
Cδ+ is said to cover a TNF NV : V → B with respect to I if there is an isomorphism
P : B → Cδ+ such that NV = P−1 ◦N .
Proposition 4.2.1. Let V be a finite dimensional C-vector subspace of R and let
W be as in Corollary 4.2.1. A map N : V → Cδ+ covers a TNF NV : V → B with
respect to I for any B ⊂ W such that N|B is invertible if and only if it satisfies the
assumptions of Corollary 4.2.1.

Proof. The ‘if’ direction is Corollary 4.2.1. For the ‘only if’ direction, suppose N :
V → Cδ+ covers a TNF NV : V → B with respect to I, for any B ⊂ W such that
N|B is invertible. Then N = P ◦ NV for some isomorphism P : B → Cδ+ . Since
N|B = P and B ⊂W , N|W : W → Cδ+ is surjective. It follows from the definition of
a TNF that kerN = I ∩ V and for the normal form N such that N|V = NV we have
N (1) + I = 1 + I, so u = N (1) ∈ B is such that u+ I is a unit in R/I.
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A natural next question to ask is ‘given a set of generators of I, how do we compute a
map N : V → Cδ+ that covers a TNF with respect to I? As we have seen, Gröbner
and border bases are one way to go, and in Section 4.1 we hinted that Macaulay
resultant matrices also lead to an example (at least in the case n = s). However, these
techniques do not fully exploit the freedom for choosing B (Corollary 4.2.1). The
goal of the next section is to present an algorithm that does exploit this, for generic
members of FR(d1, . . . , dn).

4.3 Solving generic, dense systems

Although our goal in this section is to find solutions of a square polynomial system in
affine space, some of the arguments need the homogeneous ideal obtained from
homogenizing the affine equations. To avoid ambiguities we adopt our usual
notation in this setting. Throughout this section, let R = C[y1, . . . , yn] and let
(f̂1, . . . , f̂n) be a generic member of FR(d1, . . . , dn) for (d1, . . . , dn) ∈ Nn>0 in the sense
that VCn(f̂1, . . . , f̂n) consists of δ+ = d1 · · · dn points, counting multiplicities. Let
S = C[x0, . . . , xn] and let fi = ηdi

(f̂i) be the homogeneous polynomials obtained
by homogenizing the f̂i. We denote I = 〈f1, . . . , fn〉 ⊂ S and I0 = I (U0) =
〈f̂1, . . . , f̂n〉 ⊂ R. We denote (I0)≤d = I0∩R≤d for any d ∈ N. This section is organized
as follows. In Subsection 4.3.1 we discuss resultant maps and their close relation to
TNFs. In Subsection 4.3.2 we present an algorithm for solving f̂1 = · · · = f̂n = 0
under the assumptions that there are no solutions ‘at infinity’. Finally, in Subsection
4.3.3 we show some numerical experiments.

4.3.1 Resultant maps

An effective way of computing a TNF starting from a set of generators of the ideal
I0 ⊂ R is by using resultant maps.
Definition 4.3.1 (Resultant map). For a tuple (f̂1, . . . , f̂s) ∈ Rs and finite
dimensional C-vector subspaces V1, . . . , Vs, V ⊂ R such that f̂i · Vi ⊂ V, i = 1, . . . , s,
the resultant map is the C-linear map

resf̂1,...,f̂s
: V1 × · · · × Vs → V given by resf̂1,...,f̂s

(q̂1, . . . , q̂s) = q̂1f̂1 + · · ·+ q̂sf̂s.

We have encountered a resultant map before in Section 4.1. We will also consider
resultant maps associated to elements of a graded ring S, which have a ‘compatibility’
property with respect to the grading.
Definition 4.3.2 (Graded resultant map). Fix d ∈ N>0. For a tuple (f1, . . . , fs) ∈
Sd1 × · · · × Sds

and finite dimensional C-vector subspaces Λi ⊂ Sd−di
, i = 1, . . . , s,

Λ = Sd, the graded resultant map is the C-linear map

resf1,...,fs : Λ1 × · · · × Λs → Λ given by resf1,...,fs(q1, . . . , qs) = q1f1 + · · ·+ qsfs.



SOLVING GENERIC, DENSE SYSTEMS 103

Examples of graded resultant maps are the map φ1 in the Koszul complex (3.2.2)
and the map represented by Mac(f0, . . . , fn) in Subsection 3.4.2 (the connection with
Macaulay’s matrix construction for computing resultants is why these maps are called
resultant maps).

Recall that by Corollary 4.2.1, to show that a map N : V → Cδ+ covers a TNF with
respect to I0, it suffices to show that kerN ⊂ I0 ∩V , there is u ∈ V such that u+ I0 is
a unit in R/I0 and N|W is onto Cδ+ , where W ⊂ V is the largest subspace such that
W+ ⊂ V . A first indication that resultant maps could help us compute TNFs is the
trivial observation that im resf̂1,...,f̂n

⊂ I0 ∩ V . This means that if N : V → V/ im res
is the cokernel map2 of res, we have that kerN ⊂ I0 ∩ V . Our task is to choose the
spaces V1, . . . , Vn and V for the resultant map

resf̂1,...,f̂n
: V1 × · · · × Vn → V

in such a way that the cokernel also satisfies the other criteria. One possible choice
that works for generic members of FR(d1, . . . , dn) follows directly from Macaulay’s
construction. Let d0 = 1, ρ̂ = d1 + · · ·+ dn − n+ 1 and let Λ0, . . . ,Λn,Λ be as defined
in Subsection 3.4.2. Moreover, we let Vi = η−1

ρ̂−di
(Λi) be the image of dehomogenization

restricted to Λi and V = η−1
ρ̂ (Λ). Note that Vi ⊂ R≤ρ̂−di

and V = R≤ρ̂.

Proposition 4.3.1. Let ρ̂, V1, . . . , Vn, V be as defined above and consider the resultant
map

resf̂1,...,f̂n
: V1 × · · · × Vn → V.

If for some f0 ∈ S1, the submatrix M11 of Mac(f0, . . . , fn) is invertible, then the
corank of resf̂1,...,f̂n

is δ+ and any cokernel map N : V → Cδ+ of resf̂1,...,f̂n
covers a

TNF with respect to I0.

Proof. Using the notation

ηρ̂−d1,...,ρ̂−dn
= ηρ̂−d1 × · · · × ηρ̂−dn

: V1 × · · · × Vn → Λ1 × · · · × Λn

for ‘component-wise’ homogenization, we get the commuting diagram

V1 × · · · × Vn V

Λ1 × · · · × Λn Λ

resf̂1,...,f̂n

ηρ̂−d1,...,ρ̂−dn
ηρ̂

resf1,...,fn

from which we see that im resf̂1,...,f̂n
and im resf1,...,fn

are isomorphic via ηρ̂. Since

resf1,...,fn
= Mac(f0, . . . , fn)|Λ1×···×Λn

=
[
M01
M11

]
2The (canonical) cokernel map of a C-linear map φ : V → V ′ is the projection π : V ′ → V ′/ imφ.

We say that ψ : V ′ → V ′′ is a cokernel map of φ if kerψ = imφ and ψ : V ′/ imφ → V ′′ given by
ψ(v′ + imφ) = ψ(v′) is an isomorphism.
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and we are assuming that M11 is invertible, we have that resf̂1,...,f̂n
has corank δ+.

Since 1 ∈ V and 1 + I0 is a unit in R/I0, we only need to show that the restriction
of a map N : V → Cδ+ such that kerN = im resf̂1,...,f̂n

to the subspace W = R≤ρ̂−1

is onto Cδ+ . We can choose bases of V1, . . . , Vn, V such that the resulting matrix
representation of resf̂1,...,f̂n

is

resf̂1,...,f̂n
=
[
M01
M11

]
.

Indeed, the rows are indexed by the ‘dehomogenized versions’ of the monomials
in Σ′

0, . . . ,Σ′
n (in the notation of Subsection 3.4.2) and the columns by the

dehomogenization of Σ0, . . . ,Σn. A cokernel map of resf̂1,...,f̂n
is given by

N =
[
id −M01M

−1
11
]
,
[
id −M01M

−1
11
] [M01
M11

]
= 0.

From this observation it is clear that N|B is onto Cδ+ , where B is the C-span of
the δ+ monomials in η−1

ρ̂ (Σ′
0). Since Σ′

0 = x0 · Σ0, x0 divides all monomials in Σ′
0

and therefore all monomials in B are of degree < ρ̂. It follows that B ⊂ W and
N|W (W ) = Cδ+ .

As noted in Remark 3.4.4, the image of the graded resultant map resf1,...,fn : Λ1×· · ·×
Λn → Λ with Λ1, . . . ,Λn,Λ coming from Macaulay’s construction does not change
when we replace Λi by Sρ̂−di

. As the image remains unchanged, nothing happens
to the cokernel map either. As a result, one may think that it is better to stick
with the smaller spaces Λi from Macaulay’s construction, since it leads to a cokernel
computation of a smaller matrix. However, we observe in numerical experiments that
the cokernel of the larger matrix is less sensitive to perturbations (see Appendix B).

Example 4.3.1. We consider a member (f̂1, f̂2, f̂3) ∈ FR(8, 8, 8) whose coefficients
are all real and drawn from a standard normal distribution. We construct matrices for
two resultant maps

resf1,f2,f3 : Λ1 × Λ2 × Λ3 → Λ.

For the first map, Λ = S22 and Λi is spanC(Σi) coming from Macaulay’s construction.
For the second map, Λ = S22 and Λi is the entire graded piece S14. The corresponding
matrices have sizes 2300× 1788 and 2300× 2040 respectively. These are also matrices
for the resultant maps

resf̂1,f̂2,f̂3
: V1 × V2 × V3 → V

where Vi is the dehomogenization of Λi and V is the dehomogenization of Λ. The
singular values of these matrices are shown in Figure 4.2. The sensitivity of the
cokernel of the matrix to perturbations can be measured by the smallest singular
value that is considered ‘numerically nonzero’ (see Section B.2). This is the size of the
minimal perturbation that enlarges the dimension of the cokernel by 1. The smaller
this number, the more ill-conditioned the problem of computing the cokernel is. For
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Figure 4.2: Singular values of two resultant maps with the same image.

Λi = spanC(Σi) we expect the matrix to be of full rank: there are 1788 nonzero
singular values. For Λi = S14, the image of the map does not change so there are
still 1788 nonzero singular values. However, now there are 252 singular values that
are numerically zero: they are of the order u · σ1, where u ≈ 10−16 is the working
precision and σ1 is the largest singular value. This causes the dramatic ‘jump’ for the
blue dots at j = 1788 in Figure 4.2. The ratio σ1788/σ1 is approximately 2.12 · 10−8

for Λi = spanC(Σi) and 1.76 · 10−2 for Λi = S14. 4

Proposition 4.3.1 implies that for a generic member (f̂1, . . . , f̂n), a TNF with respect
to I0 can be computed from the cokernel of the resultant map

resf̂1,...,f̂n
: V1 × · · · × Vn → V (4.3.1)

where Vi ⊂ R≤ρ̂−di is the dehomogenization of Λi = spanC(Σi) ⊂ Sρ̂−di and V =
R≤ρ̂ = η−1

ρ̂ (Sρ̂). By the discussion above, it is an easy corollary that for a generic
member (f̂1, . . . , f̂n), a TNF with respect to I0 can be computed from the cokernel
of the resultant map (4.3.1) where each Vi is replaced by the larger space R≤ρ̂−di .
‘Genericity’ here means that M11 is invertible. As we have seen in Example 3.4.5, this
implies that the resultant

Res∞ = Resd1,...,dn
(f1(0, x1, . . . , xn), . . . , fn(0, x1, . . . , xn))

does not vanish. However, the converse statement is not true: it might be that there
are no solutions at infinity (Res∞ 6= 0), yet M11 is not invertible. The following
proposition shows that Res∞ 6= 0 is the only condition we need for our cokernel
computation to lead to a TNF.

Proposition 4.3.2. Let Vi = R≤ρ̂−di , i = 1, . . . , n and V = R≤ρ̂. Consider the
resultant map

resf̂1,...,f̂n
: V1 × · · · × Vn → V.
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If Res∞ 6= 0, then the corank of resf̂1,...,f̂n
is δ+ and a cokernel map N : V → Cδ+ of

resf̂1,...,f̂n
covers a TNF with respect to I0.

Proof. Since 1 ∈ V and kerN ⊂ I0 ∩ V is immediate, we only have to show that N|W

is onto Cδ+ , where W = R≤ρ̂−1. As in the proof of Proposition 4.3.1, we have that
im resf̂1,...,f̂n

' im resf1,...,fn where

resf1,...,fn
: Λ1 × · · · × Λn → Λ

with Λi = ηdi
(Vi) = Sρ̂−di

and Λ = ηρ̂(V ) = Sρ̂. The assumption Res∞ 6= 0 implies
that VPn(I) is zero-dimensional (see Subsection 3.4.1). The statement about the corank
of resf̂1,...,f̂n

follows from im resf1,...,fn = Iρ̂, and by the proof of Theorem 3.2.2, Iρ̂
has codimension δ+ in Sρ̂.

It also follows from the proof of Theorem 3.2.2 that HFI(ρ) = dimC(S/I)ρ = δ+

for ρ = ρ̂ − 1. Therefore, we can pick a set of δ+ monomials Bρ ⊂ Sρ such that
Bρ + Iρ is a basis for (S/I)ρ. Since x0 vanishes at none of the points in VPn(I),
Lemma 3.2.1 tells us that, under the assumption that all multiplicities are 1 (δ = δ+),
Mx0 : (S/I)ρ → (S/I)ρ+1 is an isomorphism of C-vector spaces. However, this
is also true for arbitrary multiplicities (Corollary 5.5.3). A consequence is that
Bρ̂ = x0 · Bρ = {x0x

a | xa ∈ Bρ} ⊂ Sρ̂ is such that Bρ̂ + Iρ̂ is a basis for (S/I)ρ̂. Let
{g1, . . . , gm} be a basis for Iρ̂. Since HFI(ρ̂) = δ+, we know that m = dimC Sρ̂ − δ+.
We order the monomials Vρ̂ of degree ρ̂ such that the δ+ monomials in Bρ̂ come first
and represent the inclusion Iρ̂ → Sρ̂ by the matrix

M =

Bρ̂

g1 · · · gm
Vρ̂\Bρ̂

 =
[

Bρ̂ M01
Vρ̂\Bρ̂ M11

]
.

We claim that M11 is invertible. If not, there is a nonzero vector v ∈ Cm such that
M11v = 0. Since M is full rank ({g1, . . . , gm} is a basis), we must have Mv 6= 0. The
vector Mv represents a polynomial in Iρ̂ ∩ spanC(Bρ̂). Since Bρ̂ + Iρ̂ is a basis for
(S/I)ρ̂, this leads to a contradiction. Since imM = Iρ̂ = im resf1,...,fn

' im resf̂1,...,f̂n
,

we have that

N =
[ η−1

ρ̂
(Bρ̂) η−1

ρ̂
(Vρ̂\Bρ̂)

id −M01M
−1
11

]
satisfies NM = 0. We conclude that N : V → Cδ+ represents a cokernel map of
resf̂1,...,f̂n

and the restriction ofN toB = spanC(η−1
ρ̂ (Bρ̂)) is onto Cδ+ . By construction,

x0 divides every monomial in Bρ̂, which implies B ⊂W .

Corollary 4.3.1. If Res∞ 6= 0, then the image of resf̂1,...,f̂n
: V1 × · · · × Vn → V with

Vi, V as in Proposition 4.3.2 is (I0)≤ρ̂.
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Proof. By Proposition 4.3.2, a cokernel map N : V → Cδ+ covers a TNF with respect
to I0. Therefore

0 −→ I0 ∩ V −→ V
N−→ Cδ

+
−→ 0

is exact and kerN = im resf̂1,...,f̂n
= I0 ∩ V = (I0)≤ρ̂.

Remark 4.3.1. If I = 〈f1, . . . , fn〉 is zero-dimensional but Res∞ = 0 (there are
isolated solutions at infinity), then a random affine change of coordinates yi ←
ci0 +

∑n
j=1 cijyj will make sure that the points at infinity move into the affine chart

U0, and Proposition 4.3.2 applies after performing this change of coordinates. 4

Example 4.3.2. The resultant maps from Proposition 4.3.2 are often presented in a
monomial basis for V1, . . . , Vn, V . This leads to highly structured matrices with an
interesting sparsity pattern. An example for n = 3 and d1 = 5, d2 = 4, d3 = 6 is shown
in Figure 4.3. The matrix has size 560× 505. 4

4.3.2 Algorithm

The following simple example illustrates the main steps in the algorithm presented in
this subsection.

Example 4.3.3. We consider the polynomial system in Example 3.1.2. To be
consistent with our notation of this section we replace x, y, f1, f2, I in that example
by y1, y2, f̂1, f̂2, I0 here. The equations become

f̂1 = 7 + 3y1 − 6y2 − 4y2
1 + 2y1y2 + 5y2

2 ,

f̂2 = −1− 3y1 + 14y2 − 2y2
1 + 2y1y2 − 3y2

2 .

The resultant map from Proposition 4.3.2 is represented by

res>
f̂1,f̂2

=



1 y1 y2 y2
1 y1y2 y2

2 y3
1 y2

1y2 y1y
2
2 y3

2

f̂1 7 3 −6 −4 2 5
y1f̂1 7 3 −6 −4 2 5
y2f̂1 7 3 −6 −4 2 5
f̂2 −1 −3 14 −2 2 −3
y1f̂2 −1 −3 14 −2 2 −3
y2f̂2 −1 −3 14 −2 2 −3

.

Knowing the solutions of f̂1 = f̂2 = 0 (see Example 3.1.2), we can construct a cokernel
matrix N whose rows represent ‘evaluation at zi ∈ VC2(I0)’. This gives

N =


1 y1 y2 y2

1 y1y2 y2
2 y3

1 y2
1y2 y1y

2
2 y3

2

ev(−2,3) 1 −2 3 4 −6 9 −8 12 −18 27
ev(3,2) 1 3 2 9 6 4 27 18 12 8
ev(2,1) 1 2 1 4 2 1 8 4 2 1

ev(−1,0) 1 −1 0 1 0 0 −1 0 0 0

.
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Figure 4.3: Nonzero pattern for the resultant map resf̂1,f̂2,f̂3
: R≤8×R≤9×R≤7 → R≤13

for a generic member of FR(5, 4, 6).

One can check that N resf̂1,f̂2
= 0 and N has rank 4. This is of course cheating:

we cannot construct a cokernel like this in practice. However, this construction will
do for illustration purposes. We use the basis B = {y1, y2, y

2
1 , y1y2} (B in Example

3.1.2 corresponds to B + I0 here) and B = spanC(B). The corresponding TNF is
NV = N−1

|B N . Defining Ni : B → B by Ni(b) = N(yib) we find that

Myi
: B → B is given by Myi

(b) = NV (yib) = (N−1
|B N)(yib) = (N−1

|B Ni)(b).
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The maps N|B , N1, N2 are the submatrices of N corresponding to B, y1 ·B, y2 ·B. They
are given by

N|B =


−2 3 4 −6
3 2 9 6
2 1 4 2
−1 0 1 0

 , N1 =


4 −6 −8 12
9 6 27 18
4 2 8 4
1 0 −1 0

 , N2 =


−6 9 12 −18
6 4 18 12
2 1 4 2
0 0 0 0

 .
One can check that My1 = N−1

|B N1 is indeed the matrix ‘Mx’ obtained in Example
3.1.2. 4

Proposition 4.3.2 leads directly to Algorithm 4.1 for computing the multiplication
operators Myi

, i = 1, . . . , n. There are other ways to tackle the actual implementation

Algorithm 4.1 Computes multiplication matrices for (f̂1, . . . , f̂n) ∈ FR(d1, . . . , dn)
such that Res∞ 6= 0

1: procedure MultiplicationMatrices(f̂1, . . . , f̂n)
2: ρ̂ = d1 + · · ·+ dn − n+ 1
3: resf̂1,...,f̂n

← the resultant map V1 × · · · × Vn → V from Proposition 4.3.2
4: N ← coker resf̂1,...,f̂n

5: N|W ← submatrix of N corresponding to monomials of degree < ρ̂
6: N|B ← submatrix of N|W corresponding to an invertible submatrix
7: B ← monomials corresponding to the columns of N|B
8: for i = 1, . . . , n do
9: Ni ← submatrix of N corresponding to xi · B

10: Myi ← (N|B)−1Ni
11: end for
12: return My1 , . . . ,Myn

13: end procedure

(see e.g. Section 4.4). We focus on the following choices in Algorithm 4.1 for now. In
line 3, it is assumed that resf̂1,...,f̂n

is constructed with respect to the monomial basis
of V = R≤ρ̂. The matrix has size

dimCR≤ρ̂ ×
n∑
i=1

dimCR≤ρ̂−di

or in terms of binomial coefficients:(
d1 + · · ·+ dn + 1

n

)
×

n∑
i=1

(
d1 + · · ·+ di−1 + di+1 + · · ·+ dn + 1

n

)
.

In line 4, we compute the cokernel (or left nullspace) of this matrix. This can be
done, for instance, using the singular value decomposition or a rank revealing QR
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decomposition (see Section B.3). The result is a matrix of size δ+ × dimCR≤ρ̂ or

d1 · · · dn ×
(
d1 + · · ·+ dn + 1

n

)
,

whose columns are indexed by the monomials of R≤ρ̂. In line 6 we can restrict N|W
to any subspace B ⊂ W such that N|B is invertible, by Corollary 4.2.1. Here we
propose to select a submatrix of N|W . It is crucial for numerical stability to select
δ+ columns that give a well-conditioned submatrix N|B . One way to do this is to use
QR with column pivoting (Section B.3). More concretely, if the column pivoted QR
factorization of N|W is

N|WP = QR,

where P is a column pivoting matrix, Q is unitary and R is upper triangular, we set
N|B = N|WP:,1:δ+ . In lines 9 and 10, the multiplication maps Myi

are computed as
b 7→ NV (yib), where NV = N−1

|B N is a TNF covered by N .

Remark 4.3.2 (On the complexity of Algorithm 4.1). Let us determine the asymptotic
complexity of the different steps in Algorithm 4.1 in the simplified case where d =
d1 = · · · = dn. In line 4, we compute the cokernel of a matrix of size

p =
(
nd+ 1
n

)
= O

(
nn

n! d
n

)
by q = n

(
(n− 1)d+ 1

n

)
= O

(
(n− 1)n
(n− 1)! d

n

)
.

Assuming this is done using the SVD, it requires O(min(p2q, pq2)) flops [GVL12,
§5.4.5]. For large enough n, d, we have q > p and therefore, the cokernel computation
has complexity O(C1(n)d3n) where

C1(n) =
(
nn

n!

)2 (n− 1)n
(n− 1)! .

As N|W has size dn × O(nn

n! d
n), the column pivoted QR factorization in line 6 has

complexity O(C2(n)d3n) where C2(n) = nn

n! , see [GVL12, §5.4.1]. Finally, the for loop
in lines 8-11 takes O(nd3n) floating point operations. From this rough analysis it is
clear that, for large n, the dominant step in the algorithm in terms of computational
complexity is the cokernel computation. We will propose some possible ways of
reducing the complexity of this step in Subsection 4.4.1. Another important remark is
that the increase in the complexity by performing a column pivoted QR factorization
to make a ‘numerically optimized’ choice of basis B is negligible in comparison to
the cost of the cokernel computation (C2(n) � C1(n)). Nevertheless, as we have
mentioned before and as we will illustrate in Subsection 4.3.3, it is a very effective
way to enhance the numerical stability of the algorithm. 4

Remark 4.3.3. Let f0 = xi and take M,N,B as in the proof of Proposition 4.3.2.
We represent the monomial multiples {xaf0 = xaxi, x

a ∈ Bρ̂} in the monomial basis
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of Sρ̂ to obtain the matrix

Bρ̂

xa1xi · · · xaδ+xi
Vρ̂\Bρ̂

 =
[

Bρ̂ M00
Vρ̂\Bρ̂ M10

]
.

Then N|B = idB, NV = N and N−1
|B Ni = Ni is exactly the Schur complement

M00−M01M
−1
11 M10. Note the strong analogy with the method described in Subsection

3.4.2. 4

Once the multiplication matrices are computed, we have almost solved the system
of equations f̂1 = · · · = f̂n = 0: it remains to diagonalize the matrices My1 , . . . ,Myn .
These matrices share a set of δ invariant subspaces, each associated to one of the isolated
solutions in VCn(I0) (see Subsection 3.1.3). In the case where each of the µi = 1 (i.e., I0
is radical and δ = δ+), the matrices My1 , . . . ,Myn

have δ = δ+ common eigenvectors.
The Myi

can be diagonalized simultaneously. We can compute the common eigenvectors
by diagonalizing a generic linear combination Mh of the Myi . For h = h1x1 + · · ·+
hnxn, hi ∈ C, set Mh = h(My1 , . . . ,Myn) =

∑n
i=1 hiMyi . For generic h, all of the

eigenvalues h(zj), j = 1, . . . , δ+ are distinct (see Lemma 3.1.1) and all invariant
subspaces of Mh have dimension 1. We find DMhD

−1 = diag(h(z1), . . . , h(zδ)).
Applying the same transformation to the Myi

gives DMyi
D−1 = diag(z1i, . . . , zδi).

Note that the order of the roots corresponding to the diagonal elements is the same
for each i: it corresponds to the order of the evaluation functionals evzi in the matrix
D (see Subsection 3.1.1). We can then read off the coordinates of the δ roots from the
diagonals of the DMyi

D−1.

An alternative is to compute the complex Schur form (see Section B.4) of Mh:
UMhUH = Th, where U is a unitary matrix and Th is upper triangular (·H denotes
the Hermitian transpose). The same transformation makes the Myi upper triangular:
UMyiUH = Ti and the solutions can be read off from the diagonals of the Ti.

We note that a simultaneous diagonalization of a set of commuting matrices in
the nondefective case is equivalent to the tensor rank decomposition or canonical
polyadic decomposition (CPD) of a third order tensor [DL06]. It is possible to use
tensor algorithms to refine the solutions obtained by the algorithm described above.
The routine cpd_gevd in Tensorlab can be used for this computation [VDS+16]. In
[VSDL17a], the problem of finding the coordinates of z1, . . . , zδ from the cokernel map
N is interpreted as a multidimensional harmonic retrieval (MHR) problem, which leads
to a CPD computation closely related to the one described here. They establish the
connection with multiplication matrices (in the context of the border basis approach
in [Ste04]) and apply these methods in an overconstrained setting (s > n), where the
coefficients of the polynomials may be contaminated by noise.

We should mention that in the recent work [BBV19], the authors show that computing
the tensor rank decomposition via eigenvalue decompositions is in general unstable.
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That is, it produces larger errors in the computed decomposition than predicted by the
condition number of the tensor rank decomposition problem, as studied in [BV18b].
In practice, for generic systems, these errors are fortunately not too bad. As the
authors of [BBV19] suggest, the output of the eigenvalue computation can be refined,
if needed, to a satisfactory solution of the tensor decomposition problem.

In the case where some of the points in VCn(I0) have multiplicity greater than 1, the
invariant subspaces of a multiplication map Mh are revealed by (3.1.9) in Subsection
3.1.3. The Jordan form of Mh has the eigenvalues h(zi), i = 1, . . . , δ on its diagonal,
where h(zi) occurs µi times. The computation of a Jordan form of a defective matrix in
finite precision arithmetic is very tricky: the tiniest perturbation destroys the Jordan
structure. However, the algorithm described in [Zen16], implemented in NAClab
[ZL14], did show good results on some test cases.

A successful, alternative method is described in [CGT97]. We compute the Schur form
of Mh: UHMhU = Th, with U orthogonal and Th upper triangular. If there are
solutions with multiplicity > 1, some elements on the diagonal of Th appear multiple
times. Next, we use a clustering of the diagonal elements of Th and reorder the
factorization to obtain U′ orthogonal, T′

h upper triangular such that the diagonal
elements are clustered and (U′)HMhU′ = T′

h. The same transformation makes
the Myi block upper triangular with δ diagonal blocks of size µi × µi, i = 1, . . . , δ
corresponding to the clusters on the diagonal of Th. All of the diagonal blocks only
have one eigenvalue, which is h(zi). For more details on this approach we refer to
[CGT97]. Another approach based on the intersection of eigenspaces is given in [MT01]
and [GT09].

In the follow-up paper [VSDL17b] of [VSDL17a], the authors relate the case of higher
multiplicities to the block term decomposition for higher order tensors.

Remark 4.3.4. By the results of Subsection 3.1.1, the coordinates of the solutions
may also be recovered from the eigenvectors of Mh. See for instance [CLO06, Chapter
2, §4 and Chapter 3, §6, Exercise 2], [Ste04, Page 52], [Cox20a, Page 50], [EM07,
Section 4.7] or [CCC+05, Subsection 2.1.3]. The coordinates of the roots are the ratios
between two entries of an eigenvector. This requires only one eigenvalue decomposition
of Mh (the eigenvectors are usually computed by applying inverse iteration using
the eigenvalues obtained from the Schur factorization [TBI97, Lecture 27]), instead
of a Schur factorization Mh = UHTU and 2n matrix-matrix multiplications ∆xi

=
UHMyiU. However, the speed-up is negligible compared to the other steps of the
algorithm. Moreover, the coordinates can be obtained as the ratio between several
different pairs of entries in the eigenvector, and if some solutions have very small or
large coordinates, one should be careful which of these ratios to pick. In this thesis,
we will work with the eigenvalues rather than the eigenvectors of the multiplication
operators. 4

Remark 4.3.5. Like in Section 3.3, it is possible to work over other fields than the
complex numbers. In recent work by Avinash Kulkarni [Kul20], an adaptation of
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Algorithm 4.1 is applied for solving systems of polynomial equations over the p-adics,
using recent developments in ‘p-numerical linear algebra’. 4

4.3.3 Numerical experiments

In this subsection we present some numerical experiments to illustrate the effectiveness
of the TNF approach. We use Algorithm 4.1 from the previous subsection for computing
the multiplication operators, where QR with pivoting is used for the basis selection
(unless stated otherwise). For obtaining the solutions from these multiplication
matrices, i.e., for diagonalizing them simultaneously, we use the Schur factorization of
the multiplication operator corresponding to a generic linear form h. The algorithms
are implemented in Matlab, version 2017a and executed in double precision arithmetic
on an 8 GB RAM machine with an intel Core i7-6820HQ CPU working at 2.70 GHz.
To measure the quality of the numerical approximations of the solutions, we use the
residual as defined in Appendix C as a measure for the backward error. We should
mention that the construction of the matrix resf̂1,...,f̂n

in line 3 of Algorithm 4.1
is implemented in Fortran, because this step takes too much time in Matlab. We
call the Fortran routine from Matlab using a MEX file. A Julia implementation
of Algorithm 4.1 by Bernard Mourrain is accessible at https://gitlab.inria.fr/
AlgebraicGeometricModeling/AlgebraicSolvers.jl.

Experiment 4.3.1 (Monomial bases for generic systems). As a first experiment,
for n, d ∈ N>0, we construct a generic member FR(d, . . . , d) (d is listed n times) by
drawing the coefficients from a standard normal distribution. We apply Algorithm
4.1 and we look at the monomial basis B that is chosen using the QR algorithm with
column pivoting. One could ask if it is (close to) being an order ideal or if it leads
to a subspace B ⊂ W that is connected to 1. The result for n = 2, d = 15 is shown
in Figure 4.4, in comparison to the basis monomials used in Macaulay’s construction
(see Subsection 3.4.2), which is a nice order ideal. Note that, as before, we identify
lattice points in the positive orthant with monomials of R. The basis chosen by the
QR algorithm is not connected to 1, and it is not an order ideal. However, as we
will see in Experiment 4.3.2, it leads to a tremendous improvement of the numerical
behavior. We repeat the experiment, this time for n = 3, d = 7. The result, shown in
Figure 4.5, is analogous. Finally, we have repeated the experiment 100 times for the
families n = 2, d = 30 and n = 3, d = 10 and counted how many times each monomial
of degree ≤ ρ = ρ̂− 1 occurred in the basis. The result is shown in Figure 4.6. 4

Experiment 4.3.2 (Improvement of QR bases with respect to Macaulay bases). In
this experiment, we show that choosing the basis BQR using QR with column pivoting
leads to a great improvement of the accuracy of the computed solutions with respect to
the basis BMac coming from Macaulay’s construction. We consider bivariate systems
(n = 2) and for increasing values of d we generate generic members of FR(d, d) with
R = C[x, y] as in Experiment 4.3.1. The choice of B in step 6 of Algorithm 4.1 is made
using either QR with column pivoting, resulting in the basis BQR, or by selecting the

https://gitlab.inria.fr/AlgebraicGeometricModeling/AlgebraicSolvers.jl
https://gitlab.inria.fr/AlgebraicGeometricModeling/AlgebraicSolvers.jl
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Figure 4.4: Monomials of degree ≤ ρ = ρ̂− 1 that are chosen to represent the quotient
algebra associated to a generic member of FC[x,y](15, 15) in the method of Subsection
3.4.2 (left) and in Algorithm 4.1 using QR with column pivoting (right).
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Figure 4.5: Monomials of degree ≤ ρ = ρ̂− 1 that are chosen to represent the quotient
algebra associated to a generic member of FC[x,y,z](7, 7, 7) in the method of Subsection
3.4.2 (left) and in Algorithm 4.1 using QR with column pivoting (right).

columns of N corresponding to the Macaulay basis

BMac = {xa1ya2 | a1 < d, a2 < d}.

For d = 2, 3, . . . , 20, we compute the condition number κ of the matrix N|B, the
maximal (rmax) and minimal (rmin) residual of all solutions, and also the geometric
mean of the residuals rmean of all computed solutions. The results are reported in
Figure 4.7. The figure shows the results averaged out over 10 experiments. That
is, it shows the geometric mean of the condition numbers, minimal, maximal and
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Figure 4.6: Illustration of how many times the monomials of degree ≤ ρ̂ are chosen to
represent the quotient algebra associated to a generic member of FC[x,y](30, 30) (left)
and FC[x,y,z](10, 10, 10) (right) by Algorithm 4.1 using QR with column pivoting. The
number of times the monomial is chosen is represented by the intensity of the color of
the corresponding lattice point.
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Figure 4.7: Average condition number of N|B (left) and rmax, rmin, rmean (right) for
the TNF solver using BMac (orange) and BQR (blue) for solving generic members of
FR(d, d), d = 2, 3, . . . , 20.

mean residuals of 10 different runs. It is clear that choosing the monomial basis
using QR with column pivoting (illustrated in Experiment 4.3.1) leads to a significant
improvement. The figure also shows that the large condition number of N|B for BMac
is what’s behind the loss of accuracy. 4

Experiment 4.3.3 (Comparison with PNLA). PNLA is a Matlab package that can
be used for several kinds of computations with multivariate polynomials, including
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Figure 4.8: Values of rmax, rmin and rmean for the TNF solver (blue), qdsparf (yellow)
and sparf (purple) in Experiment 4.3.3.

system solving. The software is available at https://github.com/kbatseli/PNLA_
MATLAB_OCTAVE. The package implements the algorithms described in [Bat13]. The
function sparf can be used for general purpose isolated affine root finding. It builds
larger and larger resultant maps until the cokernel map can be used for computing
all the roots. The function qdsparf is the ‘quick and dirty’ alternative for sparf,
which is expected to be faster but in some cases less accurate. We compare both
methods against Algorithm 4.1 using QR with column pivoting followed by Schur
factorization for simultaneous diagonalization. The systems we solve are generic
members of FR(d, d) (i.e. we fix n = 2) as in Experiment 4.3.1. We should note that
the PNLA functions a priori do not make any assumptions on the system: it may have
solutions at infinity, and it may even be overdetermined. It does not exploit the fact
that the system is a general member of FR(d, d). However, sparf and qdsparf should
certainly be able to handle such systems. We compute the maximal (rmax), minimal
(rmin) and mean (rmean) residual of all computed solutions for d = 2, 3, . . . , 20. The
result, averaged out over 10 experiments, is shown in Figure 4.8. It is clear that the
TNF solver gives better results. The function sparf gave errors for d > 10, so for
this method results are only reported up to d = 10. As mentioned above, Figure 4.8
only shows the residuals of the computed solutions. In fact, the PNLA solvers do not
compute numerical approximations for all roots of the system. The difference between
the actual number of roots d2 and the number of computed roots is denoted eTNF,
esparf, eqdsparf for the different solvers. These numbers are reported, together with
the computation times tTNF, tsparf, tqdsparf, in Table 4.1. 4

Experiment 4.3.4 (Comparison with Gröbner bases). This is an experiment taken
from [MTVB19, Subsection 6.3]. We have seen in Section 3.3 that Gröbner bases
can be used to compute multiplication matrices. Let G be a Gröbner basis with
respect to a given monomial order ‘≺’. The set of standard monomials is denoted
by B≺ = {xa1 , . . . , xaδ+}. The j-th column of the multiplication matrix Mxi

is then
given by NG(xixaj ). This gives an algorithm for finding the multiplication operators

https://github.com/kbatseli/PNLA_MATLAB_OCTAVE
https://github.com/kbatseli/PNLA_MATLAB_OCTAVE
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d tTNF tqdsparf tsparf eTNF eqdsparf esparf

2 1.73 · 10−3 5.4 · 10−3 1.04 · 10−2 0 0 0
3 2.39 · 10−3 8.53 · 10−3 2.49 · 10−2 0 0 0
4 3.39 · 10−3 1.76 · 10−2 6.46 · 10−2 0 0 0
5 6.84 · 10−3 3.16 · 10−2 0.14 0 0.2 0
6 1.18 · 10−2 5.41 · 10−2 0.29 0 0.1 0
7 1.62 · 10−2 8.88 · 10−2 0.54 0 0.1 0
8 2.6 · 10−2 0.14 0.96 0 0.3 0
9 3.2 · 10−2 0.2 1.68 0 0.6 0
10 4.24 · 10−2 0.29 2.84 0 0.9 0
11 5.47 · 10−2 0.39 0 2.5
12 7.17 · 10−2 0.55 0 1.6
13 9.77 · 10−2 0.72 0 3.1
14 0.12 0.94 0 3.7
15 0.15 1.17 0 5.7
16 0.19 1.53 0 5.6
17 0.23 1.85 0 9.5
18 0.28 2.31 0 9.8
19 0.34 2.9 0 10.4
20 0.42 3.34 0 18.4

Table 4.1: Average timing results and average number of missed solutions for the TNF
solver, qdsparf and sparf in Experiment 4.3.3.

Mxi
. Table 4.2 summarizes the steps of the algorithm and gives the corresponding

steps of the TNF algorithm. We use Faugère’s FGb in Maple™ for step 1 [Fau10].

TNF-QR algorithm GB algorithm
1 Construct the resultant

map and compute N
Compute a Gröbner
basis G which induces a
normal form NG

2 QR with pivoting on
N|W to find N|B
corresponding to a basis
B of R/I

Find a normal set B≺
from G

3 Compute the Ni and
set Mxi = (N|B)−1Ni

Compute the
multiplication matrices
by applying the induced
normal form NG on
xi · B

Table 4.2: Corresponding steps of the TNF algorithm and the Gröbner basis algorithm

This is considered state of the art software for computing Gröbner bases. The routine
fgb_gbasis computes a Gröbner basis with respect to the degree reverse lexicographic
(≺drl) monomial order. For step 2, we use the command NormalSet from the built-in
Maple package Groebner to compute a normal set from this Gröbner basis. Step 3 is
done using the command MultiplicationMatrix from the Groebner package.
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An important note is that the Gröbner basis computation is performed in exact
arithmetic. In this experiment we compare the speed of our algorithm with that of
the Gröbner basis algorithm for computing the matrices Mxi

. This is, in a sense,
comparing apples and oranges. Of course, a speed-up with respect to exact arithmetic
is to be expected. The goal of this experiment is to quantify this speed-up. The price
we pay for this speed-up (i.e. a numerical approximation error on the computed result)
is quantified more in detail in different experiments. We note that the residuals for
all tests in this experiment were no larger than 10−10. TNFs may offer a numerical
algebraic alternative for Gröbner basis computation if one is happy with accurate
approximations of the multiplication matrices.

To compute the roots of the system, one can compute the eigenvalues of the approximate
multiplication operators obtained via Algorithm 4.1, or of the exact multiplication
operators obtained from a Gröbner basis, by using a numerical method. This solving
step is not integrated in the comparison.

We perform two different experiments: one in which the coefficients are floating point
numbers up to 16 digits of accuracy that are converted in Maple to rational numbers,
and one in which the coefficients are integers, uniformly distributed between −50 and
50. We restrict Matlab to the use of only one core since Maple also uses only one. For
different n, we construct a generic member of FR(d, . . . , d) as in Experiment 4.3.1. We
compare the computation time needed for finding the multiplication matrices using
our algorithm with the time needed for the Gröbner basis algorithm as described in
Table 4.2. The float coefficients are approximated up to 16 digits of accuracy by a
rational number in Maple, before starting the computation. This results in rational
numbers with large numerators and denominators, which makes the computation in
exact arithmetic very time consuming. Results are shown in Table 4.3. We conclude
that the TNF method using floating point arithmetic can lead to a huge reduction of
the computation time in these situations and, with the right choice of basis for the
quotient algebra, the loss of accuracy is very small.

We now construct a generic member of FR(d, . . . , d) by drawing the coefficients from a
discrete uniform distribution on the integers −50, . . . , 50 for each of the n polynomials
defining the system. Table 4.4 shows that the Gröbner basis method in exact precision
is faster with these ‘simple’ coefficients, but the speed-up by using the TNF algorithm
with floating point arithmetic is still significant.

4

Experiment 4.3.5 (Comparison with homotopy solvers). This experiment is taken
from Subsection 8.5 in [TMVB18]. As mentioned in Chapter 1, a popular approach for
solving polynomial equations numerically is homotopy continuation. We compare the
speed and accuracy of our method to that of the homotopy implementations PHCpack
(v2.4.64) [Ver99] and Bertini (v1.5.1) [BSHW13], which are considered state of the
art. Later versions of these packages give similar results, as we will see in Chapter 6.

We use double precision arithmetic for all computations and standard settings for
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n d tTNF tGB tGB/tTNF

2 2 5.68 · 10−4 1.52 · 10−2 26.76
2 3 1.88 · 10−3 2.51 · 10−2 13.34
2 4 2.3 · 10−3 5.88 · 10−2 25.57
2 5 3.9 · 10−3 0.19 47.96
2 6 5.98 · 10−3 0.48 79.55
2 7 8.03 · 10−3 1.16 143.89
2 8 1.24 · 10−2 2.85 229.04
2 9 1.75 · 10−2 6.19 354.39
2 10 2.49 · 10−2 14.27 573.24

3 2 2.1 · 10−3 5.66 · 10−2 27
3 3 9.49 · 10−3 1.82 191.54
3 4 3.43 · 10−2 52.19 1,520.51
3 5 0.12 893.38 7,186.04

4 2 1.2 · 10−2 1.31 109.76
4 3 0.27 910.96 3,391.25

5 2 0.15 59 398.27

Table 4.3: Timing results for the TNF algorithm (tTNF (sec)) and the Gröbner basis
algorithm in Maple (tGB (sec)) for generic systems in n variables of degree d with
floating point coefficients drawn from a normal distribution with zero mean and σ = 1.

Bertini and PHCpack apart from that. We use the command solve_system from the
Matlab interface PHClab [GV08] for PHCpack and we run Bertini via the command
system in Matlab, which calls the operating system to execute Bertini commands.
By a generic dense system of degree d in n variables we mean a generic member
(f1, . . . , fn) ∈ FR(d, . . . , d), where R is the polynomial ring in n variables and d is
listed n times. For the experiment we fix a value of n and generate generic dense
systems of increasing degree d as in Experiment 4.3.1 to use as input for the different
solvers.

Tables 4.5 up to 4.12 give detailed results of the experiment. The following notation
is used in the tables. The number of solutions of the input system is δ (in this case,
δ = δ+ = dn). The numbers m1,m2 = n1, n2 give the sizes of (resf1,...,fn)> ∈ Cm1×m2

and N ∈ Cn1×n2 . The maximal residual of the solutions computed by the TNF solver
is denoted by rmax. By eTNF, ephc, ebrt we denote the number of ‘missed’ solutions
for the TNF solver, PHCpack and Bertini respectively. This is equal to dn minus the
number of computed solutions. Since the homotopy methods use Newton refinement
intrinsically, their computed solutions give residuals of the order of the unit roundoff.
The values tM , tN , tB , tS denote the time for the construction of the resultant map
(Fortran), the computation of its cokernel, the computation of the basis via QR
together with the construction of the multiplication matrices and the time to compute
the simultaneous Schur decomposition respectively. The total computation times
are tTNF, tphc and tbrt for the TNF solver (tTNF = tM + tN + tB + tS), PHCpack
and Bertini respectively. All timings are in seconds. Tables 4.5 and 4.6 present the
experiment for n = 2 variables, Tables 4.7 and 4.8 for n = 3, Tables 4.9 and 4.10 for
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n d tTNF tGB tGB/tTNF

2 2 6.09 · 10−4 1.1 · 10−2 18.06
2 4 2.3 · 10−3 1.82 · 10−2 7.91
2 6 8.75 · 10−3 3 · 10−2 3.43
2 8 1.24 · 10−2 8.1 · 10−2 6.51
2 10 2.48 · 10−2 0.15 5.88
2 12 4.24 · 10−2 0.38 8.89
2 14 6.73 · 10−2 0.71 10.56
2 16 0.1 1.32 12.62
2 18 0.16 2.33 14.91
2 20 0.2 4.31 21.42
2 22 0.29 7.07 24.64
2 24 0.5 11.55 23.09
2 26 0.62 19.36 31.08
2 28 0.81 29.25 36.22
2 30 1.08 41.01 37.89

3 2 2.47 · 10−3 1.74 · 10−2 7.05
3 3 9.82 · 10−3 6.1 · 10−2 6.21
3 4 3.17 · 10−2 0.33 10.4
3 5 9.38 · 10−2 2.09 22.33
3 6 0.27 10.42 38.67
3 7 1.31 45.4 34.62
3 8 5.3 168.03 31.72
3 9 16.16 573.45 35.5
3 10 41.71 1,674 40.14

4 2 1.27 · 10−2 5.8 · 10−2 4.58
4 3 0.18 3.19 17.86
4 4 8.89 99.78 11.23
4 5 145.36 2,367.04 16.28

5 2 9.32 · 10−2 0.4 4.28
5 3 73.16 286.15 3.91

Table 4.4: Timing results for the TNF algorithm (tTNF (sec)) and the Gröbner basis
algorithm in Maple (tGB (sec)) for generic systems in n variables of degree d with
integer coefficients uniformly distributed between −50 and 50.

n = 4 and Tables 4.11 and 4.12 for n = 5.

We observe that our method has found numerical approximations for all dn roots, with
a residual no larger than order 10−9. Due to the quadratic convergence of Newton’s
iteration, one refining step can be expected to result in a residual of the order of the
unit roundoff. Table 4.5 shows that for 2 variables, up to degree d = 61, our method
is the fastest. For n = 3 this is no longer the case but timings are comparable. For a
larger number of variables, the matrix of the resultant map in the algorithms becomes
very large and the cokernel computation is expensive, which makes the algebraic
method slower than the continuation solvers.

An important note is that homotopy methods do not guarantee that all solutions are
found. In fact, they lose some solutions for large systems. For n = 2, d = 55, Bertini
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d δ m1 m2=n1 n2 rmax eTNF ephc ebrt

1 1 2 3 1 1.28 · 10−16 0 0 0
7 49 56 105 49 2.06 · 10−13 0 0 0

13 169 182 351 169 2.18 · 10−13 0 0 0
19 361 380 741 361 5.28 · 10−13 0 0 0
25 625 650 1,275 625 1.21 · 10−10 0 11 0
31 961 992 1,953 961 5.23 · 10−9 0 10 0
37 1,369 1,406 2,775 1,369 4.05 · 10−12 0 9 1
43 1,849 1,892 3,741 1,849 1.74 · 10−11 0 24 4
49 2,401 2,450 4,851 2,401 1.57 · 10−10 0 37 38
55 3,025 3,080 6,105 3,025 1.84 · 10−11 0 55 538
61 3,721 3,782 7,503 3,721 3.26 · 10−11 0 59 1,461

Table 4.5: Numerical results for PHCpack, Bertini and our method for dense systems
in n = 2 variables of increasing degree d. The table shows matrix sizes, accuracy and
number of solutions.

d tM tN tB tS tTNF tphc tbrt

1 1.48 · 10−4 5.5 · 10−5 2.96 · 10−4 3.6 · 10−5 5.35 · 10−4 5.6 · 10−2 1.41 · 10−2

7 7.88 · 10−3 1.68 · 10−3 3.76 · 10−3 2.78 · 10−3 1.61 · 10−2 0.18 8.65 · 10−2

13 4.65 · 10−2 1.03 · 10−2 1.66 · 10−2 2.81 · 10−2 0.1 0.84 1.14
19 0.13 5.69 · 10−2 5.34 · 10−2 0.13 0.37 3.29 8.79
25 0.32 0.18 0.15 0.51 1.16 8.79 33.83
31 0.55 0.51 0.55 1.49 3.1 20.25 98.39
37 0.96 1.52 1.5 3.52 7.5 39.92 258.09
43 1.47 4.05 3.8 8.28 17.6 69.1 504.01
49 2.47 10.46 8.78 17.91 39.62 124.47 891.37
55 3.69 20.51 17.85 34.3 76.34 178.55 1,581.77
61 4.85 36.32 31.26 62.87 135.3 283.87 2,115.66

Table 4.6: Timing results for PHCpack, Bertini and our method for dense systems in
n = 2 variables of increasing degree d.

d δ m1 m2=n1 n2 rmax eTNF ephc ebrt

1 1 3 4 1 1.79 · 10−16 0 0 0
3 27 105 120 27 1.05 · 10−14 0 0 0
5 125 495 560 125 1.29 · 10−12 0 0 0
7 343 1,365 1,540 343 6.71 · 10−12 0 0 0
9 729 2,907 3,276 729 1.38 · 10−10 0 3 0

11 1,331 5,313 5,984 1,331 3.11 · 10−11 0 0 0
13 2,197 8,775 9,880 2,197 2.86 · 10−11 0 5 0

Table 4.7: Numerical results for PHCpack, Bertini and our method for dense systems
in n = 3 variables of increasing degree d. The table shows matrix sizes, accuracy and
number of solutions.

gives up on 538 out of 3025 paths, so about 18% of the solutions is not found (using
default settings). For the same problem, PHCpack loses 2% of the solutions.

In this experiment, we did not include a comparison with the relatively new Julia
package HomotopyContinuation.jl [BT18]. The reason is that the software was not



122 TRUNCATED NORMAL FORMS

d tM tN tB tS tTNF tphc tbrt

1 3.72 · 10−4 1.24 · 10−4 2.31 · 10−3 4.5 · 10−5 2.85 · 10−3 6.8 · 10−2 1.69 · 10−2

3 7.91 · 10−3 2.42 · 10−3 7.06 · 10−3 1.08 · 10−3 1.85 · 10−2 0.14 7.33 · 10−2

5 5.66 · 10−2 3.93 · 10−2 3.31 · 10−2 1.17 · 10−2 0.14 0.68 0.63
7 0.23 1.13 0.12 9.9 · 10−2 1.57 3.42 4.11
9 0.68 14.43 0.65 0.63 16.4 12.21 17.29

11 1.77 44.79 3.91 3.98 54.46 39.08 70.66
13 5.81 183.67 16.07 15.35 220.9 97.28 210.34

Table 4.8: Timing results for PHCpack, Bertini and our method for dense systems in
n = 3 variables of increasing degree d.

d δ m1 m2=n1 n2 rmax eTNF ephc ebrt

1 1 4 5 1 1.24 · 10−16 0 0 0
2 16 140 126 16 1.13 · 10−14 0 0 0
3 81 840 715 81 3.84 · 10−14 0 0 0
4 256 2,860 2,380 256 1.52 · 10−13 0 0 1

Table 4.9: Numerical results for PHCpack, Bertini and our method for dense systems
in n = 4 variables of increasing degree d. The table shows matrix sizes, accuracy and
number of solutions.

d tM tN tB tS tTNF tphc tbrt

1 1.1 · 10−2 2.83 · 10−4 1.83 · 10−2 8.43 · 10−4 3.04 · 10−2 6.82 · 10−2 1.76 · 10−2

2 1.12 · 10−2 4.29 · 10−3 1.08 · 10−2 5.94 · 10−4 2.69 · 10−2 0.12 6.32 · 10−2

3 0.11 0.14 5.76 · 10−2 5.55 · 10−3 0.31 0.52 0.59
4 0.46 8.31 0.23 5.41 · 10−2 9.05 2.27 3.62

Table 4.10: Timing results for PHCpack, Bertini and our method for dense systems in
n = 4 variables of increasing degree d.

d δ m1 m2=n1 n2 rmax eTNF ephc ebrt

1 1 5 6 1 7.89 · 10−17 0 0 0
2 32 630 462 32 4.22 · 10−14 0 0 0
3 243 6,435 4,368 243 1.84 · 10−12 0 0 0

Table 4.11: Numerical results for PHCpack, Bertini and our method for dense systems
in n = 5 variables of increasing degree d. The table shows matrix sizes, accuracy and
number of solutions.

d tM tN tB tS tTNF tphc tbrt

1 4.87 · 10−4 1.54 · 10−4 1.86 · 10−3 3 · 10−5 2.53 · 10−3 6.52 · 10−2 1.91 · 10−2

2 5.97 · 10−2 3.9 · 10−2 4.07 · 10−2 1.46 · 10−3 0.14 0.26 0.24
3 1.21 69.38 0.53 5.5 · 10−2 71.18 2.42 4.74

Table 4.12: Timing results for PHCpack, Bertini and our method for dense systems in
n = 5 variables of increasing degree d.
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yet available at the time we wrote [TMVB18] and it is cumbersome to call it from
Matlab. We remark that HomotopyContinuation.jl is a very promising package: the
numerical path tracking happens amazingly fast and the implementation is also very
robust. For instance, a generic member of FC[x,y](50, 50) is solved within less than a
second and often no solutions are lost: in 1000 runs, there was 1 missing solution for
178 systems, 2 missing solutions for 12 systems and no missing solutions for all 810
other systems (we used v1.4.1 for this). We will say more about this package and its
performance in Chapter 6. 4

Experiment 4.3.6 (Intersecting plane curves of degree 170). Experiment 4.3.5 shows
that the TNF solver is robust for generic problems in 2 variables up to degree at
least 61. In this experiment, we will push this much further: we use Algorithm 4.1 to
solve generic members of FC[x,y](170, 170). We also show what the algorithm can do
for higher values of n. For this experiment we use a 128 GB RAM machine with a
Xeon E5-2697 v3 CPU working at 2.60 GHz. Generic square systems in n variables
of degree d are generated as in the previous experiments. The distribution of the
residuals for all solutions for some values of n, d are shown in Figure 4.9. Note that
plane curves of degree 170 are no problem for the TNF algorithm with pivoted QR for
basis selection, while the classical Macaulay construction fails to give any meaningful
results for d = 20 (Experiment 4.3.2) and homotopy solvers start missing solutions
for d ≥ 40 (or even smaller). The computation times for n = 2, d = 100, 150, 170 were
approximately 53 minutes, 8 hours and 49 minutes and 19 hours respectively. Some
other timings are

n = 3, d = 15 : 8 min n = 5, d = 4 : 37 min
n = 3, d = 20 : 1h 1 min n = 6, d = 3 : 1h 37 min
n = 3, d = 23 : 3h 26 min n = 7, d = 2 : 1 min
n = 4, d = 8 : 8h 12 min n = 8, d = 2 : 1h 17 min

For higher degrees than 170, 23, 8, 4, 3, 2, 2 for n = 2, 3, 4, 5, 6, 7, 8 respectively, the
machine ran into memory problems. 4

4.4 Improvements and generalizations

This section is based on Sections 4 and 5 of [MTVB19]. In Subsection 4.4.1 we discuss
two possible ways of reducing the computational complexity of computing the cokernel
of a resultant map. We show with an experiment that this reduces the computation
time significantly for n > 2. In Subsection 4.4.2, we discuss two natural ways of using
non-monomial bases for constructing TNFs.

4.4.1 Fast cokernel computation

The TNF method for solving polynomial systems, like other algebraic approaches,
has the important drawback that the complexity scales badly with the number n of
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Figure 4.9: Density functions of the log10 of the residuals of all numerical solutions
computed by Algorithm 4.1 for n = 2, . . . , 8 and different values of d.
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variables. This is due to the fact that the complexity of computing the cokernel map
of the appropriate resultant map increases drastically with n. This is illustrated, for
example, in Experiment 4.3.5. We describe two possible techniques to reduce this
drastic increase of complexity. The first one computes the cokernel map degree by
degree. This technique has also been exploited in [BDDM14]. The second one exploits
the redundancy in the vector spaces Vi in the definition of the resultant map.

Computing the cokernel degree by degree

Let I = 〈f̂1, . . . , f̂s〉 ⊂ R with (f̂1, . . . , f̂s) ∈ FR(d1, . . . , ds). We consider a resultant
map

res = resf̂1,...,f̂s
: V1 × · · · × Vs → V

where V = R≤d, Vi = R≤d−di for some degree d. Our aim is to compute a cokernel
map of res. We define the resultant maps

resk : V1,k × · · · × Vs,k → V (k), k = 1, . . . , d

such that V (k) = R≤k, Vi,k = R≤k−di with the convention that R≤k = {0} when
k < 0. Let Nk : Vk → Cδk be a cokernel map of resk. We have that resd = res and
Nd = N is the map we want to compute. Our aim here is to compute Nk+1 from Nk
in an efficient way. Note that V (k) ⊂ V (k + 1), Vi,k ⊂ Vi,k+1. We write

resk+1 :
s∏
i=1

Vi,k × Tk+1 → V (k + 1)

where Tk+1 '
∏s
i=1 Vi,k+1/Vi,k and (resk+1)|

∏s

i=1
Vi,k

= resk. Define

Nk × id : V (k)× V (k + 1)
V (k) → Cδk × V (k + 1)

V (k) given by (v, w) 7→ (Nk(v), w).

Furthermore, set res′
k+1 = (resk+1)|Tk+1 . Here is what the matrices look like:

Nk × id =
[ V (k) V (k+1)

V (k)

Cδk Nk 0
V (k+1)

V (k) 0 id

]
, resk+1 =

[ ∏s

i=1
Vi,k Tk+1

V (k) resk Ak+1
V (k+1)

V (k) 0 Bk+1

]
,

where res′
k+1 is represented as a block matrix

[
Ak+1
Bk+1

]
. Finally, define

Lk+1 : Cδk × V (k + 1)
V (k) → Cδk+1

as the cokernel of (Nk × id) ◦ res′
k+1.
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Theorem 4.4.1. The map Nk+1 = Lk+1 ◦ (Nk × id) is a cokernel map of resk+1, i.e.
im resk+1 = kerNk+1 and Nk+1 is onto Cδk+1 .

Proof. We have the commutative diagram

Tk+1 Cδk × V (k+1)
V (k) Cδk+1 0

∏s
i=1 Vi,k × Tk+1 V (k)× V (k+1)

V (k)

(Nk×id)◦ res′
k+1 Lk+1

resk+1

Nk×id
Nk+1

where the upward pointing arrow on the left is projection onto Tk+1 and the top row
is exact by the definition of Lk+1. The map Nk+1 = Lk+1 ◦ (Nk × id) is onto since
both Lk+1 and (Nk × id) are onto.

If (vk, vk+1) ∈ im resk+1 ⊂ V (k)× V (k + 1)/V (k), then for some (w, t) ∈
∏s
i=1 Vi,k ×

Tk+1,

Nk+1(vk, vk+1) = (Lk+1 ◦ (Nk × id) ◦ resk+1)(w, t)
= (Lk+1 ◦ (Nk × id) ◦ res′

k+1)(t) = 0.

This proves that im resk+1 ⊂ kerNk+1. For the opposite inclusion, take (vk, vk+1) ∈
kerNk+1. We have that (Nk(vk), vk+1) ∈ kerLk+1 = im((Nk × id) ◦ res′

k+1). Hence,
for some (w, t) ∈

∏s
i=1 Vi,k × Tk+1, we have that

(Nk(vk), vk+1) = ((Nk × id) ◦ res′
k+1)(t) = ((Nk × id) ◦ resk+1)(w, t).

This means that there is some element resk+1(w, t) = (v′
k, v

′
k+1) ∈ im resk+1 such

that Nk(v′
k) = Nk(vk), v′

k+1 = vk+1. Since vk − v′
k ∈ kerNk = im resk, we can find

w′ ∈
∏s
i=1 Vi,k such that resk+1(w + w′, t) = (vk, vk+1).

This means that if we have computed Nk, then we can compute Nk+1 by computing
the cokernel Lk+1 of (Nk × id) ◦ Res′

k+1 = [NkAk+1 Bk+1] instead of the cokernel of
Resk+1. This reduces the computational complexity significantly for n > 2. We show
some results in Experiment 4.4.1.

Reducing the size of the resultant map

We consider the case n = s of square polynomial systems: (f̂1, . . . , f̂n) ∈ FR(d1, . . . , dn).
As explained above, a map N covering a TNF can be computed as the cokernel of the
resultant map

res = resf̂1,...,f̂n
: V1 × · · · × Vn → V

from Proposition 4.3.2. We have seen in Section 4.2 that the Macaulay resultant
construction gives a subspace of V1 × · · · × Vn such that if we restrict res to this
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Figure 4.10: The ratio (l1 + . . . + ln)/(l − δ) of the number of columns of res and
res C for increasing values of n = 3, 4, 5, 6, 7 and degrees d = 2, . . . , 10, in the context
of Example 4.4.1.

subspace, it has the same image. In the case where this is a proper subspace, the
matrix of res is column rank deficient. However, in the generic case, we know that the
rank of res is l− δ where l = dimC V and δ = dimCR/〈f̂1, . . . , f̂n〉 (if some roots have
multiplicities, δ should be replaced by δ+ in our usual notation). This means that
taking l − δ random linear combinations of the columns of res gives a matrix with the
same rank and the same cokernel. This comes down to restricting res to a random
linear subspace of V1 × · · · × Vn, instead of the very specific one from the Macaulay
construction. We may hope that this procedure results in better numerical behaviour.
Experiment 4.4.1 will show that it does. Let us denote li = dimC(Vi). By restricting
to a random subspace of the right dimension, we reduce the number of columns of
res from l1 + . . . + ln to l − δ. In summary: instead of computing the cokernel of
res ∈ Cl×(l1+...+ln), we compute the cokernel of the product res ·C ∈ Cl×(l−δ) where
C ∈ C(l1+...+ln)×(l−δ) is a matrix with random entries (for instance, real and drawn
from a normal distribution with zero mean and σ = 1). We note that this technique
can be applied for any resultant map with some ‘redundancy’ in its domain. In
particular, it also works for the methods in Section 5.3.

Example 4.4.1. For the resultant map associated to the family FR(d1, . . . , dn) where
di = d, i = 1, . . . , n we have

li =
(

(n− 1)d+ 1
(n− 1)(d− 1)

)
, i = 1, . . . , n, l =

(
nd+ 1

n(d− 1) + 1

)
, δ = dn.

The reduction in the number of columns is illustrated in Figure 4.10. 4

Experiment 4.4.1 (Fast cokernel computation). This is the experiment in Subsection
6.5 of [MTVB19]. It illustrates the two ways proposed in this subsection for reducing
the complexity of the cokernel computation. We generate a generic system of degree
d in n variables as in Experiment 4.3.1. Table 4.13 gives the results. In the table
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we present the computation times t and the maximal residuals r of three different
algorithms: TNF stands for the standard TNF algorithm, FM stands for the algorithm
that reduces the size of res by multiplying it with a random matrix C of the appropriate
size and DBD represents the algorithm which computes the cokernel degree by degree.
For all of the algorithms, we used a QR decomposition with optimal column pivoting
for the basis selection. For n = 2, neither alternative gives any improvements. As

n d tTNF (sec) tTNF/tFM tTNF/tDBD rTNF rFM rDBD

3 2 1.57 · 10−2 1.46 0.21 8.95 · 10−16 2.19 · 10−15 8.44 · 10−16

3 3 4.67 · 10−2 1.24 0.89 3.02 · 10−15 4.65 · 10−14 1.55 · 10−15

3 4 0.1 1.04 1.35 1.19 · 10−14 2.76 · 10−14 8.76 · 10−15

3 5 0.17 1.06 0.96 1.43 · 10−14 5.14 · 10−13 4.92 · 10−15

3 6 0.41 1.03 0.95 5.16 · 10−15 9.48 · 10−14 7.06 · 10−15

3 7 1.67 1.19 1.47 8.82 · 10−15 1 · 10−13 4.05 · 10−14

3 8 6.23 1.16 2.04 1.19 · 10−13 6.71 · 10−11 5.64 · 10−14

3 9 18.03 1.16 2.61 2.3 · 10−13 6.58 · 10−12 2.54 · 10−14

3 10 45.81 1.16 2.99 1.56 · 10−13 5.67 · 10−12 7.08 · 10−14

3 11 56.36 1.06 1.57 1.16 · 10−13 1.81 · 10−12 2.14 · 10−13

3 12 117.31 1.17 1.55 1.83 · 10−13 3.21 · 10−12 8.35 · 10−14

3 13 229.96 1.16 1.58 3.16 · 10−13 8.87 · 10−11 2.03 · 10−12

4 2 3.81 · 10−2 1.39 1.24 1.36 · 10−14 2.35 · 10−12 2.74 · 10−15

4 3 0.28 1.06 1.23 1.55 · 10−13 2.91 · 10−13 1.67 · 10−14

4 4 10.05 1.46 4.42 5.82 · 10−15 1.36 · 10−12 1 · 10−14

4 5 147.32 2.61 5.77 9.97 · 10−14 6.6 · 10−13 5.47 · 10−14

5 2 0.15 1.04 1.12 3.58 · 10−15 9.38 · 10−14 1.8 · 10−15

5 3 75.37 2.78 4.64 1.97 · 10−14 1.83 · 10−12 3.49 · 10−14

6 2 3.44 1.24 1.7 1.91 · 10−15 2.46 · 10−13 3.66 · 10−15

7 2 167.53 1.96 2.41 1.69 · 10−14 4.01 · 10−11 3.07 · 10−14

Table 4.13: Timing and relative error for the variants of the TNF algorithm presented
in Subsection 4.4.1 for generic systems in n variables of degree d.

shown earlier, the TNF algorithm is very efficient as it is in this case. For n > 2 we
see that both FM and DBD can make the algorithm significantly faster for sufficiently
high degrees, and not much (or none) of the accuracy is lost. The biggest speed-up we
achieved in the experiment is a factor 5.77 for n = 4, d = 5. Solving such a system
takes about 17 seconds using Bertini and 11 seconds using PHCpack. PHCpack loses
2 out of 625 solutions. The DBD algorithm takes less than 26 seconds to find all
solutions with a residual no larger than ±10−14. The unmodified TNF algorithm takes
3 to 4 times as much time as the homotopy solvers for n = 4, d = 4 (see Experiment
4.3.5). The DBD algorithm is as fast as PHCpack, which is 1.6 times faster than
Bertini in this case. The algorithms do not beat the homotopy solvers for larger
numbers of variables, even in small degrees. For n = 7, d = 2, both homotopy packages
solve the problem in less than 4 seconds, while the fastest version of the TNF solver
takes more than a minute.

To compare the FM algorithm with the Macaulay resultant construction where the Vi
are replaced by the span of a specific subset of monomials (see Subsection 3.4.2), we
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Figure 4.11: Distribution of the computed residuals for n = 3, d = 23 (blue) and
n = 5, d = 4 (orange) using the standard TNF algorithm (solid line) and the DBD
algorithm (dashed line).

used this construction to solve the case n = 3, d = 13 by computing a TNF from the
corresponding resultant map. The obtained residual was 1.44 · 10−4, which is roughly
a factor 107 larger than rFM.

On the machine used in Experiment 4.3.6, we see a speed-up factor tTNF/tDBD of
roughly 1.8 for the case n = 3, d = 23. For n = 5, d = 4, this factor is roughly 5.4,
which reduces the computation time from about 37 minutes to about 7 minutes. The
results are slightly less accurate, but the loss of precision for generic systems is not
too bad. The distribution of the residuals is shown in Figure 4.11. 4

4.4.2 TNFs in non-monomial bases

In this subsection, we deal with different matrix representations of resultant maps
and TNFs: we fix different bases for the vector spaces involved. Let δ = dimCR/I
for some zero-dimensional ideal I ⊂ R. For Cδ, we will use the standard basis
{e1, . . . , eδ}. We denote V = {v1, . . . , vl} ⊂ V for a basis of V (l = dimC(V )) and
W = {w1, . . . , wm} ⊂W , m < l for a basis of W ⊂ V , which is the largest subspace of
V such that W+ ⊂ V . Analogously, B = {b1, . . . , bδ} is a basis for B. For simplicity,
we assume W ⊂ V . As per usual, to simplify the notation we will make no distinction
between a matrix and the abstract linear map it represents.

Suppose we have a map N : V → Cδ which covers a TNF NV : V → B for some
B ⊂ W ⊂ V . In practice, this means that we have a matrix representation of N
with respect to a fixed basis V of V . Since N is usually computed as the cokernel
of a resultant map res, using for instance the SVD, the basis V is usually induced
by the basis used for V to represent res. Note that since we are assuming W ⊂ V,
N|W : W → Cδ is just a δ ×m submatrix of N consisting of the columns indexed by
W. In this case we write NW = N|W . To recover NV from N , all that is left to do
is compute the matrix N|B : B → Cδ with respect to a fixed basis B = {b1, . . . , bδ}
of B ⊂ W . Then the matrix of NV with respect to the bases V for V and B for B
is NV = (N|B)−1N . Note that if B ⊂ W, the matrix NB = N|B consists of a subset
of δ columns of N|W . Since B ⊂ R is identified with R/I in the TNF framework,



130 TRUNCATED NORMAL FORMS

the set B of basis elements represents a basis B + I = {b1 + I, . . . , bδ + I} of R/I.
Traditionally, e.g. in resultant and Gröbner basis contexts, but often for border bases
as well, the bi are monomials. In this section, we step away from this and show that it
is sometimes natural to use non-monomial bases. The following three scenarios clearly
lead to non-monomial bases of R/I.

1. The set V consists of monomials, but B ⊂ W is computed using another
procedure, such that B 6⊂ W. An example is discussed below, where we use a
SVD of NW to select B instead of a QR decomposition.

2. The set V consists of non-monomial basis elements of V and B ⊂ W ⊂ V. This
happens, for instance, when B is chosen by performing a QR with optimal column
pivoting on the matrix NW . The column pivoting comes down to a pivoting
of the elements in W, and N|B is simply a δ × δ submatrix NB of NW . This
situation is discussed below for a specific type of basis functions.

3. It is straightforward to combine these first two scenarios, such that V does not
contain (only) monomials and B 6⊂ W.

TNFs as orthogonal projectors

In the approach described in Section 4.3, the selection of a basis B happens via a
column pivoted QR factorization of N|W . We present an alternative basis selection
using the singular value decomposition (SVD), which is another important tool from
numerical linear algebra (see Section B.2). This provides a basis B, which is not a
monomial basis. Let V = {xa : a ∈ A } be a set of monomials corresponding to a finite
set A ⊂ Nn of lattice points such that W = {xa1 , . . . , xam} ⊂ V is a basis of W . We
decompose

NW = USVH

with ·H the Hermitian transpose. We split S and V into compatibly sized block
columns:

NW [V1 V2] = U [S1 0]
with S1 diagonal and invertible (N|W is onto). In analogy with the QR case (where
we would have the identity NW [P1 P2] = QR), we take

B = [xa1 · · · xam ] V1, (4.4.1)

such that B = spanC(B) ' im V1. Therefore

(NW)|B = N|B = U [S1 0] [V1 V2]H V1 = US1.

This tells us that the singular values of N|B are the singular values of NW and
(NV )|W = (N|B)−1NW = VH

1 . Since kerNW = I ∩W ' im V2 ⊂ Cm and im V1 ⊥
im V2 by the properties of the SVD, we see that

(I ∩W ) ⊥ B
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with respect to the standard inner product in Cm and using coordinates w.r.t. W.
Equivalently, with this choice of B, (NV )|W = VH

1 projects W orthogonally onto
B. The obtained basis B is an orthonormal basis for the orthogonal complement
B of I ∩ W in W . This makes B somehow a unique ‘canonical’ representation
of R/I w.r.t. W. Orthogonality is a favorable property for a projector, because
the sensitivity of the image to perturbations of the input is minimal. Also, since
(NV )|W (f) ⊥ (I ∩W ),∀f ∈W , ‖(NV )|W (f)‖2 is a natural measure for the distance of
f to the ideal in the basis W, which is induced by the Euclidean distance in Cm. We
note that NV does not project V orthogonally onto B. In order to have an orthogonal
projector (NV )|W ′ : W ′ → B, one must take V large enough such that W ′ ⊂W ⊂ V .
Following this procedure, B is a non-monomial basis of B (or R/I) consisting of δ
polynomials supported in W. The above discussion shows that in some sense, B + I
gives a ‘natural’ basis for R/I, given the freedom of choice provided by Corollary
4.2.1. Unlike the QR algorithm, there are no heuristics involved. For the root finding
problem, we observe that BSVD (4.4.1) has the same good numerical properties as
BQR = [xa1 · · · xam ] P1.
Experiment 4.4.2 (SVD for basis selection). We solve a generic member of
FC[x,y,z](8, 8, 8), constructed as in Experiment 4.3.1, using SVD for the basis selection.
The computation time is about 6.17 seconds and the maximal residual of all the 512
solutions is 4.62 · 10−14. This is comparable with the results for the QR basis selection,
see for instance Table 4.13. An illustration of the real part of the surfaces defined by
the generic equations is shown in Figure 4.12. 4

TNFs from function values

We consider the square case (n = s) where V = R≤ρ̂, W = R≤ρ̂−1 with ρ̂ =∑n
i=1 di − n+ 1 and R = C[x1, . . . , xn]. The resultant map is res : V1 × · · · × Vn → V

where Vi = R≤ρ̂−di
. Let {φ`(x)} = {φ`(x) | ` ∈ N} ⊂ C[x] be a family of orthogonal

univariate polynomials3 on an interval of R, satisfying the recurrence relation φ0(x) = 1,
φ1(x) = a0x+ b0 and

φ`+1(x) = (a`x+ b`)φ`(x) + w`φ`−1(x)
with b`, w` ∈ C, a` ∈ C∗ = C \ {0} so that xφ` = 1

a`
(φ`+1− b`φ`−w`φ`−1), ` ≥ 1. For

α = (α1, . . . , αn) ∈ Nn, we define

φα(x) = φα(x1, . . . , xn) =
n∏
i=1

φαi
(xi).

We easily check that

xiφα = 1
aαi

(φα+ei
− bαi

φα − wαi
φα−ei

)

3This is a family of polynomials which are orthogonal with respect to a scalar product (f, g)µ =∫ p1
p0

f(x)g(x)dµ(x) for some positive measure µ(x) on the real interval [p0, p1] ⊂ R. Such a family
always satisfies a three term recurrence by Favard’s theorem. See for instance [Sze39, Theorem 3.2.1].
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Figure 4.12: Real algebraic surfaces given by fi = 0, i = 1, . . . , 3 from Experiment
4.4.2.

where ei ∈ Zn is a vector with all zero entries except for a 1 in the i-th position and
with the convention that if β ∈ Zn has a negative component, φβ = 0. We consider
the basis V = {φα : |α| ≤ ρ̂} for V . The matrix of res can be constructed such that
it has columns indexed by all monomial multiples xαfi such that xαfi ∈ V (we use
monomial bases for the Vi, although we could use the functions φα here as well), and
rows indexed by the basis V. The corresponding cokernel matrix represents a map
N : V → Cδ covering a TNF. The set W = {φα : |α| < ρ̂} ⊂ V is a basis for W . The
matrix N|W = NW is again a submatrix of columns indexed by W. To compute a
TNF, we have to compute an invertible matrix N|B from NW . If this is done using
QR with pivoting, we have B = {φβ1 , . . . , φβδ

} ⊂ W and N|B = NB is the submatrix
of NW with columns indexed by B. Let βji be the degree in xi of φβj

. Then the j-th
column of Ni = N|xi·B is given by

(Ni)j = 1
aβji

(Nφβj +ei
− bβjiNφβj

− wβjiNφβj −ei
)

where Nφα
is the column of N corresponding to the basis function φα with the

convention that an exponent α with a negative component gives a zero column. Recall
that Mxi = (N|B)−1Ni represents the multiplication with xi in the basis B+ I of R/I.
Constructing the matrix res in this way can be done using merely function evaluations
of the monomial multiples of the fi by the properties of the orthogonal family {φ`}.
This makes it particularly interesting to use bases for which there are fast (O(d log d))
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algorithms to convert a vector of function values to a vector of coefficients in the basis
{φ`}. We now discuss the Chebyshev basis as an important example.

Recall that for the Chebyshev polynomials {T`(x)} of the first kind, the recurrence
relation is given by a0 = 1, a` = 2, ` > 0, b` = 0, ` ≥ 0, w` = −1, ` > 0. We get a basis
B = {Tβ1 , . . . , Tβδ

}. In this basis we obtain

Ni = 1
2(NB+,i

+NB−,i
)

with B+,i = {Tβ1+ei
, . . . , Tβδ+ei

} and B−,i = {Tβ1−ei
, . . . , Tβδ−ei

} (negative exponents
give a zero column by convention). Note that the expression is very simple here since
the a`, b`, c` are independent of `. We define

ωk,d = cos
(
π(k + 1

2 )
d+ 1

)
, k = 0, . . . , d.

Let f =
∑d
`=0 c`T` be the representation in the Chebyshev basis of a polynomial

f ∈ C[x] and define fk = f(ωk,d). By the property of T` that T`(x) = cos(` arccos(x))
for x ∈ [−1, 1], we have

fk =
d∑
`=0

c` cos
(
`π(k + 1

2 )
d+ 1

)
. (4.4.2)

Comparing (4.4.2) to the definition of the (type III) discrete cosine transform (DCT)
(Zk)dk=0 of a sequence (zk)dk=0 of d+ 1 complex numbers4

Zk =
√

2
d+ 1

(
1√
2
z0 +

d∑
`=1

z` cos
(
`π(k + 1

2 )
d+ 1

))
,

we see that √
2

d+ 1(f0, f1, . . . , fd) = DCT
(

(
√

2c0, c1, . . . , cd)
)
.

We conclude that the coefficients ck in the Chebyshev expansion can be computed
from the function evaluations fk via the inverse discrete cosine transform (IDCT),
which is the DCT of type II:

zk =
√

2
d+ 1

(
d∑
`=0

Z` cos
(
kπ(`+ 1

2 )
d+ 1

))
.

This gives

ck =
(

1√
2

)qk
(√

2
d+ 1

)
c̃k

4We use the definitions of the discrete cosine transform that agree with the built in dct command
in Matlab.



134 TRUNCATED NORMAL FORMS

with qk = 1 if k = 0, qk = 0 otherwise and (c̃0, . . . c̃d) = IDCT((f0, . . . , fd)). Let
Tα = Tα1(x1) · · ·Tαn(xn) ∈ R,α ∈ Nn. For a polynomial f(x) = f(x1, . . . , xn) =∑
α cαTα(x) of degree di in xi, this generalizes as follows. We define an n-dimensional

array (fk)d1,...,dn

k1=0,...,kn=0 (this notation means that the index ki ranges from 0 to di) of
function values given by

fk = fk1,...,kn
= f(ωk,d) = f(ωk1,d1 , . . . , ωkn,dn

).

We obtain another such array by performing an n-dimensional IDCT in the usual
way: a series of 1-dimensional IDCTs along every dimension of the array. This gives
(c̃α)d1,...,dn

α1=0,...,αn=0 and the coefficients in the product Chebyshev basis are given by

cα =
(

1√
2

)qα
(

n∏
i=1

√
2

di + 1

)
c̃α

with qα the number of zero entries in α. This shows that the coefficients cα needed
to construct the matrix of res can be computed efficiently by taking an IDCT of an
array of function values of the monomial multiples of the fi.

A situation in which it is natural to use a product Chebyshev basis V for V is
when fi = 0 are (local) approximations of real transcendental (or higher degree
algebraic) hypersurfaces. Chebyshev polynomials have remarkable interpolation and
approximation properties on compact intervals of the real line, see [Tre19]. The
multivariate product bases {Tα} inherit these properties for bounded boxes in Rn.
In [NNT15], bivariate, real intersection problems are solved by local Chebyshev
approximation, and this is what is implemented in the roots command of Chebfun2
[TT13]. If the ideal I is expected to have many real solutions in a compact box of Rn,
it is probably a good idea to represent the generators in the Chebyshev basis. One
reason is that functions with a lot of real zeros have ‘nice coefficients’ in this basis,
whereas in the monomial basis, they do not.

Experiment 4.4.3 (TNFs in the Chebyshev basis). This experiment comes from
Subsection 6.7 in [MTVB19]. It illustrates the use of Chebyshev polynomials in the
construction of a TNF. We construct a generic member of FC[x1,x2](d, d) as follows.
We define f1 =

∑
|α|≤d c1,αTα, f2 =

∑
|α|≤d c2,αTα where Tα = Tα1(x1)Tα2(x2) and

the ci,α are drawn from a standard normal distribution. Since the zeros of Ti are all in
the real interval [−1, 1], the real plane curves defined by f1 and f2 populate the box
[−1, 1]× [−1, 1] ⊂ R2. We expect a large number of real roots in this box. This is the
situation in which we expect the Chebyshev basis to have good numerical properties.
For d = 20, we computed the solutions using a TNF with QR for basis selection in
the monomial basis and in the Chebyshev basis. The residuals of all 400 solutions are
represented in Figure 4.13 in the form of a histogram. As expected, the Chebyshev
TNF performs better. The TNF in the monomial basis still gives acceptable results:
the largest residual is of order 10−6. If we increase the degree to d = 25, the difference
in performance grows. There are 625 solutions in this case. Results are shown in
Figure 4.14 and the curves are depicted in Figure 4.15. Using monomials, one solution
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Figure 4.13: Histogram of log10 of the residuals of the computed solutions for a system
as described in Experiment 4.4.3 of degree 20 using the Chebyshev basis (left) and the
monomial basis (right).

has residual of order 10−1. The quality of this approximate solution is so low that we
have basically ‘missed’ this solution.
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Figure 4.14: Histogram of log10 of the residuals of the computed solutions for a system
as described in Experiment 4.4.3 of degree 25 using the Chebyshev basis (left) and the
monomial basis (right).

4

We conclude this subsection by noting that the monomials {x`} are a family of
orthogonal polynomials on the complex unit circle and they satisfy the simple recurrence
relation x`+1 = x · x`. This is an example of a so-called Szegő recurrence. Coefficients
can be computed by taking a fast Fourier transform of equidistant function evaluations
on the unit circle. Such a Szegő recurrence exists for all families of orthogonal
polynomials on the unit circle and hence products of these bases can also be used in
this context [Sze39].

4.5 Homogeneous normal forms

The kind of genericity that we had to assume in order for the methods of Section
4.3 to work is that Res∞ 6= 0. That is, the homogenized equations do not define any
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Figure 4.15: Real picture of a degree 25 system as described in Experiment 4.4.3.

solutions outside of U0 ⊂ Pn. We mentioned in Remark 4.3.1 that it is possible to
weaken this assumption by applying a generic change of coordinates, such that it is
enough to assume that the homogeneous ideal is zero-dimensional. However, such a
generic change of coordinates may destroy some structure in the equations and it may
induce extra rounding errors in the floating point computations. In this section, we
introduce an elegant way to find VPn(I) for a zero-dimensional, homogeneous ideal
I ⊂ S = C[x0, . . . , xn], which possibly defines some isolated solutions at infinity. It
uses homogeneous normal forms, which are the ‘projective cousins’ of truncated normal
forms, as introduced in Section 4.2. In the homogeneous context, normal forms work
on graded pieces of the ring S, the ideal I and the algebra S/I. As one would expect
from the discussion in Section 3.2, we have to work with degrees that are ‘large enough’.
Recall that for d, d0 ∈ N, a homogeneous element g ∈ Sd0 gives a multiplication map
Mg : (S/I)d → (S/I)d+d0 given by Mg(f + Id) = fg + Id+d0 .

Definition 4.5.1 (Homogeneous normal form (HNF)). Let I ⊂ S be a zero-
dimensional homogeneous ideal such that VPn(I) consists of δ+ points, counting
multiplicities. Let d, d0 ∈ N be such that d, d + d0 ∈ Reg(I) and let B ⊂ Sd be a
C-vector subspace. A homogeneous normal form (HNF) of degree d+ d0 w.r.t. I is a
C-linear map Nd,d0 : Sd+d0 → B such that

0 −→ Id+d0 −→ Sd+d0

Nd,d0−→ B −→ 0
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is a short exact sequence and for some h0 ∈ Sd0 satisfying VPn(I) ∩ VPn(h0) = ∅,

B (S/I)d

(S/I)d+d0 (S/I)d

N

Mh0

id (4.5.1)

commutes, where B → (S/I)d is given by b 7→ b+ Id and N (f + Id+d0) = Nd,d0(f).

Remark 4.5.1. If d0 = 1 and h0 = x0 (this implies that there are no roots at infinity),
a TNF is recovered from a HNF by ‘dehomogenizing’ the vector spaces and maps
that are involved. The commuting diagram (4.5.1) is the homogeneous variant of the
condition ‘(NV )|B = idB ’ on TNFs. 4

Note that a HNF Nd,d0 always comes with a homogeneous polynomial h0 ∈ Sd0 . We
do not include h0 in the notation Nd,d0 to keep the notation simple. Where it is
important to specify what h0 is, we will say that Nd,d0 is a HNF with respect to I
and h0. Intuitively, one can think of a HNF as a map that rewrites elements of Sd+d0

modulo the ideal and divides by h0. We have seen in Lemma 3.2.1 that if all points in
VPn(I) have multiplicity one and VPn(I) ∩ VPn(h0) = ∅, then Mh0 is an isomorphism.
We will see later (Corollary 5.5.3) that this holds for higher multiplicities as well.
Since N is an isomorphism by definition, we have by (4.5.1) that B → (S/I)d is an
isomorphism. We conclude that by definition, a HNF identifies B with (S/I)d as a
C-vector space. Just like TNFs allow to compute affine multiplication operators as
endomorphisms of B, HNFs can be used to find matrix representations of homogeneous
multiplication maps. For a HNF Nd,d0 and a homogeneous polynomial g ∈ Sd0 , define
Ng : Sd → B by Ng(f) = Nd,d0(fg).

Proposition 4.5.1. Let I, d, d0, B be as in Definition 4.5.1. If Nd,d0 is a HNF with
respect to I and h0 ∈ Sd0 , then for any g ∈ Sd0 , (Ng)|B : B → B is similar to the
map Mg/h0 = M−1

h0
◦Mg from Theorem 3.2.4.

Proof. We need to show that for some isomorphism ν : B → (S/I)d, we have (Ng)|B =
ν−1 ◦M−1

h0
◦Mg ◦ ν. This follows directly from the commutative diagram

B B (S/I)d

(S/I)d (S/I)d+d0 (S/I)d

Ng

ν

ν

Mg

N

M−1
h0

id

where ν(b) = b+Id and the rectangle of isomorphisms on the right is exactly (4.5.1).

As in the affine case, a first step in computing a HNF often consists of computing a
map that is almost a HNF, but not quite.
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Definition 4.5.2. Let I, d, d0 be as in Definition 4.5.1. A C-linear map N : Sd+d0 →
Cδ+ covers a HNF Nd,d0 : Sd+d0 → B with respect to I if there is an isomorphism
P : B → Cδ+ such that Nd,d0 = P−1 ◦N .

Proposition 4.5.2. Let I ⊂ S be a zero-dimensional homogeneous ideal such that
VPn(I) consists of δ+ points, counting multiplicities. Let d, d0 ∈ N be such that
d, d+ d0 ∈ Reg(I). A C-linear map N : Sd+d0 → Cδ+ covers a HNF if and only if

0 −→ Id+d0 −→ Sd+d0
N−→ Cδ

+
−→ 0 (4.5.2)

is a short exact sequence.

Proof. If Nd,d0 = P−1◦N is a HNF for some isomorphism P : B → Cδ+ , it is clear that
(4.5.2) is exact. For the other implication, take h0 ∈ Sd0 such that VPn(I)∩VPn(h0) = ∅.
We define the map

Nh0 : Sd → Cδ
+

by Nh0(f) = N(fh0). (4.5.3)

Making use of the fact that Mh0 : (S/I)d → (S/I)d+d0 is an isomorphism, we find that
kerNh0 = Id and that Nh0 is surjective, since every element of Sd+d0 can be written
as h0f modulo Id+d0 . Therefore, we can find a subspace B ⊂ Sd such that (Nh0)|B is
invertible. For any such subspace, we set Nd,d0 = (Nh0)−1

|B ◦N . It is clear that

0 −→ Id+d0 −→ Sd+d0

Nd,d0−→ B −→ 0

is exact. To show that
B (S/I)d

(S/I)d+d0 (S/I)d

N

Mh0

id

commutes, note that if (N ◦Mh0)(f+Id) = b ∈ B, then ((Nh0)−1
|B ◦N)(h0f) = b, which

means that Nh0(b) = Nh0(f) and thus f−b ∈ Id. We conclude that f+Id = b+Id.

The following is an immediate corollary of the proof of Proposition 4.5.2.

Corollary 4.5.1. In the situation of Proposition 4.5.2, N covers a HNF Nd,d0 :
Sd+d0 → B with respect to I and h0 for any h0 ∈ Sd0 such that VPn(I)∩ VPn(h0) = ∅.
Moreover, for any δ+-dimensional subspace B ⊂ Sd such that

(Nh0)|B : B → Cδ
+

given by b 7→ N(bh0)

is invertible, Nd,d0 = (Nh0)−1
|B ◦N is a HNF.
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It follows from Proposition 4.5.1 and Corollary 4.5.1 that if we have computed a
C-linear map N : Sd+d0 → Cδ+ satisfying (4.5.2) for d, d+ d0 ∈ Reg(I), then for any
h0 ∈ Sd0 which doesn’t vanish at any of the roots of I and any δ+-dimensional subspace
B such that (Nh0)|B is invertible, we have that for any g ∈ Sd0 , ‘multiplication with
g/h0’ is given by

Mg/h0 = (Nh0)−1
|B ◦ (Ng)|B

where Ng : Sd → Cδ+ is given by Ng(f) = N(fg).

All of the statements above assumed that d, d + d0 ∈ Reg(I). It turns out that if
for some d, d0 ∈ N we can find a map N : Sd+d0 → Cδ+ with the properties of N in
Proposition 4.5.2, we can guarantee that d, d+ d0 ∈ Reg(I) if I is B-saturated.

Proposition 4.5.3. Let I ⊂ S be a zero-dimensional homogeneous ideal such that
I = (I : B∞) and such that VPn(I) consists of δ+ points, counting multiplicities. If for
h0 ∈ Sd0 , the map N : Sd+d0 → Cδ+ is such that (4.5.2) is exact and Nh0 as defined
in (4.5.3) is surjective, then d, d+ d0 ∈ Reg(I) and N covers a HNF with respect to I.

Proof. The fact that d+ d0 ∈ Reg(I) follows from (4.5.2) and I = (I : B∞). To show
that d ∈ Reg(I), note that Id ⊂ kerNh0 and since I is B-saturated, HFI(d) ≤ δ+ by
Theorem 3.2.1. Therefore dimC Sd − dimC Id ≤ δ+ = dimC Sd − dimC kerNh0 , which
implies dimC Id ≥ dimC kerNh0 . We conclude that kerNh0 = Id and HFI(d) = δ+.
The fact that N covers a HNF follows from d, d+d0 ∈ Reg(I) and Corollary 4.5.1.

The following example shows what might go wrong if I is not saturated.

Example 4.5.1. Let S = C[x, y] and I = 〈x2, xy〉 ⊂ S. This is an ideal we considered
earlier in Example 3.2.1. It is zero-dimensional and defines δ+ = 1 point with
multiplicity one. Consider the C-linear map N : S2 → C given by N(x2) = N(xy) = 0
and N(y2) = 1. We have that kerN = I2. Let h0 = y, such that Nh0(x) = 0, Nh0(y) =
1. Note that Nh0 is onto C. In this example d = d0 = 1, and d+ d0 ∈ Reg(I) but d is
not. 4

Remark 4.5.2. The existence of a map as in Proposition 4.5.3 for generic h0 ∈ Sd0

with d0 = 1 can be used to detect that the ideal I is ‘(d + 1)-regular’ in the (more
commonly used) sense of Castelnuovo-Mumford regularity [Eis13, Chapter 20]. The
criterion is strongly related to Theorem 1.10 in [BS87]. It implies, for instance, that
d+ 1, d+ 2, . . . ∈ Reg(I), which agrees with the observation in Example 4.5.1. A full
discussion would take us too far off course. The reader is referred to Proposition 5.2
in [TMVB18] for details. 4

In analogy with the affine case, our strategy to compute a map N : Sd+d0 → Cδ+

that covers a HNF is to compute a cokernel map of a resultant map whose image is
Id+d0 . In the homogeneous case, the construction of such a resultant map is trivial. If
I = 〈f1, . . . , fs〉, then Id is the image of

resf1,...,fs : Λ1 × · · · × Λs → Λ
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where Λi = Sd−di , i = 1, . . . , s, Λ = Sd. A case that is of special interest to us is the
square case, where s = n. In this case, we know what Reg(I) is (Theorem 3.2.3). We
set

resf1,...,fn
: Λ1 × · · · × Λn → Λ (4.5.4)

where Λi = Sρ̂−di , i = 1, . . . , n, Λ = Sρ̂ with ρ̂ = d1 + · · · + dn − n + 1. A cokernel
map N : Sρ̂ → Cδ+ of resf1,...,fn

satisfies the conditions of Proposition 4.5.2 with
d = ρ = ρ̂ − 1 and d0 = 1. This leads directly to Algorithm 4.2 for computing the
homogeneous multiplication operators Mx0/h0 , . . . ,Mxn/h0 .

Algorithm 4.2 Computes homogeneous multiplication matrices for (f1, . . . , fn) ∈
FS(d1, . . . , dn) such that I = 〈f1, . . . , fn〉 ⊂ S is zero-dimensional

1: procedure HomogeneousMultiplicationMatrices(f1, . . . , fn)
2: ρ̂ = d1 + · · ·+ dn − n+ 1
3: resf1,...,fn ← the resultant map Λ1 × · · · × Λn → Λ from (4.5.4)
4: N ← coker resf1,...,fn

5: Nh0 ← matrix of the map Sρ → Cδ+ where f 7→ N(fh0)
6: (Nh0)|B ← invertible restriction of Nh0 to B ⊂ Sρ, dimCB = δ+

7: for i = 0, . . . , n do
8: (Nxi)|B ← restriction of the map Sρ → Cδ+ given by f 7→ N(xif) to B
9: Mxi/h0 ← (Nh0)−1

|B (Nxi
)|B

10: end for
11: return Mx0/h0 , . . . ,Mxn/h0

12: end procedure

In line 6, one should choose a subspace B that results in a well conditioned matrix for
(Nh0)|B . As in the affine case, QR with column pivoting or SVD are good options. In
line 8, the same basis of B should of course be used for the product (Nh0)−1

|B (Nxi
)|B

to make sense. The simultaneous diagonalization of the resulting matrices can happen
in the same way as in the affine case. The following example shows how the use of
Algorithm 4.2 instead of Algorithm 4.1 can be advantageous in the case of nearly
degenerate (i.e. non-generic with respect to Res∞ 6= 0) systems.

Experiment 4.5.1. Let R = C[y1, y2, y3] and S = C[x0, x1, x2, x3]. In this
experiment, we consider systems in FR(5, 5, 5) and solve them using Algorithm 4.1
and, after homogenizing them to FS(5, 5, 5), using Algorithm 4.2. The homogeneous
solutions are dehomogenized for comparing the residuals. We generate the systems in
the following way. First, we generate a generic member by assigning real coefficients
drawn from a standard normal distribution to each monomial of degree at most 5. The
result is (f̂1, f̂2, f̂3) ∈ FR(5, 5, 5). Denote f̂i =

∑
|a|≤5 ci,ay

a =
∑

|a|≤4 ci,ay
a + f̂i,∞.

Let r1, r2 be fixed real numbers drawn from a standard normal distribution and let e
be a real parameter. We define

f̂3(e) = f̂3 + r1f̂1,∞ + r2f̂2,∞ + (10−e − 1)f̂3,∞.



HOMOGENEOUS NORMAL FORMS 141

Note that as e→∞, the homogenized polynomials fi = η5(f̂i) satisfy

f3(0, x1, x2, x3) = r1f1(0, x1, x2, x3) + r2f2(0, x1, x2, x3).

Therefore, the 25 solutions of f1(0, x1, x2, x3) = f2(0, x1, x2, x3) = 0 in P2 are solutions
at infinity for f̂1 = f̂2 = f̂3(e) = 0 when e→∞. As the value of e grows from 0 to ∞,
the system degenerates: 25 out of the 125 solutions in C3 move away towards infinity.
We solve the systems f̂1 = f̂2 = f̂3(e) = 0 for e = 0, 1, . . . , 16 using Algorithms 4.1
and 4.2 for the computation of the multiplication matrices. The maximal, minimal
and geometric mean residuals are shown in Figure 4.16. The figure shows that as the
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Figure 4.16: Maximal, minimal and geometric mean residual for the solutions computed
using Algorithm 4.1 (orange) and Algorithm 4.2 (blue) for the parametrized system
defined in Experiment 4.5.1.

system degenerates, the accuracy of the affine TNF solver gets worse and worse. This
is due to the fact that even the best choice of subspace B ⊂W gives a large condition
number for N|B. Note that even though only 25 solutions move away to infinity,
the accuracy is lost on all solutions (this can be seen from the minimal residual).
Using Algorithm 4.2 corresponds to randomizing the affine patch in which we compute
homogeneous coordinates. In such a random patch, the coordinates remain nice and
there is no loss of precision at all. We note that the matrices of the resultant maps
are exactly the same, at least when constructed in the compatible bases, and the
complexity of both algorithms is roughly the same. 4





Chapter 5

Toric methods

In Chapters 3 and 4 we focussed on the families FR(d1, . . . , dn) and FS(d1, . . . , dn)
and we proposed algebraic methods for solving generic members of these families. Here
being ‘generic’ would mean ‘defining the expected number of points in Cn’ or ‘defining
finitely many points in projective space’. Although any square polynomial system
can be considered as a member of some FR(d1, . . . , dn), the systems encountered in
applications often do not behave like a general member. For instance, there are often
much less than d1 · · · dn solutions in Cn. The reason is that the equations have some
extra structure which cannot be detected from just looking at their degrees. In order to
handle such systems correctly, they should be considered as members of some smaller
subfamily of FR(d1, . . . , dn), which takes their special structure into account. The goal
of this chapter is to propose methods for solving systems coming from a special type of
such subfamilies, called polyhedral families. The families of type FR(d1, . . . , dn) (and
hence also the isomorphic families FS(d1, . . . , dn)) can be seen as polyhedral families,
which means that we are in a more general setting. As we will see, the natural solution
spaces for these families are toric varieties, of which Cn and Pn are examples. Taking
the polyhedral structure into account may lead to much smaller matrices involved
in the algorithms, such that it reduces the computational complexity significantly.
The proposed methods are based on TNFs in the affine case, following Section 4 of
[TMVB18]. In the ‘homogeneous’ setting, we use a generalization of HNFs to more
general compact toric varieties X, working with homogeneous equations in the Cox
ring of X. This approach is described in [Tel20].
The chapter is organized as follows. In Section 5.1 we describe polyhedral families and
state a generalization of Bézout’s theorem for square polyhedral families which counts
the number of solutions for generic members. Section 5.2 discusses toric resultants
and a Macaulay-like matrix construction from which multiplication matrices can be
computed for polyhedral families. This is exploited in Section 5.3 to design a TNF
algorithm for solving general members. Section 5.4 motivates the use of toric varieties
as a natural solution space for polyhedral families. Finally, Section 5.5 describes the
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Cox ring of a toric variety X and an algorithm for computing homogeneous coordinates
using a toric version of HNFs. The material of this chapter is supported by a summary
of some basic facts from polyhedral and toric geometry in Appendices D and E.

5.1 Polyhedral families and the BKK theorem

One of the reasons why Bézout’s theorem is such a powerful result is that it gives us a
way of bounding the number of solutions of a square polynomial system knowing only
the degree of the equations. If the highest degree of all monomials appearing in fi is
di, the theorem guarantees that f1 = · · · = fn = 0 has no more than d1 · · · dn isolated
solutions in Cn. However, often this bound is very pessimistic.

Example 5.1.1. The classical eigenvalue problem (see Section B.4) can be interpreted
as a polynomial system given by

Ax = λx, c>x = 1,

where A ∈ Cn×n, the variables are x1, . . . , xn, λ and c ∈ Cn \ {0} is a vector used to
normalize the eigenvectors. We know that for generic A, c there are n solutions to this
system. However, the Bézout bound for FC[x1,...,xn,λ](2, . . . , 2, 1) is 2n. This gives a
sequence of examples for which the asymptotic ratio (n → ∞) between the Bézout
bound and the actual number of solutions is infinite. 4

One of the goals in this chapter is to sharpen Bézout’s root count. In order to do so
we will work with slightly more general objects than polynomials: we allow negative
entries in the exponent vectors. This means we will be working in the ring

C[M ] = C[t1, t−1
1 , . . . , tn, t

−1
n ] = C[t±1

1 , . . . , t±1
n ]

of Laurent polynomials. Here we let M = Zn and the notation C[M ] emphasizes that
our Laurent polynomial ring is the semigroup algebra over M (see Definition E.1.3).
An element f̂ ∈ C[M ] can be written as

f̂ =
∑
m∈M

cmt
m, (5.1.1)

where finitely many coefficients cm are nonzero. Note that R = C[t1, . . . , tn] ⊂ C[M ].
Here are two motivations for working in the larger ring C[M ].

1. As the title of this section suggests, we would like to associate polyhedral objects
to polynomials and vice versa. More precisely, the exponents m in (5.1.1) will
correspond to points in a lattice polytope in MR = Rn (see Section D.1). In this
construction we would like to allow all lattice polytopes, not only those in the
positive orthant.



POLYHEDRAL FAMILIES AND THE BKK THEOREM 145

2. In some sections of the previous chapters, we treated points ‘at infinity’ (i.e.
points in Pn \ U0) as special points. The reason is that these are the points that
lie outside of the affine chart U0 with which we identified our original solution
space Cn. However, Pn is covered by n+ 1 open, dense affine charts Ui, whose
complements have the easy description xi = 0. In a sense, points outside of Ui
are just as special as points outside of U0. This corresponds to the intuition
that if a blindfolded person were to ‘throw a dart at Pn’, it would land on the
intersection U0 ∩ · · · ∩ Un with probability 1. This intersection is exactly (C∗)n,
whose coordinate ring is C[M ] (see Example 2.1.12).

As suggested by point 2, Laurent polynomial systems define relations on the algebraic
torus (C∗)n, which is a first justification for the title of this chapter. An ideal I ⊂ C[M ]
is called zero-dimensional if V(C∗)n(I) consists of finitely many points. The results in
Subsection 3.1.1 generalize to the toric setting, where R should be replaced by C[M ]
and Cn by (C∗)n. We will now motivate why this is true and include an adapted
version of the eigenvalue, eigenvector theorem. First of all, we note that the ring C[M ]
can be written as

C[M ] = Rt1···tn = R[y]/〈t1 · · · tny − 1〉 = R[y1, . . . , yn]/〈t1y1 − 1, . . . , tnyn − 1〉

where Rt1···tn is the localization at t1 · · · tn. This makes the fact that Laurent
polynomial systems are really just polynomial systems explicit.
Example 5.1.2. The equation t−1 + t − 5/2 = 0 on (C∗) with solutions t = 2 and
t = 1/2 is equivalent to the system y + t − 5/2 = ty − 1 = 0 on C2 with solutions
(t, y) = (2, 1/2) and (t, y) = (1/2, 2). Another way to see the second formulation is by
considering VVC2 (ty−1)(y+ t− 5/2 + 〈ty − 1〉), where y+ t− 5/2 + 〈ty − 1〉 corresponds
to t−1 + t− 5/2 under the isomorphism C[t][y]/〈ty − 1〉 = C[t, t−1]. 4

Let I = 〈f̂1, . . . , f̂s〉 ⊂ C[M ] be a zero-dimensional ideal. We may assume that
f̂i ∈ R ⊂ C[M ], i = 1, . . . , s. This is because any Laurent monomial tm is a unit in
C[M ], hence multiplying the generators with a monomial does not change the ideal. In
what follows we use some terminology given in Definition A.1.16. Thinking of C[M ] as
the localization Rt1···tn ⊃ R, I is the extension Ieaff of the ideal Iaff = 〈f̂1, . . . , f̂s〉 ⊂ R
(this is simply the ideal generated by the f̂i in the subring R ⊂ C[M ]) in the localization
C[M ].
Lemma 5.1.1. Let the zero-dimensional ideal I = Ieaff ⊂ C[M ] be the extension of
Iaff ⊂ R in the localization C[M ] = Rt1···tn . The contraction Ic = (Ieaff)c ⊂ R satisfies

Ic = I ∩R = (Iaff : (t1 · · · tn)∞)
= {f ∈ R | (t1 · · · tn)`f ∈ Iaff for some ` ∈ N}.

Moreover, the map

R/Ic → C[M ]/I given by f + Ic → f/1 + I (5.1.2)

is an isomorphism of C-algebras.
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Proof. The first statement follows directly from the definition of contraction and some
basic properties of localization, see e.g. [AM69, Proposition 3.11]. We now show that
(5.1.2) is an isomorphism. Note that injectivity is clear. Moreover, injectivity of
(5.1.2) implies that R/Ic is a finite-dimensional C-vector space. To see this, note that
dimC C[M ]/I <∞, since it is the coordinate ring of a zero-dimensional affine variety
[CLO13, Chapter 5, §3, Theorem 6]. It remains to show that (5.1.2) is also surjective.
Note that by the first statement, (t1 · · · tn)` is not a zero divisor in R/Ic for all ` ∈ N.
Therefore, ‘multiplication with (t1 · · · tn)`’ is injective and hence it is an isomorphism
in R/Ic (here we use the fact that dimCR/I

c is finite). This means that for any
f/(t1 · · · tn)` + I ∈ C[M ]/I, there is g ∈ R such that (t1 · · · tn)`g − f ∈ Ic. Therefore

f

(t1 · · · tn)` −
g

1 ∈ I

and f/(t1 · · · tn)` + I is the image of g + Ic under (5.1.2).

Example 5.1.3. For the ideal I = 〈t−1 + t− 5/2〉 ⊂ C[t, t−1] from Example 5.1.2 we
have that C[t, t−1]/I ' C[t]/〈1 + t2 − 5/2t〉. 4

Recall that by Lemma 3.1.2, for any point set {z1, . . . , zδ} ⊂ Cn there exists a set
{`1, . . . , `δ} ⊂ R ⊂ C[M ] of Lagrange polynomials.

Theorem 5.1.1. Let I = 〈f̂1, . . . , f̂s〉 ⊂ C[M ] be a zero-dimensional ideal such that
V(C∗)n(I) = {z1, . . . , zδ}, where zi has multiplicity µi. We have that

dimC C[M ]/I = δ+ = µ1 + · · ·+ µδ

and for any g ∈ C[M ], the C-linear endomorphism Mg : C[M ]/I → C[M ]/I given by
Mg(f + I) = fg + I satisfies

det(λ idCδ+ −Mg) =
δ∏
i=1

(λ− g(zi))µi .

If δ = δ+, the map Mg has left and right eigenpairs

(evzi
, g(zi)), (g(zi), `i + I), i = 1, . . . , δ,

where {`1, . . . , `δ} is a set of Lagrange polynomials for {z1, . . . , zδ} and evz1 , . . . , evzδ

is the basis of C[M ]/I dual to `1 + I, . . . , `δ + I.

Proof. All statements follow immediately from applying the results of Subsections
3.1.1 and 3.1.3 and the fact that by Lemma 5.1.1, Mg is the map

R/Ic → R/Ic given by f + Ic 7→ fgc + Ic

where gc + Ic is the inverse image of g under R/Ic → C[M ]/I.
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The fact that finding the points defined by I ⊂ C[M ] corresponds to finding the points
defined by a 〈t1 · · · tn〉-saturated ideal in R will come in handy in Section 5.3. We
now turn back to the root counting problem. The family of polynomial systems in
Example 5.1.1 parametrized by A and c is a subfamily of FC[x1,...,xn,λ](2, . . . , 2, 1) with
a different generic number of solutions. We could have suspected that these systems
don’t show the generic behavior of a dense family: not all monomials of degree up
to 2 occur in the equations Ax = λx. Indeed, the monomials xixj , 1 ≤ i, j ≤ n are
missing. Motivated by this, rather than looking only at the degree, in this chapter
we keep track of which monomials are present in our Laurent polynomials and which
ones are not.

Definition 5.1.1 (Support). The support of a Laurent polynomial f =
∑
m∈M cmt

m ∈
C[M ] is given by

Supp(f) = {m ∈M | cm 6= 0}.

This allows us to define families of polynomial systems with fixed supports. In the
following definition we use a straightforward generalization of Definition 3.1.3 where
R is replaced by C[M ].

Definition 5.1.2 (Families with fixed support). Let Ai ⊂ M, i = 1, . . . , s be finite
subsets of the lattice M . The family of (Laurent) polynomial systems supported in
A1, . . . ,As is the image of

φ : C|A1| × · · · × C|As| →
⊕
m∈A1

C · tm × · · · ×
⊕
m∈As

C · tm,

where | · | denotes the cardinality and

φ((c1,m)m∈A1 , . . . , (cs,m)m∈As
) =

( ∑
m∈A1

c1,mt
m, . . . ,

∑
m∈As

cs,mt
m

)
.

We denote this family by

FC[M ](A1, . . . ,As) = {(f̂1, . . . , f̂s) ∈ C[M ]s | Supp(f̂i) ⊂ Ai, i = 1, . . . , s}.

We will focus on the square case, i.e. n = s. A remarkable fact is that the number
of solutions in (C∗)n of a generic member of FC[M ](A1, . . . ,An) depends only on the
convex hull of the lattice point configurations A1, . . . ,An. We will now make this
precise.

Definition 5.1.3 (Newton polytope). For f̂ =
∑
m∈M cmt

m ∈ C[M ] we embed the
lattice M = Zn in its associated real vector space Rn = MR = M ⊗Z R and set

Newt(f̂) = Conv({m | m ∈ Supp(f̂) ⊂MR}) ⊂ Rn.

The convex polytope Newt(f̂) is called the Newton polytope of f̂ .
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(0, 0)

Figure 5.1: Newton polytope Newt(f̂) and support Supp(f̂) (black dots) of the Laurent
polynomial f̂ in Example 5.1.4.

For the definition of the convex hull and properties of convex polytopes, see Section
D.1.

Example 5.1.4. Consider the case where n = 2 and

f̂ = c0 + c1t
2
1t

2
2 + c2t

3
1 + c3t

3
1t

3
2 + c4t

−1
1 t32 + c5t

−2
1 + c6t

−2
2 ∈ C[t±1

1 , t±1
2 ].

We assume that the coefficients ci are nonzero. The Newton polytope, together with
Supp(f̂), is shown in Figure 5.1. 4

The following statement uses the notion of mixed volume of a set of polytopes, see
Definition D.1.5.

Theorem 5.1.2 (BKK theorem). For n Laurent polynomials f̂1, · · · , f̂n ∈ C[M ], the
number of isolated points in V(C∗)n(f̂1, . . . , f̂n) is bounded by the mixed volume

MV(Newt(f̂1), . . . ,Newt(f̂n)).

Moreover, for a generic member (f̂1, . . . , f̂n) ∈ FC[M ](A1, . . . ,An), the variety
V(C∗)n(f̂1, . . . , f̂n) consists of exactly MV(P1, . . . , Pn) points, where

Pi = Conv(Ai), i = 1, . . . , n.

Proof. See [Ber75] for the original proof. A proof based on homotopy continuation is
given in [HS95], and a sketch of the proof can be found in [CLO06, Chapter 7, §5].

Note that for a member (f̂1, . . . , f̂n) ∈ FC[M ](A1, . . . ,An), the property Newt(f̂i) =
Newt(Ai) = Pi, i = 1, . . . , n is a generic property: it only fails to hold if the coefficient
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of some f̂i corresponding to a vertex of Pi is zero. Theorem 5.1.2 is sometimes called
Bernstein’s theorem because it was first proved (after experimental observation) by
David Bernstein [Ber75]. The result was shown independently in the unmixed case,
i.e. the case where A1 = · · · = An, by Kushnirenko [Kus76b, Kus76a]. Many different
proofs of the theorem and its connections to toric geometry were given by Khovanskii,
see e.g. [Kho77, Kho92]. For this reason, the theorem is also referred to as the BKK
theorem (after Bernstein, Kushnirenko and Khovanskii), and the upper bound on the
number of isolated solutions provided by the theorem is often called the BKK number.

Theorem 5.1.2 implies that the number of solutions of a generic member of the family
FC[M ](A1, . . . ,An) only depends on the polytopes Conv(Ai), i = 1, . . . , s. That is, if
we only care about the number of solutions, we can consider (in general) larger families
defined by a less ‘fine grained’ structure.
Definition 5.1.4 (Polyhedral families). Let P1, . . . , Ps ⊂ Rn = MR be convex lattice
polytopes. The polyhedral family of (Laurent) polynomial systems given by P1, . . . , Ps
is the family

FC[M ](P1, . . . , Ps) = FC[M ](P1 ∩M, . . . , Ps ∩M)
of systems supported in A1 = P1 ∩M, . . . ,As = Ps ∩M .

Note that if Ai ⊂ Pi ∩M, i = 1, . . . , s, then

FC[M ](A1, . . . ,As) ⊂ FC[M ](P1, . . . , Ps).

If Pi ⊂ Rn is contained in the positive orthant for all i, then there is some di for which
Pi ⊂ di∆n, where ∆n = Conv(0, e1, . . . , en) is the standard n-simplex in Rn. For the
numbers di, we have

FC[M ](P1, . . . , Ps) ⊂ FR(d1, . . . , dn).

This explains that when we look at total degree families, polyhedral families and
families defined by supports, we are looking at smaller and smaller families with ‘more
structure’.

In what follows, by the standard simplex or elementary simplex in Rn we mean the
convex hull of the standard basis vectors e1, . . . , en and the origin in Rn. We denote
this polytope by ∆n = Conv({0, e1, . . . , en}) ⊂ Rn.
Remark 5.1.1. Families defined by supports or polytopes are often called sparse
families in the literature, whereas total degree families are called dense families.
The reason is that these families take certain ‘sparsity’ patterns of the equations
into account. However, especially for families defined by polytopes we prefer the
terminology polyhedral families. The reason is that ‘sparse’ has the connotation of
‘having only few terms’, and many polytopes (that are not dilates of the standard
simplex) have many lattice points. 4

Remark 5.1.2. If there are natural numbers d1, . . . , dn ∈ N≥0 such that Pi =
di∆n, then MV(P1, . . . , Pn) = d1 · · · dn and the Bézout number agrees with the BKK
number. 4
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Example 5.1.5. Consider the case where n = 2 and the square family F =
FC[M ](A ,A ) with

A = {(0, 0), (1, 0), (0, 1), (1, 1)} ⊂ Z2.

Note that F = FC[M ](P, P ) where P ⊂ R2 is the polytope [0, 1] × [0, 1] ⊂ R2. This
polytope is contained in the positive orthant in R2, so it makes sense to consider
the solutions in C2 ⊃ (C∗)2. We have F ⊂ FR(2, 2) = FC[M ](2∆2, 2∆2), so that the
Bézout bound on the number of solutions in C2 is 4. A member of F is given by
(f̂1, f̂2) with

f̂1 = a0 + a1t1 + a2t2 + a3t1t2, f̂2 = b0 + b1t1 + b2t2 + b3t1t2. (5.1.3)

For a generic member, the coefficients ai, bi are nonzero. The equations f̂1 = f̂2 = 0
on C2 are equivalent to

f̂1 = f̂2 −
b3

a3
f̂1 = 0.

But f̂2 − b3/a3f̂1 is a linear equation, which means that after this rewriting step
Bézout’s theorem tells us that there can be at most 2 solutions in C2. This agrees
with the BKK number. Indeed, applying the formula (D.1.3) for 2-dimensional mixed
volume computations, we obtain MV(P, P ) = 2. 4

In Example 5.1.5, the BKK number actually counts the number of solutions in C2

instead of (C∗)2. This is not always the case. To see this, we note that the mixed
volume MV(P1, . . . , Pn) is invariant under translations of the polytopes P1, . . . , Pn
in the lattice [CLO06, Chapter 7, §4, Theorem 4.12]. This geometric observation
corresponds to the algebraic fact that if one or more of the Laurent polynomials
f̂1, . . . , f̂n are multiplied by a Laurent monomial, the solutions in (C∗)n do not change
(Laurent monomials are units in C[M ]). However, (assuming that the polytopes are
contained in the positive orthant) the solutions in Cn do! We illustrate this briefly
with an example and refer to [RW96, HS97, Roj99] for more details.

Example 5.1.6. Consider the support A from Example 5.1.5 and the family F =
FC[M ](A , e2 + A ) where e2 + A = {m+ (0, 1) | m ∈ A }. The BKK bound tells us
that there are at most 2 solutions in the torus. However, in C2, there are generically
three solutions. To see this, note that a member of F looks like (f̂1, t2f̂2) with f̂1, f̂2
as in (5.1.3). Hence, for a generic member, we get 2 solutions in the torus satisfying
f̂1 = f̂2 = 0 and an additional solution (−a0/a1, 0) which is not in the torus. 4

5.2 Toric resultants

In Section 3.4, we have seen that projective resultants provide many insights into the
behavior of total degree families of polynomial systems. Moreover, they provide several
ways of solving the equations. We called them projective resultants because they
characterize exactly the members of an overdetermined family FS(d0, . . . , dn) '
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FR(d0, . . . , dn) which define solutions in Pn. In particular, Resd0,...,dn vanishes
at members of FR(d0, . . . , dn) which define solutions in (C∗)n. There is a nice
generalization of the projective resultant for the family FC[M ](A0, . . . ,An) supported
in A0, . . . ,An ⊂ M and the polyhedral family FC[M ](P0, . . . , Pn). Just as in our
TNF construction for solving generic members of FR(d1, . . . , dn), these toric or sparse
resultants will help us construct a TNF algorithm for solving generic members of
polyhedral families. We note, without going into the details, that Gröbner and border
basis techniques have also been adapted to work in the toric setting, see for instance
[PU99] and Section 5 in [Mou99].
In Subsection 5.2.1 we give a definition of the toric resultant and list some of its
properties. The interested reader is referred to [PS93, Stu94, GKZ94] for more details.
In Subsection 5.2.2 we briefly discuss a construction due to Canny and Emiris [CE93]
which is a toric variant of the Macaulay construction discussed in Subsection 3.4.2. A
more complete introduction to these concepts can be found in [CLO06, Chapter 7].
Another nice overview with many references is given in [EM99b].

5.2.1 Definition and properties

Let A0, . . . ,An ⊂M be finite subsets of the lattice M . We will assume for simplicity
that the supports A0, . . . ,An affinely span the lattice M . That is,

M =
{ ∑
m∈A0

c0,mm+ · · ·+
∑
m∈An

cn,mm | ci,m ∈ Z and
∑
m∈Ai

ci,m = 0, i = 0, . . . , n
}
.

The family F = FC[M ](A0, . . . ,An) is parametrized by

Cp = C|A0| × · · · × C|An|.

In the case where Ai = di∆n ∩M consists of all lattice points in a dilation of the
elementary simplex, F = FR(d0, . . . , dn). In this case Resd0,...,dn is a polynomial in
the coordinate ring A = C[Cp] = C[F ] of the family which characterizes whether
a member of F has a solution. Recall that the variables of A are the coefficients
ci,m for i = 0, . . . , n,m ∈ Ai. For general A0, . . . ,An, we would like to define a toric
resultant ResA0,...,An

∈ A which also has this property. Ideally, with the special choices
of A0, . . . ,An above, we would like Resd0,...,dn and ResA0,...,An to coincide. We let
Z0(A0, . . . ,An) ⊂ Cp denote the set of members of F which have a solution in (C∗)n.
The Zariski closure of this set is denoted by Z(A0, . . . ,An) = Z0(A0, . . . ,An).

Theorem 5.2.1. The variety Z(A0, . . . ,An) ⊂ Cp ' F is a proper, irreducible
subvariety whose ideal IA(Z(A0, . . . ,An)) is generated by polynomials in A with
coefficients in Q.

Proof. See [PS93, Proposition 2.3].
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Theorem 5.2.1 implies together with Theorem A.1.6 that the variety Z(A0, . . . ,An)
can be characterized by only one equation if and only if codimCp Z(A0, . . . ,An) = 1.

Proposition 5.2.1. For i = 0, . . . , n, let Pi = Conv(Ai) be the Newton polytope of
f̂i for a generic member of F . We have that codimCp Z(A0, . . . ,An) = 1 if and only
if the following equivalent conditions hold:

1. for some j ∈ {0, . . . , n}, MV(P0, . . . , Pj−1, Pj+1, . . . , Pn) 6= 0,

2. for some j ∈ {0, . . . , n}, dim
∑
i∈J Pi ≥ |J | for every subset J ( {0, . . . , j −

1, j + 1, . . . , n},

3. there exists a unique subset of {A0, . . . ,An} which is essential.1

Proof. See [PS93, Page 382] for the first two conditions and [Stu94, Corollary 1.1] for
the third.

Corollary 5.2.1. Under the conditions of Proposition 5.2.1, there is a unique, up
to sign, polynomial ResA0,...,An

∈ A with integer coefficients which is irreducible in
Z[ci,m, i = 0, . . . , n,m ∈ Ai] ⊂ A such that

IA(Z(A0, . . . ,An)) = 〈ResA0,...,An
〉.

In Section 3.4 we defined Resd0,...,dn
as an element of the coordinate ring A of

FS(d0, . . . , dn). Since FS(d0, . . . , dn) ' FR(d0, . . . , dn) as affine varieties via homog-
enization, we can think of A as the coordinate ring of FR(d0, . . . , dn) as well. In the fol-
lowing Proposition, we write Resd0,...,dn(f̂0, . . . , f̂n) = Resd0,...,dn(ηd0(f̂0), . . . , ηdn(f̂n)).

Proposition 5.2.2. If Ai = di∆n, di ∈ N for i = 0, . . . , n, we have that

ResA0,...,An = Resd0,...,dn (up to sign).

Equivalently, (f̂0, . . . , f̂n) ∈ Z(A0, . . . ,An) if and only if Resd0,...,dn
(f̂0, . . . , f̂n) = 0.

Proof. If f̂0 = · · · = f̂n = 0 has a solution t = (t1, . . . , tn) ∈ (C∗)n, then (1 :
t1 : · · · : tn) ∈ Pn is a solution of the homogeneous system f0 = · · · = fn = 0
obtained as fi = ηdi

(f̂i) and Resd0,...,dn
(f̂0, . . . , f̂n) = Resd0,...,dn

(f0, . . . , fn) = 0. It
follows that Resd0,...,dn

vanishes on Z0(A0, . . . ,An). Since Z(A0, . . . ,An) is the Zariski
closure of Z0(A0, . . . ,An), this implies that Resd0,...,dn vanishes on Z(A0, . . . ,An).
Since Resd0,...,dn is irreducible (Theorem 3.4.1) and codimCp Z(A0, . . . ,An) = 1, the
statement follows.

1This is a condition on the affine lattices generated by subsets of {A0, . . . ,An}. We included this
statement for completeness and refer to [Stu94] for a precise definition.
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It is clear that if (f̂0, . . . , f̂n) ∈ F = FC[M ](A0, . . . ,An) has a solution in (C∗)n, then
(f̂0, . . . , f̂n) ∈ Z0 ⊂ Z. In general, the inclusion Z0 ⊂ Z is strict and the converse
statement does not hold: (f̂0, . . . , f̂n) ∈ F might be in Z, even though it does not
define any solutions in (C∗)n. In the projective case, we have seen that we can make
this an ‘if and only if’ by considering a larger solution space, namely Pn ⊃ (C∗)n.
This generalizes nicely for toric resultants [GKZ94, Chapter 8, Proposition 1.5], where
the appropriate solution space to consider is the projective toric variety X associated
to the Minkowski sum P0 + · · ·+ Pn, where Pi = Conv(Ai). We will say a few more
things in this direction for readers who are familiar with toric geometry. The use of
projective toric varieties as solution spaces for polyhedral families of systems will be
motivated and explained in more detail in Sections 5.4 and 5.5.
In analogy with the projective case, a member (f̂0, . . . , f̂n) ∈ F is regarded as a global
section s of the rank n+1 vector bundle with sheaf of sections OX(DP0)⊕· · ·⊕OX(DPn

)
on X, where DPi

is the basepoint free Cartier divisor on X associated to the polytope
Pi. The vector space of sections of this bundle is FC[M ](P0, . . . , Pn) ⊃ F and the toric
resultant characterizes exactly when the zero locus of s on X is nonempty.
Just like in the projective case, toric resultants can be used to detect whether a square
system (f̂1, . . . , f̂n) ∈ FC[M ](A1, . . . ,An) defines solutions on the boundary of the torus
(C∗)n in the toric variety X associated to P = P1 + · · ·+ Pn. We describe briefly how
that works. For more details, see for instance the appendix of [HS95]. Each facet Q of P
is a Minkowski sum Q = Q1+· · ·+Qn where Qi ⊂ Pi is a face. Setting Ai(Q) = Ai∩Qi,
we obtain a face system (f̂1(Q), . . . , f̂n(Q)) ∈ FQ = FC[MQ](A1(Q), . . . ,An(Q)) in a
lattice MQ of rank n− 1 given by

f̂i(Q) =
∑

m∈Ai(Q)

ci,mt
m.

For these n equations in C[MQ], the toric resultant ResA1(Q),...,An(Q) ∈ C[FQ] vanishes
at (f̂1(Q), . . . , f̂n(Q)) if and only if (f̂1, . . . , f̂n) defines a solution on the torus invariant
prime divisor DQ ⊂ X corresponding to the facet Q.

Remark 5.2.1. Following an analogous argument as in Remark 3.4.1 it is not hard
to see that under the conditions of Proposition 5.2.1, the toric resultant ResA0,...,An is
homogeneous in each group of variables {ci,m,m ∈ Ai} of degree MV({Pj | j 6= i}). For
a proof, see Proposition 1.6 in [GKZ94] (where it is assumed that Pi is full-dimensional
for each i), or Corollary 2.4 in [PS93]. 4

5.2.2 The Canny-Emiris construction

Just like in the projective case, toric resultants give rise to several methods for solving
square systems in F = FC[M ](A1, . . . ,An). In this subsection we discuss a construction
due to Canny and Emiris [CE93] which gives a matrix NewA0,...,An

whose entries are
variables of A (i.e. coefficients of a general system of F) and whose determinant is a
nonzero multiple of ResA0,...,An . We also show how this leads to a way of obtaining
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multiplication operators using Schur complements. The authors of [CE93] call this
matrix the Newton matrix, because of its relation to the Newton polytopes defining
the associated polyhedral family. Explaining the details of the construction requires
the introduction of concepts such as polyhedral subdivisions (of a special type) and
a way of obtaining them via lifting functions. Since these will not play a role in the
remainder of this text, this would lead us too far. We limit ourselves to a discussion
of the main ideas and an example. For more information, see [CE93] or [CCC+05,
Chapter 7].

Consider the polytope P = P0 + · · ·+ Pn, where Pi = Conv(Ai) ⊂ Rn. We will keep
assuming that the supports A0, . . . ,An affinely span the lattice M , which implies that
the polytope P is full-dimensional. We fix a sufficiently small, random vector v ∈ Rn
and consider the polytope P + v = {m+ v | m ∈ P}. Note that this is not a lattice
polytope anymore. We define the subset

E = (P + v) ∩M.

The lattice points in E are identified with Laurent monomials: V = {tm | m ∈ E}.
These will be the monomials indexing the rows of the matrix NewA0,...,An which we are
about to construct. In analogy with the projective resultant, the set V is partitioned
into subsets Σ′

0, . . . ,Σ′
n corresponding to f̂0, . . . , f̂n, such that

|Σ′
0| = MV(P1, . . . , Pn)

is the expected number of solutions of f̂1 = · · · = f̂n = 0. The matrix New(A0, . . . ,An)
will be partitioned into block rows corresponding to Σ′

0, . . . ,Σ′
n and block columns

corresponding to sets of Laurent monomials Σ0, . . . ,Σn ⊂M of the same cardinality:
|Σ′
i| = |Σi|. In particular, Σ0 = Σ′

0. Denoting V = spanC(V), the columns of the matrix
will represent elements of 〈f̂0, . . . , f̂n〉 ∩ V ⊂ C[M ]. More precisely, the columns in the
block corresponding to Σi represent the polynomials {tmf̂i | tm ∈ Σi} (which requires
tm · Σi ⊂ V for all m ∈ Ai). Using the short notation NewA0,...,An

(f̂0, . . . , f̂n) =
New(f̂0, . . . , f̂n), we obtain a matrix of size |E| × |E| partitioned as follows:

New(f̂0, . . . , f̂n) =



Σ0 {Σ1,...,Σn}

Σ′
0 M00 M01

{Σ′
1,...,Σ

′
n} M10 M11

. (5.2.1)

Denoting Vi = spanC(Σi), this matrix represents a resultant map

New(f̂0, . . . , f̂n) : V0 × · · · × Vn → V

as in Definition 4.3.1, where the ring R is replaced by C[M ]. The restriction

resf̂1,...,f̂n
= New(f̂0, . . . , f̂n)|V1×···×Vn

=
[
M01
M11

]
: V1 × · · · × Vn → V
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is such that im resf̂1,...,f̂n
⊂ I ∩ V , with I = 〈f̂1, . . . , f̂n〉 ∈ C[M ]. As mentioned

above, the matrix NewA0,...,An is such that det(NewA0,...,An) is a nonzero multiple of
ResA0,...,An [CE93, Section 6]. By [Emi96, Lemma 4.4], the submatrix M11 in this
construction is invertible for generic members of F . Defining the Schur complement

Mf̂0
= M00 −M01M

−1
11 M10

and the (row vector valued) map

φΣ0 : (C∗)n → Cδ by φΣ0(z) = (zm | tm ∈ Σ0),

a straightforward adaptation of the proof of Theorem 3.4.2 reveals that for z ∈
V(C∗)n(I),

φΣ0(z)Mf̂0
= f̂0(z)φΣ0(z).

This shows, at least for the case where all z ∈ V(C∗)n(I) have multiplicity 1, by
Theorem 5.1.1 that Mf̂0

represents the multiplication map

Mf̂0
: C[M ]/I → C[M ]/I given by Mf̂0

(g + I) = f̂0g + I,

where C[M ]/I is identified with V0.

Remark 5.2.2. In this construction, the basis used for the quotient ring C[M ]/I
corresponds to the Laurent monomials in Σ0 = Σ′

0. These monomials correspond to
the lattice points in the interior of so-called mixed cells in a coherent mixed subdivision
of P + v. For this reason, this type of basis for C[M ]/I is called a mixed monomial
basis [PS96]. 4

Remark 5.2.3. Note that the size of the matrix NewA0,...,An
only depends on

the Newton polytopes P0, . . . , Pn. This means that, in practice, the complexity
of algorithms related to these resultant constructions often only depends on P0, . . . , Pn,
unless the sparsity of the matrix can be taken into account. 4

Example 5.2.1. This is Example 7.2.5 in [CCC+05, Chapter 7]. Consider the support
A from Example 5.1.5 and the family F = FC[M ](A ,A ,A ) (n = 2). The polytope
P + v is depicted in Figure 5.2. We set

V = {1, t1, t21, t2, t1t2, t21t2, t22, t1t22, t21t22},
Σ0 = {1, t1t2}, Σ1 = {1, t1, t2, t1t2}, Σ2 = {1, t1, t2}.

A member of the family F is given by

f̂0 = a0 + a1t1 + a2t2 + a3t1t2,

f̂1 = b0 + b1t1 + b2t2 + b3t1t2,

f̂2 = c0 + c1t1 + c2t2 + c3t1t2.
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v

(0, 0)

Figure 5.2: The polytope P + v in Example 5.2.1 and the lattice points in E (black
dots).

We obtain the 9× 9 matrix

NewA ,A ,A =



1 t1t2 1 t1 t2 t1t2 1 t1 t2

1 a0 b0 c0

t1t2 a3 a0 b3 b2 b1 b0 c3 c2 c1

t1 a1 b1 b0 c1 c0

t2 a2 b2 b0 c2 c0

t21 b1 c1

t21t2 a1 b3 b1 c3

t22 b2 c2

t1t
2
2 a2 b3 b2 c3

t21t
2
2 a3 b3


which is partitioned as in (5.2.1). We note that for this example, viewing (f̂0, f̂1, f̂2)
as a member of FR(2, 2, 2) ' FS(d0, d1, d2), the Macaulay matrix Mac2,2,2(f̂0, f̂1, f̂2)
is a 15 × 15 matrix whose determinant vanishes identically on F . Indeed, for any
value of the parameters ai, bi, ci, the homogeneous system f0 = f1 = f2 = 0 defined by

f0 = a0x
2
0 + a1x0x1 + a2x0x2 + a3x1x2,

f1 = b0x
2
0 + b1x0x1 + b2x0x2 + b3x1x2,

f2 = c0x
2
0 + c1x0x1 + c2x0x2 + c3x1x2

has solutions (0 : 1 : 0) and (0 : 0 : 1) in P2. Note that this provides an explanation
for the difference between the Bézout number of FR(2, 2) and the mixed volume for
FC[M ](P, P ) established in Example 5.1.5: the support forces two out of four solutions
to lie ‘at infinity’. 4
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We conclude by pointing out that in [EC95], the authors propose an incremental
version of the algorithm in [CE93] which produces a matrix with the same properties
but usually of smaller size.

5.3 Truncated normal forms for polyhedral families

In this section, we consider a zero-dimensional ideal I ⊂ C[M ] such that
dimC C[M ]/I = δ+ and its contraction Ic = I ∩ R ⊂ R. By the results of Section
4.2 and the proof of Theorem 5.1.1, the coordinates of the points in V(C∗)n(I) can be
computed via eigenvalue computations once we have computed a TNF with respect to
Ic.

Theorem 5.3.1. Let V be a finite dimensional C-vector subspace of R ⊂ C[M ] and
let W ⊂ V be its largest subspace such that W+ ⊂ V . If the space V and a C-linear
map N : V → Cδ+ satisfy the following properties:

1. kerN ⊂ I ∩ V and there is u ∈ V such that u+ I is a unit in C[M ]/I,

2. N|W : W → Cδ+ is surjective,

then for any δ+-dimensional subspace B ⊂ W such that N|B is invertible, NV =
(N|B)−1 ◦N : V → B is a TNF with respect to Ic.

Proof. Note that I ∩ V = I ∩R ∩ V = Ic ∩ V and for u ∈ V ⊂ R, u+ I is a unit in
C[M ]/I if and only if u+ Ic is a unit in R/Ic by Lemma 5.1.1. The theorem follows
from Corollary 4.2.1.

In the terminology of Section 4.2, the map N : V → Cδ+ in Theorem 5.3.1 covers
a TNF with respect to Ic. We will now derive one possible way of computing such
a map N : V → Cδ+ as the cokernel of a resultant map in the case of square
systems. The constructions we propose are strongly related to the Canny-Emiris
construction from Subsection 5.2.2 and essentially, they only depend on the Newton
polytopes of the Laurent polynomials defining the system. In what follows, we assume
that I = 〈f̂1, . . . , f̂n〉 where (f̂1, . . . , f̂n) ∈ FC[M ](P1, . . . , Pn) for some polytopes
P1, . . . , Pn ⊂ Rn. If the system one wants to solve is supported in A1, . . . ,An, one
should consider it as a member of FC[M ](P1, . . . , Pn) where Pi = Conv(Ai). Since
all Laurent monomials are units in C[M ], we may assume f̂i ∈ R, i = 1, . . . , n. We
take f̂0 ∈ FC[M ](∆n) to be any affine function in C[M ] and set P0 = ∆n. For the
tuple (f̂0, . . . , f̂n) ∈ FC[M ](P0, . . . , Pn), we consider a Canny-Emiris construction as in
Subsection 5.2.2. This gives a matrix

New(f̂0, . . . , f̂n) ∈ C|E|×|E|
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where E = (P0 + · · · + Pn + v) ∩M for some random small vector v ∈ Rn. By our
assumptions, we have that V = {tm | m ∈ E} ⊂ R, and hence V = spanC(V) ⊂ R.
Recall from Subsection 5.2.2 that for any f̂ ∈ Vi = spanC(Σi), we have f̂ f̂i ∈ V .
Therefore, since for any f̂ , f̂ ′ ∈ C[M ] we have that Newt(f̂ f̂ ′) = Newt(f̂) + Newt(f̂ ′),
we must have

Vi ⊂
⊕

m∈Qi∩M
C · tm, where Qi = P0 + · · ·+ Pi−1 + Pi+1 + · · ·+ Pn + v. (5.3.1)

Recall that by restricting the map represented by New(f̂0, . . . , f̂n) to V1 × · · · × Vn we
get a resultant map

resf̂1,...,f̂n
= New(f̂0, . . . , f̂n)|V1×···×Vn

=
[
M01
M11

]
: V1 × · · · × Vn → V.

The following is the analogue of Proposition 4.3.1 in the toric case.

Proposition 5.3.1. Let (f̂0, . . . , f̂n) ∈ FC[M ](P0 = ∆n, P1, . . . , Pn), I = 〈f̂1, . . . , f̂n〉
and consider the resultant map

resf̂1,...,f̂n
= New(f̂0, . . . , f̂n)|V1×···×Vn

: V1 × · · · × Vn → V

with Vi = spanC(Σi) and V = spanC(V). If the submatrix M11 of New(f̂0, . . . , f̂n) is
invertible, then the corank of resf̂1,...,f̂n

is δ+ = dimC C[M ]/I and any cokernel map
N : V → Cδ+ of resf̂1,...,f̂n

covers a TNF with respect to Ic = I ∩R.

Proof. Up to using Theorem 5.3.1, the fact that any monomial tm in V corresponds
to a unit tm + I in C[M ]/I and V0 = spanC(Σ0) ⊂W since V0 + ∆n ⊂ V (see (5.3.1)),
the proof is identical to the proof of Proposition 4.3.1.

By [Emi96, Lemma 4.4], the condition that M11 is invertible holds for generic members
of FC[M ](P0, . . . , Pn). Better yet, it holds for generic members of any subfamily
FC[M ](A0, · · · ,An) such that Conv(Ai) = Pi, i = 0, . . . , n. It follows from the fact that
a cokernel map N : V → Cδ+ covers a TNF that kerN = im resf̂1,...,f̂n

= Ic∩V = I∩V .
By Theorem 5.1.2, the number δ+ in Proposition 5.3.1 is MV(P1, . . . , Pn).

As in the total degree case, we will use ‘larger’ resultant maps V1 × · · · × Vn → V in
our TNF construction to stabilize the numerical computation of the cokernel. That
is, we keep V = spanC(V) and pick the subspaces V1, . . . , Vn ⊂ R as large as possible
such that f̂i · Vi ⊂ V . We replace the inclusion in (5.3.1) by an equality:

Vi =
⊕

m∈Qi∩M
C · tm, where Qi = P0 + · · ·+ Pi−1 + Pi+1 + · · ·+ Pn + v. (5.3.2)

Corollary 5.3.1. Let (f̂1, . . . , f̂n) ∈ FC[M ](P1, . . . , Pn) and consider the resultant
map

resf̂1,...,f̂n
: V1 × · · · × Vn → V
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with Vi as in (5.3.2) and V = spanC(V). For a generic member (f̂1, . . . , f̂n) ∈
FC[M ](P1, . . . , Pn), the corank of resf̂1,...,f̂n

is δ+ and any cokernel map N : V → Cδ+

of resf̂1,...,f̂n
covers a TNF with respect to Ic.

Proof. Let res′
f̂1,...,f̂n

be the resultant map from Proposition 5.3.1. By Proposition
5.3.1 and [Emi96, Lemma 4.4], for a generic member (f̂0, . . . , f̂n) ∈ FC[M ](P0 =
∆n, P1, . . . , Pn) we have im res′

f̂1,...,f̂n
= I ∩ V . Moreover, it is sufficient that

(f̂1, . . . , f̂n) ∈ FC[M ](P1, . . . , Pn) be generic, since the coefficients of f̂0 are not involved
in the matrix M11. This implies

I ∩ V = im res′
f̂1,...,f̂n

⊂ im resf̂1,...,f̂n
⊂ I ∩ V.

Therefore im res′
f̂1,...,f̂n

= im resf̂1,...,f̂n
and the cokernels of both maps agree. The

statement now follows from Proposition 5.3.1.

Remark 5.3.1. Since the subspaces Vi defining the resultant map of Corollary
5.3.1 depend on the random vector v ∈ Rn, it is not straightforward to investigate
what ‘generic’ means exactly in the context of this statement. We will be able to
say more about this for a different construction in Section 5.5 via a homogeneous
interpretation. 4

Algorithm 5.3 Computes multiplication matrices for generic (f̂1, . . . , f̂n) ∈
FC[M ](P1, . . . , Pn)

1: procedure MultiplicationMatrices(f̂1, . . . , f̂n)
2: v ← random small n-vector
3: resf̂1,...,f̂n

← the resultant map V1 × · · · × Vn → V from Corollary 5.3.1
4: N ← coker resf̂1,...,f̂n

5: N|W ← restriction of N to the largest subspace W ⊂ V such that W+ ⊂ V
6: N|B ← any invertible restriction of N|W (dimCB = δ+)
7: for i = 1, . . . , n do
8: Ni ← N|ti·B
9: Mti ← (N|B)−1Ni

10: end for
11: return Mt1 , . . . ,Mtn

12: end procedure

In the notation of Algorithm 5.3, it is understood that if in line 6, the map N|B is
represented in the basis B for B, then Nti·B in line 8 should be represented in the
basis ti · B. The choice of the subspace B ⊂ W ⊂ V in line 6 can happen using the
QR or SVD techniques proposed in the previous chapter.

Remark 5.3.2 (On the complexity of Algorithm 5.3). The complexity analysis in
Remark 4.3.2 can straightforwardly be adapted to Algorithm 5.3. In this case, the
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P1
P2

Figure 5.3: The polytopes P1 (left), P2 (center) from Example 5.3.1 and their
Minkowski sum P1 + P2 (right).

sizes of the matrices depend on the number of monomials in V1, . . . , Vn, V and on the
mixed volume δ+ = MV(P1, . . . , Pn). The conclusion that the cokernel computation
(line 4) dominates the computational cost of the algorithm holds in this case as well.
In particular, the cost of using column pivoted QR or SVD on the matrix N|W , which
is usually much smaller than resf̂1,...,f̂n

, is negligible as compared to the cokernel
computation, yet it is crucial for the numerical stability. We point out that the
complexity of the cokernel computation in line 4 can be straightforwardly reduced by
applying the second technique proposed in Subsection 4.4.1. 4

Example 5.3.1. Let n = 2, C[M ] = C[t±1
1 , t±1

2 ] and consider the polynomials

f̂1 = a0 + a1t
3
1t2 + a2t1t

3
2,

f̂2 = b0 + b1t
2
1 + b2t

2
2 + b3t

2
1t

2
2.

The Newton polygons, together with their Minkowski sum, are shown in Figure 5.3. By
applying the formula (D.1.3) we find that the BKK number for the system f̂1 = f̂2 = 0
is the area of the shaded regions in the right part of Figure 5.3, which is 12. Note
that the Bézout bound is 16. Using v = (−0.3,−0.4) we obtain the set E marked with
black dots in Figure 5.4. The points in E correspond to the monomials tm which span
the C-vector space V from Corollary 5.3.1. The C-vector spaces V1, V2 are spanned by
the monomials corresponding to the lattice points in ∆2 + P2 + v and ∆2 + P1 + v
respectively. The diagram on the left side of Figure 5.5 illustrates the toric resultant
map. For comparison, Figure 5.5 also shows an analogous picture for the total degree
resultant map used in Algorithm 4.1. However, a cokernel of this resultant map does
not yield a map that covers a TNF: the assumptions of Proposition 4.3.2 are not
satisfied! The 4 ‘missing’ solutions with respect to Bézout’s bound lie, for any choice
of ai, bi, on the line at infinity. However, the total degree resultant map can still be
used in a homogeneous interpretation as in Algorithm 4.2. In Figure 5.5, the black
dots in the blue and orange polytopes index the columns of the matrix representing
the resultant map. The black dots in the purple polytopes index its rows. This means
that in this example, the toric resultant map corresponds to an 29× 18 matrix and
the total degree resultant map has size 36× 20. 4
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Figure 5.4: The polytope ∆2 + P1 + P2 + v and its interior lattice points (black dots)
corresponding to E from Example 5.3.1.

×

V

V2V1

×

V

V2V1

Figure 5.5: Illustration of the resultant maps from Corollary 5.3.1 (left) and Proposition
4.3.2 (right).
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We conclude the section with some numerical experiments. In our algorithms, we have
used the Schur decomposition for computing the coordinates of the solutions from the
multiplication matrices. The machine used to perform the experiments is the same as
in Subsection 4.3.3. The residual is measured as in Appendix C.

Experiment 5.3.1 (‘Block’ supports). We consider Fn,d = FC[M ](P, . . . , P ) (P is
listed n times) where P is the hypercube P = [0, d]n for some d ∈ N. This corresponds
to polynomial systems f̂1 = · · · = f̂n = 0 where the monomials occuring in f̂i are

tm = tm1
1 · · · tmn

n such that 0 ≤ mi ≤ d, i = 1, . . . , n.

An example for d = 1, n = 3 was given in Example 3.2.4. The Bézout bound for Fn,d
is (nd)n, whereas the BKK number is n!dn. For different n and d, we solve generic
members of Fn,d generated by drawing the coefficients from a real, standard normal
distribution. We use a Matlab implementation of Algorithm 5.3, which calls Polymake
[AGH+17] for all computations involving polytopes, except for computing the mixed
volume, which is done using PHCpack [Ver99]. We compare the results with those
of the function qdsparf and sparf from the PNLA package (see Experiment 4.3.3).
Results for n = 2 and n = 3 are shown in Tables 5.1 and 5.2. The tables report
computation time t? (in seconds), number of computed solutions δ?, maximal residual
rmax,? and geometric mean residual rmean,? for each solver ?.

d tQR δQR rmax,QR rmean,QR tSVD δSVD rmax,SVD rmean,SVD

1 2.977 2 3.15 · 10−16 2.85 · 10−16 2.913 2 3.71 · 10−16 2.4 · 10−16

2 2.954 8 7.16 · 10−15 1.06 · 10−15 2.968 8 1.34 · 10−14 1.03 · 10−15

3 2.981 18 1.86 · 10−14 6.53 · 10−15 2.941 18 9.88 · 10−15 2.23 · 10−15

4 2.939 32 7.64 · 10−13 1.55 · 10−14 3.248 32 5 · 10−15 9.39 · 10−16

5 2.981 50 2.44 · 10−14 2.26 · 10−15 2.935 50 4.7 · 10−15 1.06 · 10−15

6 2.942 72 4.35 · 10−14 6.77 · 10−15 3.000 72 3.38 · 10−15 9.55 · 10−16

7 3.068 98 4.9 · 10−14 6.9 · 10−15 3.195 98 4.1 · 10−15 1.1 · 10−15

8 3.075 128 4.45 · 10−13 2.73 · 10−15 3.098 128 5.27 · 10−15 8.58 · 10−16

d tqdsparf δqdsparf rmax,qdsparf rmean,qdsparf tsparf δsparf rmax,sparf rmean,sparf

1 0.004 2 6.36 · 10−17 4.67 · 10−17 0.010 2 1.17 · 10−16 1.05 · 10−16

2 0.012 8 1.62 · 10−11 7.12 · 10−15 0.055 8 8.37 · 10−11 8.66 · 10−15

3 0.038 19 0.46 1.09 · 10−12 0.287 18 0.44 1.54 · 10−12

4 0.095 33 0.14 3.76 · 10−13 0.728 32 1.54 · 10−2 1.76 · 10−13

5 0.146 50 1.62 · 10−5 4.34 · 10−13 1.910 50 1.5 · 10−7 1.28 · 10−13

6 0.494 75 0.37 2.3 · 10−11 4.708 72 1.8 · 10−2 1 · 10−12

7 0.684 100 0.3 1.68 · 10−10 12.356 97 6.87 · 10−2 8.08 · 10−11

8 0.840 129 9.59 · 10−2 1.14 · 10−12 22.612 128 5.53 · 10−6 2.73 · 10−13

Table 5.1: Results for a Matlab implementation of Algorithm 5.3 with QR/SVD for
basis selection and the functions qdsparf, sparf from PNLA for the families F2,d of
Experiment 5.3.1.

Calling Polymake from Matlab causes some overhead (a little less than 3 seconds for
n = 2), which can be seen from the fact that the computation time almost doesn’t
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d tQR δQR rmax,QR rmean,QR tSVD δSVD rmax,SVD rmean,SVD

1 4.562 6 6.06 · 10−16 3.29 · 10−16 4.741 6 9.25 · 10−16 2.62 · 10−16

2 4.834 48 1.99 · 10−14 2.66 · 10−15 4.655 48 2.96 · 10−15 6.46 · 10−16

3 6.105 162 2.03 · 10−12 1.6 · 10−14 5.842 162 1.35 · 10−13 1.2 · 10−15

d tqdsparf δqdsparf rmax,qdsparf rmean,qdsparf tsparf δsparf rmax,sparf rmean,sparf

1 0.030 6 1.54 · 10−13 1.32 · 10−14 0.149 6 5.68 · 10−15 1.23 · 10−15

2 0.472 48 8.24 · 10−6 5.23 · 10−11 6.896 48 5.92 · 10−7 1.79 · 10−12

3 26.551 172 0.76 1.54 · 10−3 128.489 161 0.54 2.19 · 10−8

Table 5.2: Results for a Matlab implementation of Algorithm 5.3 with QR/SVD for
basis selection and the functions qdsparf, sparf from PNLA for the families F3,d of
Experiment 5.3.1.

increase for n = 2 and increasing d. This can be overcome using the recently developed
Polymake interface in Julia [KLT20]. We therefore also implemented Algorithm 5.3 in
Julia. With this implementation, solving a generic member of F2,8 takes on average 0.5
seconds. All solutions are found consistently with a residual no larger than O(10−14).
Numerical approximations of all 5000 solutions of a generic member of F2,50 are found
within 17 minutes. The maximal residual is of order 10−12. It takes 4 minutes and 32
seconds to solve F3,6 (1296 solutions), 4 minutes and 12 seconds to solve F4,2 (384
solutions) and 4 minutes and 52 seconds to solve F5,1 (120 solutions).

For n = 2, the incremental strategy of the PNLA solvers has to deal with two singular
points on the line at infinity, whose multiplicities make up for the difference between
the Bézout bound and the BKK number. For n = 3, there is a curve ‘at infinity’
(see Example 3.2.4), which makes things significantly more tricky (e.g. the Hilbert
function does not stabilize). Note that these solvers sometimes miss a few solutions,
and sometimes they return too many. For n = 3, d > 3, the solver qdsparf threw an
error. 4

Experiment 5.3.2 (Molecule configurations). In [EM99a], the authors study the
use of toric resultants (and other algebraic techniques) for computing the possible
configurations of a 6-atom molecule. The system of equations that needs to be solved
is f̂1 = f̂2 = f̂3 = 0 with

f̂1 = β11 + β12t
2
2 + β13t

2
3 + β14t2t3 + β15t

2
2t

2
3,

f̂2 = β21 + β22t
2
3 + β23t

2
1 + β24t3t1 + β25t

2
3t

2
1,

f̂3 = β31 + β32t
2
1 + β33t

2
2 + β34t1t2 + β35t

2
1t

2
2.

Here the variables t1, t2, t3 encode what the authors of [EM99a] call the flap angles
of the molecule, and the parameters βij are computed from the fixed bond lengths
and bond angles in the molecule. We are dealing with a family of square systems in
C[M ] = C[t±1

1 , t±1
2 , t±1

3 ], where each equation only contains 2 out of the 3 variables.
We denote this family by F = FC[M ](P1, P2, P3) where Pi is a 2-dimensional lattice
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polytope in R3. The BKK number for this family is MV(P1, P2, P3) = 16, whereas the
classical Bézout number equals 64. Only the real solutions are physically meaningful.
For the cyclohexane molecule, the coefficients (after contamination by noise) are given
as the entries βij of the matrix

β =

−310 959 774 1389 1313
−365 755 917 1451 1269
−413 837 838 1655 1352

 .
The Julia implementation of Algorithm 5.3 computes numerical approximations of all
16 solutions in less than half a second, with a maximal residual of order 10−15. There
are four real solutions, which correspond to the possible configurations of the molecule.
Another interesting member of this family is one whose 16 solutions are all real. The
coefficients are

β =

−13 −1 −1 24 −1
−13 −1 −1 24 −1
−13 −1 −1 24 −1

 .
Computation time and accuracy are roughly the same as for the cyclohexane problem.
These results can be compared to Tables 1-3 in [EM99a], although the computations
were performed on a different machine and the residual is measured using an absolute
criterion. 4

5.4 Solutions on toric varieties

We have seen in the previous chapters that the projective space Pn is a natural space
to look for solutions of a member (f̂1, . . . , f̂n) of FR(d1, . . . , dn). Even though we
might only be interested in solutions in the open subset C2 ' U0 ⊂ Pn, keeping track
of what happens ‘at infinity’ has several benefits. For instance, it may allow us to
explain the number of solutions in C2, by subtracting the number of solutions at
infinity from the Bézout number. It is also natural from a numerical point of view to
take roots at infinity into account, as the slightest perturbation inside FR(d1, . . . , dn)
moves them into C2. However, if the systems we are interested in belong to a small
subfamily of FR(d1, . . . , dn), extending the relations f̂1 = · · · = f̂n = 0 to Pn may
introduce solution components at infinity that do not seem so natural. For instance,
they do not disappear or move into C2 upon perturbing the system, and they may
even be independent of which member of the subfamily we consider. This happened in
Example 3.2.4. In this section we will motivate the interpretation of more general toric
varieties as a natural solution space for Laurent polynomial systems coming from the
more general families FC[M ](A1, . . . ,An). That is, we will consider a projective toric
variety X which, in many ways, is to FC[M ](A1, . . . ,An) what Pn is to FR(d1, . . . , dn).
In particular, if Ai = di∆n ∩M for some n-tuple (d1, . . . , dn) ∈ Nn>0, then X = Pn.
For some background on toric varieties, see Appendix E.
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5.4.1 Unmixed families

We first consider the case where A1 = · · · = An = A and A affinely spans the lattice
M . The family FA = FC[M ](A , . . . ,A ) (A is listed n times) is called the unmixed
family supported in A . Let A = {m0, . . . ,ms} ⊂M and

f̂j =
s∑
i=0

cj,it
mi , j = 1, . . . , n

such that (f̂1, . . . , f̂n) ∈ FA . Let I = 〈f̂1, . . . , f̂n〉 ⊂ C[M ] be the corresponding ideal.
We consider the resultant map

resA = resf̂1,...,f̂n
: C× · · · × C→ VA ,

where VA =
⊕s

i=0 C · tmi . The matrix of this map in the basis {tm0 , . . . , tms} for VA

is given by (resA )ij = cj,i (for convenience, we start indexing the rows of resA by 0).
We define the map

φA : (C∗)n → P(V ∨
A ) ' Ps given by t 7→ (tm0 : · · · : tms).

Here we write P(V ∨
A ) for the projectivization2 of the C-vector space V ∨

A . Note
that an element w ∈ P(V ∨

A ) does not define a linear function on VA , but the set
{f̂ ∈ VA | w(f̂) = 0} is well-defined. Hence, the statements w(f̂) = 0 or w(f̂) 6= 0 for
f̂ ∈ VA make sense. For the representative (tm0 , . . . , tms) ∈ V ∨

A ' Cs+1 of φA (t) ∈ Ps
we have [

tm0 · · · tms
] c1,0 · · · cn,0

...
...

c1,s · · · cn,s

 =
[
f̂1(t) · · · f̂n(t)

]
.

If follows immediately that φA (t) ◦ resA = 0 if and only if t ∈ V(C∗)n(I). Using the
fact that A affinely generates M , one can prove the following result.

Proposition 5.4.1. The points in V(C∗)n(I) are in one-to-one correspondence with
the points w ∈ imφA ⊂ Ps such that w(f̂) = 0 for all f̂ ∈ im resA .

Let u0, . . . , us be homogeneous coordinates on Ps. A point w = (u0 : · · · : us) ∈ Ps is
such that w(f̂) = 0 for all f̂ ∈ im resA if and only if

gi = ci,0u0 + · · ·+ ci,sus = 0, i = 1, . . . , n. (5.4.1)

In order to express the condition (u0 : · · · : us) ∈ imφA from Proposition 5.4.1 in
terms of polynomial equations, we need to allow that w lies in the Zariski closure

2The projectivization of a C-vector space V is (V \ {0})/ ∼ where v ∼ w if v = λw for some
λ ∈ C∗.
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imφA ⊂ Ps. This is exactly the projective toric variety XA ⊂ Ps corresponding to
A . A point u = (u0 : · · · : us) ∈ Ps lies on XA if and only if

w ∈ VPs(IA ),

where IA = IC[Ps](XA ) is the toric ideal defining XA (here we replace A by A × {1}
in order to obtain a homogeneous toric ideal, see Appendix E). In order to put these
conditions together, we regard the equations (5.4.1) as equations on XA . That is,
we consider their images gi + IA in the coordinate ring C[XA ] = C[Ps]/IA of XA .
Since the points in V(C∗)n(I) correspond to points on XA on which the gi vanish, they
correspond to points in

VXA (IL) ⊂ XA where IL = 〈g1 + IA , . . . , gn + IA 〉 ⊂ C[XA ].

Note that IL is an ideal generated by linear forms in C[XA ]1 (in the grading induced
by the standard grading on C[Ps]). By the assumption that A affinely generates the
lattice M , the map φA embeds the torus (C∗)n in XA , which establishes the chain of
inclusions

V(C∗)n(I) ⊂ VXA (IL) ⊂ XA .

Since XA is strictly larger than imφA , the inclusion V(C∗)n(I) ⊂ VXA (IL) might be
strict.

Example 5.4.1. Let A = ∆2 ∩ M , f̂1 = 1 + t1 + t2, f̂2 = 2 + t1 + t2. Then
XA = P2, C[XA ] = C[u0, u1, u2] and IL = 〈u0 + u1 + u2, 2u0 + u1 + u2〉. We have
V(C∗)2(I) = ∅ but VXA (IL) = (0 : 1 : −1). 4

However, by Proposition 5.4.1 we have the equality V(C∗)n(I) = VXA (IL)∩TXA , where
TXA = imφA . If the coefficients cj,i are generic, (5.4.1) defines a linear subvariety of
codimension n in Ps. Since XA has dimension n, we may expect that VXA (IL) consists
of finitely many points. The number of points in the intersection of an n-dimensional
projective variety X and a general linear space of codimension n is what we defined to
be its degree (Definition 2.2.10). This gives the expected number of points in VXA (IL)
a nice geometric interpretation: it is the degree of the projective toric variety XA .

Theorem 5.4.1. The degree of XA is n!Voln(Conv(A )).

Proof. See [Kho92], [Sot11, Subsection 3.1.2] or [Sot17, Lemma 2.11].

A corollary of Theorem 5.4.1 is Kushnirenko’s theorem, which states that the number
of isolated points in V(C∗)n(I) is at most n!Voln(Conv(A )). Kushnirenko’s theorem is
implied by Theorem 5.1.2 since for a polytope P ⊂ Rn, MV(P, . . . , P ) = n!Voln(P ).

Example 5.4.2. Consider the Laurent polynomials

f̂1 = 3− 2t1 − 2t2 + t1t2,

f̂2(e) = (4− e)− t1 − (3− e)t2 + t1t2,
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t2

f̂1 = 0

f̂2(0) = 0

f̂2(1) = 0

Figure 5.6: Paths traced out by the solutions of f̂1 = f̂2(e) = 0 from Example 5.4.2
for e ∈ [0, 1] in the torus (left) and on XA ' P1 × P1 (right).

in the ring C[M ] = C[t±1
1 , t±1

2 ] where e is a parameter for which we will consider the
values e ∈ [0, 1] ⊂ R. For all values of e, (f̂1, f̂2(e)) ∈ FA with A = [0, 1]2 ∩M , and
for e ∈ [0, 1], Newt(f̂1) = Newt(f̂2(e)) = [0, 1]2 ⊂ R2. For e = 0, there are 2 solutions
in the torus, which is the BKK number for FA . For e = 1, V(C∗)2(f̂1, f̂2(1)) = ∅. As
e increases from 0 to 1, the solutions move out of the torus. For one of them, the
t1-coordinate becomes 0. The other one shoots off to ‘infinity’. This is illustrated
on the left part of Figure 5.6. The projective toric variety XA in this example is
the closure of the image of the map φA given by (t1, t2) 7→ (1 : t1 : t2 : t1t2). This
is equal to the image of the Segre embedding P1 × P1 → P3, which is the variety
VP3(u1u2−u0u3) of rank 1 matrices of size 2× 2. A picture of this variety in the chart
U2 (u2 6= 0) is shown in the right part of Figure 5.6 (XA is the blue surface). Here
the coordinates x = u0/u2, y = u1/u2, z = u3/u2 were used, and XA ∩ U2 ⊂ U2 ' C3

is described by VC3(y − xz). The ideal IL ⊂ C[XA ] in this example is given by

IL(e) = 〈3u0 − 2u1 − 2u2 + u3 + IA , (4− e)u0 − u1 − (3− e)u2 + u3 + IA 〉,

where IA = 〈u1u2 − u0u3〉. Hence VXA (IL(e)) is the intersection of XA and a line
in P3 that moves as e increases from 0 to 1. This is illustrated in Figure 5.6 by the
moving orange line, which traces out two paths on XA . As e→ 1, these paths move
out of imφA ' (C∗)2 and they end up in the boundary of (C∗)2 in XA . 4
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The projective toric variety XA obtained from the set of lattice points A may not
be a normal variety. This is a property we would like to have, so in general we will
need to associate a different toric variety to A . For A = {m0, . . . ,ms} ⊂ M such
that dim Conv(A ) = n, we consider an element f̂ ∈ FC[M ](A ) and show that it has
a well-defined zero set on the normal toric variety XP associated to the polytope
P = Conv(A). We define

T = {i ∈ {0, . . . , s} : mi is a vertex of P}.

By Proposition E.2.4, we know that there is some ` ∈ N such that the dilation `P is
very ample. We fix such an ` (the construction will not depend on which ` we choose)
and define

Ai = `P ∩M − `mi, for all i ∈ T .

We obtain the normal affine toric varieties Yi = YAi
, i ∈ T . Each of these affine toric

varieties corresponds to a saturated affine semigroup Si = NAi ⊂M , or equivalently,
to a cone σ∨

i = Cone(Si) ⊂ NR. For each i ∈ T , we set

fσi = t−mi f̂ ∈ C[Si].

This gives a function f̂σi : Yi → C, i ∈ T . Recall that the affine toric varieties
Yi, i ∈ T glue together along the open subsets

Yij = (Yi)tmj −mi = MaxSpec(C[Si]tmj −mi )

to obtain the toric variety XP . In the gluing, the open subsets Yij ⊂ Yi, Yji ⊂ Yj are
identified via the isomorphisms

φij : Yij → Yji given by φ∗
ij : C[Sj ]tmi−mj ' C[Si]tmj −mi .

Note that fσi = φ∗
ij(fσj/tmi−mj ), which implies that for p ∈ Yij , fσi(p) = 0 if and

only if fσj (φij(p)) = 0. In other words, although fσi and fσj define different functions
on Yij and Yji, their zero sets are identified under the gluing. Let Uσi

' Yi be the
open subset of XP identified with Yi. We define the divisor of zeros of f̂ as

div0(f̂) = {p ∈ XP | fσi(p) = 0 for any i ∈ T such that p ∈ Uσi
}.

It is not hard to check that div0(f̂) ∩ (C∗)n = V(C∗)n(f̂). Indeed since (C∗)n ⊂ Uσi

for all i ∈ T , for p ∈ (C∗)n we have p ∈ div0(f̂) if and only if for any i ∈ T ,

fσi(p) = 0⇔ (t−mi f̂)(p) = 0⇔ f̂(p) = 0.

Hence, the divisor of zeros contains V(C∗)n(f̂) and can be seen as an extension of the
relation f̂ = 0 on (C∗)n to a relation on XP ⊃ (C∗)n. For the reader familiar with
vector bundles, what we did here was describe the interpretation of f̂ as a global
section of the line bundle with sheaf of sections OXP

(DP ) associated to the ample
divisor DP corresponding to P .
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It is now straightforward to define a zero set on XP for members of the family
FC[M ](A , . . . ,A ):

VXP
(f̂1, . . . , f̂n) = div0(f̂1) ∩ · · · ∩ div0(f̂n).

In this setting, for each i ∈ T we get a vector valued function

Fσi : Yi → Cn given by p 7→ (fσi
1 (p), . . . , fσi

n (p)).

These functions do not glue to a function on XP , but they have a well defined zero
set, which is VXP

(f̂1, . . . , f̂n).

Remark 5.4.1. In the case where f̂ =
∑s
i=0 cit

mi ∈ FC[M ](A ) for A = P ∩M and
P is very ample, div0(f̂) is exactly the zero locus of c0u0 + · · ·+ csus + IA on XA .
The reason is that in this case, XA is an embedding of XP . 4

5.4.2 Mixed families

Let A1, . . . ,An ⊂M = Zn and Pj = Conv(Aj), j = 1, . . . , n. We set P = P1 + · · ·+Pn
and assume that dimP = n. We show that a member (f̂1, . . . , f̂n) ∈ FC[M ](A1, . . . ,An)
has a well-defined zero set on the normal toric variety XP associated to the Minkowski
sum P . Note that if A1 = · · · = An, P is a dilate of each Pj , which implies that P
and Pj have the same normal fan, and hence XP = XPj . This is the same normal
toric variety we were considering in the unmixed case.

We first argue that each of the f̂j ∈ FC[M ](Aj) separately has a well-defined zero set on
XP . For that we will need a result about polytopes. The proof of the next proposition
uses some tools from [CLS11, Chapter 6] that were not introduced in this thesis. We
include it for completeness and illustrate it with an example. The statement uses the
following terminology. We say that a polytope Q′ ⊂ Rn is an N-Minkowski summand
of a polytope Q ⊂ Rn if there is Q′′ ⊂ Rn such that Q′ +Q′′ = `Q for some ` ∈ N.

Proposition 5.4.2. Let Pj , P ⊂ MR = Rn be lattice polytopes. If (and only if) Pj
is an N-Minkowski summand of P , then for each full dimensional cone σ ∈ ΣP (n)
there is a unique vertex mσ ∈ Pj ∩M such that Pj −mσ ⊂ σ∨. Moreover, the cone
corresponding to a vertex m ∈ Pj ∩M in the normal fan ΣPj

of Pj is

σm =
⋃

σ∈ΣP (n)
mσ=m

σ.

Proof. Since Pj is an N-Minkowski summand of P , Pj corresponds to a torus invariant
basepoint free Cartier divisor DPj

on XP [CLS11, Corollary 6.2.15]. Therefore there
exist (aρ)ρ∈ΣP (1) such that

Pj = {m ∈MR | 〈uρ,m〉+ aρ ≥ 0, for all ρ ∈ ΣP (1)},
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where uρ is the primitive ray generator of the ray ρ ∈ ΣP (1). This implies, by
Theorems 4.2.8 and 6.1.7 in [CLS11] that for each σ ∈ ΣP (n) there is a unique vertex
mσ ∈ Pj ∩ M such that 〈uρ,mσ〉 = aρ for each ρ ∈ σ(1). It follows easily that
Pj−mσ ⊂ σ∨. If for some (different) lattice point m ∈ Pj ∩M such that Pj−m ⊂ σ∨,
then both mσ −m and m −mσ are contained in σ∨, but σ∨ is pointed since σ is
full-dimensional. We conclude that m = mσ. The statement about the normal fan of
P is Proposition 6.2.5 in [CLS11].

Example 5.4.3. Consider the polytopes P1, P2, P shown in Figure 5.7. The normal

P1 + P2 = P

Figure 5.7: Polytopes from Example 5.4.3.

fan ΣP of P is shown in Figure 5.8, together with a picture of the dual cones of the
maximal cones in ΣP (the cones σ∨

1 and σ∨
4 overlap). Note that XP2 6= XP1 = XP ,

since P2 has a different normal fan. However, P2 is a Minkowski summand of P , so
we can apply proposition 5.4.2. Figure 5.7 defines the polytopes up to translation
in the lattice. We fix P2 as the polytope with vertices m1 = (0, 0),m2 = (0, 1) and
m3 = (2, 1). For the maximal cones σ1, . . . , σ4 ∈ ΣP , we have that the vertices mσ

from Proposition 5.4.2 are given by

mσ1 = m1, mσ2 = m2, mσ3 = m3, mσ4 = m1.

Moreover, the normal fan ΣP2 looks like ΣP , but with the cones σ1 and σ4 ‘merged
together’. 4

σ1

σ2

σ3

σ4

σ∨
1

σ∨
2

σ∨
3

σ∨
4

Figure 5.8: Normal fan ΣP of the polytope P from Example 5.4.3 (left) and the dual
cones of the maximal cones in ΣP (2) (right).
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As in the unmixed case, let T be the set indexing the vertices of P and the cones in
ΣP (n). For each j = 1, . . . , n and each i ∈ T , by Proposition 5.4.2 there is a vertex
mj,i ∈ Pj ∩M for which

fσi
j = t−mj,i f̂j ∈ C[Si].

One can check that this gives again a well-defined zero set

div0(f̂j) = {p ∈ XP | fσi
j (p) = 0 for any i ∈ T such that p ∈ Uσi

}.

Doing this for each of the f̂j , we obtain

VXP
(f̂1, . . . , f̂n) = div0(f̂1) ∩ · · · ∩ div0(f̂n).

This should be viewed as a natural extension of the relations f̂1 = · · · = f̂n = 0 from
(C∗)n to XP ⊃ (C∗)n. Note that VXP

(f̂1, . . . , f̂n) ∩ (C∗)n = V(C∗)n(f̂1, . . . , f̂n). In
this discussion, each of the f̂j was viewed as a global section of the line bundle with
sheaf of sections OXP

(DPj ), where DPj is the basepoint free Cartier divisor from the
proof of Proposition 5.4.2, and (f̂1, . . . , f̂n) ∈ FC[M ](A1, . . . ,An) as a global section of
the rank n vector bundle with sheaf of sections OXP

(DP1)⊕ · · · ⊕ OXP
(DPn).

Remark 5.4.2. The set VXP
(f̂1, . . . , f̂n) defined above can be given the structure

of a subscheme of X, whose local equations in Uσ, σ ∈ ΣP (n) are given by
fσ1 , . . . , f

σ
n . For a point ζ ∈ VXP

(f̂1, . . . , f̂n) ∩ Uσ, the multiplicity of Z as a point of
VXP

(f̂1, . . . , f̂n) is defined as the multiplicity of the corresponding point in the affine
variety VUσ

(fσ1 , . . . , fσn ), see Subsection 3.1.3. 4

Example 5.4.4. Let (f̂1, . . . , f̂n) ∈ FR(d1, . . . , dn) = FC[M ](A1, . . . ,An) with Ai =
di∆n ∩M . Then, since the toric variety corresponding to a simplex is the projective
space Pn, we find XP = Pn. Let σ0 be the cone in ΣP corresponding to the vertex
(0, . . . , 0) ∈ ∆n and let σi be the cone corresponding to the vertex ei ∈ ∆n ∩M .
Then fσi

j is exactly the dehomogenization with respect to xi of fj = ηdj (f̂j). That is,
fσi
j = fj(x0/xi, . . . , xi−1/xi, , 1, xi+1/xi, . . . , xn/xi) and

C[Si] ' C
[
x0

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

]
.

4

Example 5.4.5. Consider the system of Laurent polynomial equations f̂1 = f̂2 = 0
given by

f̂1 = 1 + t1 + t2 + t1t2 + t21t2 + t31t2,

f̂2 = 1 + t2 + t1t2 + t21t2.

We think of this system as a member of FC[M ](A1,A2) = FC[M ](P1, P2) where C[M ] =
C[t±1

1 , t±1
2 ], Ai = Conv(Pi), i = 1, 2 and P1, P2 are the polytopes from Example 5.4.3.
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The BKK number for this family is MV(P1, P2) = 3. However, there is only one
solution in the torus, namely (t1, t2) = (−1,−1). We will show that VXP

(f̂1, f̂2)
consists of 3 points, where XP is the toric variety associated to the polytope P
from Example 5.4.3. In order to do this, let us see what the equations look like on
the affine charts Uσ1 and Uσ4 of XP . We set S1 = σ∨

1 ∩M = N{(1, 0), (0, 1)} and
S4 = σ∨

4 ∩M = N{(−1, 0), (2, 1)} and

Y1 = MaxSpec(C[S1]) = MaxSpec(C[t1, t2]) ' C2,

Y4 = MaxSpec(C[S4]) = MaxSpec(C[t−1
1 , t21t2]) = MaxSpec(C[u1, u2]) ' C2.

On Y1 ' C2, the equations remain unchanged (mσ1 = (0, 0) for both P1 and P2 and
we are using the coordinates on (C∗)2 as coordinates on C2):

fσ1
1 = 1 + t1 + t2 + t1t2 + t21t2 + t31t2,

fσ1
2 = 1 + t2 + t1t2 + t21t2.

We find that VY1(fσ1
1 , fσ1

2 ) = {(0,−1), (−1,−1)}. Hence, next to the point (−1,−1)
in the torus, we pick up the point (0,−1) on the boundary of the torus in XP . This
point lies on the one-dimensional torus orbit corresponding to σ1 ∩ σ2 (see Theorem
E.2.3). On Y4 ' C2, the equations become

fσ4
1 = u1 + 1 + u3

1u2 + u2
1u2 + u1u2 + u2,

fσ4
2 = 1 + u2

1u2 + u1u2 + u2.

We get VY4(fσ4
1 , fσ4

2 ) = {(0,−1), (−1,−1)}. To see how these points are related to
the points in VY1(fσ1

1 , fσ1
2 ) note that the gluing isomorphism φ14 : Y14 → Y41 with

Y14 = Y1 \ VY1(t1) and Y41 = Y4 \ VY4(u1) is given by

φ14(t1, t2) = (t−1
1 , t21t2).

We see that the point (−1,−1) ∈ VY1(fσ1
1 , fσ1

2 ) is mapped to (−1,−1) ∈ VY4(fσ4
1 , fσ4

2 ),
so these two solutions correspond to the same solution on XP , but the other solutions
(0,−1) ∈ Y1 \Y14 and (0,−1) ∈ Y4 \Y41 represent distinct points on XP . We conclude
that we have found 3 points in VXP

(f̂1, f2). One of them lies in both Uσ1 and Uσ4 ,
one of them lies in Uσ1 , but not in Uσ4 , and one of them lies in Uσ4 , but not in Uσ1 .

The toric variety XP in this example is a Hirzebruch surface H2. We will use this
toric variety and this (Laurent) polynomial system as a running example. 4

Although it is instructive to see how a system (f̂1, . . . , f̂n) ∈ FC[M ](A1, . . . ,An) defines
a subvariety of the abstract toric variety XP by ‘moving the polytopes around’ to
see the local equations, it would be nice to have a global description of the variety
VXP

(f̂1, . . . , f̂n). For this we need global coordinates on XP . Example 5.4.4 shows
that when XP = Pn, this can be realized by homogenizing the equations. The
construction presented and used in the following section generalizes this nicely and
enables us to compute ‘homogeneous coordinates’ of the points defined by (f̂1, . . . , f̂n) ∈
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FC[M ](A1, . . . ,An) on XP via a generalization of homogeneous normal forms as
introduced in Section 4.5.

Example 5.4.5 deals with a system for which the BKK number is a strict upper
bound: the number of solutions in (C∗)2 is strictly smaller than the mixed volume
of the Newton polytopes. However, taking the boundary of the torus in XP into
account we can see where these ‘missing’ solutions are. There’s a generalization of
Theorem 5.1.2 behind this, which nicely demonstrates another way in which XP is for
FC[M ](A1, . . . ,An) what Pn is for FR(d1, . . . , dn) by comparing it to the homogeneous
version of Bézout’s theorem (Theorem 3.2.2).

Theorem 5.4.2 (Toric BKK theorem). Let (f̂1, . . . , f̂n) ∈ FC[M ](A1, . . . ,An) and let
XP be the toric variety of the polytope P = P1 + · · ·+ Pn, where Pi = Conv(Ai). If
VXP

(f̂1, . . . , f̂n) consists of δ+ <∞ points on XP , counting multiplicities, then δ+ is
given by MV(P1, . . . , Pn). For generic choices of the coefficients of the f̂i, the number
of roots in the torus TXP

' TN = (C∗)n is exactly equal to MV(P1, . . . , Pn) and they
all have multiplicity one.

Proof. See [Ful93, §5.5].

5.5 Cox rings and homogeneous normal forms

Although the variety V(C∗)n(f̂1, . . . , f̂n) of a member (f̂1, . . . , f̂n) ∈ FC[M ](A1, . . . ,An)
may not consist of the BKK number many isolated points, this will be true for
the system obtained by applying the slightest random perturbation to the nonzero
coefficients of the f̂i (such that the resulting system still lives in the same family),
see Theorem 5.1.2. In fact, this is true for the more general perturbations for which
the system does not leave the possibly larger family FC[M ](P1, . . . , Pn), where Pi =
Conv(Ai). Two ways in which such a perturbation may enlarge the number of isolated
solutions in (C∗)n are:

1. a solution with multiplicity µ > 1 breaks up into µ isolated solutions,

2. a positive dimensional component of V(C∗)n(f̂1, . . . , f̂n) breaks up into a number
of isolated solutions.

This corresponds to two types of ‘non-genericity’ for a member (f̂1, . . . , f̂n) ∈
FC[M ](A1, . . . ,An). The first one does not pose a problem for computing multiplication
matrices, and there are ways for obtaining the coordinates from these matrices (see
the discussion at the end of Subsection 4.3.2). The second phenomenon will not be
our focus in this thesis, although there are ways of dealing with positive dimensional
components using TNFs [MTVB19, Section 3]. The type of non-genericity we will
address in this section is one that comes from the toric interpretation of the BKK
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theorem (Theorem 5.4.2). Let P = P1 + · · ·+ Pn. The number of solutions in (C∗)n
may increase upon perturbing f̂1, . . . , f̂n if

3. one or more solutions in VXP
(f̂1, . . . , f̂n) \ (C∗)n move out of the boundary, into

the torus.

We will focus on the case where VXP
(f̂1, . . . , f̂n) consists of finitely many points on

XP . This means we do not allow positive dimensional components, but we do allow
solutions on the boundary XP \ (C∗)n. We have studied this case for XP = Pn in
the previous chapters to develop methods for computing homogeneous coordinates
of isolated solutions. This made it possible to deal with solutions on the boundary
in a robust way, especially with solutions on the part of the boundary corresponding
to the hyperplane ‘at infinity’, see Section 4.5. For this we exploited the fact that
VPn(f̂1, . . . , f̂n) has a global description given by VPn(I) where I = 〈f1, . . . , fs〉 ⊂ S

is a homogeneous ideal generated by fi = ηdi(f̂i) ∈ S. A point ζ ∈ VPn(I) can be
described by a set of homogeneous coordinates, which is given by a point in Cn+1 \{0}
in the fiber of ζ (i.e. the inverse image of ζ) under

π : Cn+1 \ {0} → Pn with π(x0, . . . , xn) = (x0 : · · · : xn).

This map π has the property that all fibers are orbits of the group action

(C∗)× (Cn+1 \ {0})→ (Cn+1 \ {0}) given by λ · (x0, . . . , xn) = (λx0, . . . , λxn),

under which the affine variety VCn+1(I) is stable. The sets of homogeneous coordinates
for all points in VPn(I) can be obtained via eigenvalue computations (Subsection 3.2.2).
In this section, we will generalize this in the following ways. The toric variety XP

can be constructed as the image of a map π : Ck \ Z → XP whose fibers on an open
subset U ⊂ XP are orbits of an algebraic group action G× (Ck \ Z)→ (Ck \ Z). The
equations f̂1, . . . , f̂n can be homogenized to obtain homogeneous elements f1, . . . , fn
in a graded ring S, where the grading is such that for a homogeneous element f ∈ S,
VCk (f) is stable under the G-action (which extends to Ck). This will be the subject
of Subsection 5.5.1. After that, in Subsection 5.5.2 we describe a notion of regularity
for homogeneous ideals in S. This will be the right notion to use for generalizing
the projective eigenvalue, eigenvector theorem to the toric setting, which we do in
Subsection 5.5.3. Finally, in subsection 5.5.4 we describe homogeneous normal forms
in this context, show how they can be used for computing homogeneous multiplication
maps and provide an algorithm for computing homogeneous coordinates of the points
in VXP

(f̂1, . . . , f̂n). For all this, we will make the assumption that all points in
VXP

(f̂1, . . . , f̂n) have multiplicity 1 for simplicity. All results extend to the case with
higher multiplicities. This, together with some results regarding the regularity will be
discussed in Subsection 5.5.5. The results of this section are strongly based on the
paper [Tel20] and on a recent collaboration of the author with Matías Bender [BT20a].
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5.5.1 The Cox ring of a complete toric variety

In this subsection we describe the construction of a toric variety X as the image of a
quotient map

π : Ck \ Z → X,

where Z ⊂ Ck is a subvariety and π is invariant under an algebraic group action
G × (Ck \ Z) → (Ck \ Z). This construction is described by Cox in [Cox95], and
it is referred to as the Cox construction. We should mention that the result had
been described in the analytic category by Audin, Delzant and Kirwan, see [Aud12,
Chapter 6] and references therein. The reader may be familiar with the construction
for X = Pn, where k = n + 1, Z = {0} and G = C∗. Some background in toric
geometry beyond Appendix E is assumed in this subsection. The reader is referred to
[CLS11, Chapters 1-4] or [Ful93].

Consider the algebraic torus (C∗)n of dimension n. Its character and cocharacter
lattices are denoted by M = HomZ((C∗)n,C∗) ' Zn and N = HomZ(M,Z) ' Zn
respectively. Let Σ = ΣP be the normal fan in NR of a full dimensional lattice
polytope P ⊂ MR = M ⊗Z R. We will denote the set of cones of dimension d in Σ
by Σ(d). The corresponding toric variety X is compact.3 We will sometimes denote
X = XΣ = XP to emphasize the correspondence between X and its fan or polytope.
Before introducing the Cox construction for general compact X, we will work out the
example of X = P2.
Example 5.5.1. The projective plane P2 is defined as

P2 = C3 \ {0}
C∗ , (5.5.1)

where the quotient is by the action C∗ × (C3 \ {0}) → (C3 \ {0}) given by
(λ, (x1, x2, x3)) 7→ (λx1, λx2, λx3). This action extends trivially to an action on
C3. Subvarieties of P2 are given by homogeneous ideals in the polynomial ring
S = C[x1, x2, x3]. Here ‘homogeneous’ is with respect to the Z-grading

S =
⊕
α∈Z

Sα,

which is such that for f ∈ S homogeneous, VC3(f) is stable under the C∗-action.
Equivalently, VC3(f) is a union of C∗-orbits. In the ring S, the ideal B = 〈x1, x2, x3〉
plays a special role: its variety in P2 is the empty set. The interplay between the
algebra and geometry in this construction is illustrated by the following table.

Algebra Geometry
S

MaxSpec(·)−→ C3

B
VC3 (·)
−→ {0}

Z HomZ(·,C∗)−→ C∗

3The construction presented here works for more general normal toric varieties coming from fans
Σ whose rays span Rn [Cox95].
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F=
[
1 0 −1
0 1 −1

]
−−−−−−−−−−−→

Figure 5.9: An illustration of the Z-linear map F : N ′ → N from Example 5.5.1. The
ray generators of Σ′(1),Σ(1) are depicted as red arrows and the two dimensional cones
are colored in blue, orange and yellow.

For the purpose of generalizing this construction, we make the following observation.
The quotient (5.5.1) comes from a toric morphism π : C3 \ {0} → P2 which is constant
on C∗-orbits. A toric morphism comes from a lattice homomorphism N ′ → N that is
compatible with fans Σ′ and Σ in N ′

R and NR respectively (see [CLS11, Section 3.3]).
In our case Σ′ is the fan of C3 \ {0} and Σ is the fan of P2. The lattices are N ′ = Z3

and N = Z2, and the morphism π comes from F : N ′ → N where F is a 2× 3 integer
matrix whose columns are the primitive ray generators of Σ(1). The fans and the
matrix F are shown in Figure 5.9. The compatibility of the map F with the fans Σ′

and Σ comes down to the fact that each cone of Σ′ is mapped (under the R-map
FR = F ⊗Z R associated to F ) into a cone of Σ. In Figure 5.9 the 2-dimensional cones
have matching colors according to this association. Note that the three dimensional
cone σ = Cone(e1, e2, e3) of the positive orthant in R3 is not mapped to a cone of Σ
under FR. Therefore, this cone does not belong to Σ′. Taking this three dimensional
cone out of the positive orthant corresponds to taking the origin out of C3. Hence
C3 \ {0} = XΣ′ . 4

In what follows, it is instructive to keep Example 5.5.1 in mind as a reference. Let
Σ(1) = {ρ1, . . . , ρk} and let ui ∈ N be the primitive ray generator of ρi. We collect
the ui in a matrix

F = [u1 · · · uk] ∈ Zn×k.

This gives a lattice homomorphism F : N ′ → N where N ′ = Zk. Consider the fan
given by the positive orthant in Rk and all its faces. We let Σ′ be the subfan of all the
cones whose image under FR is contained in a cone of Σ. By construction, the lattice
homomorphism F is compatible with the fans Σ′ and Σ in N ′

R and NR respectively. It
follows that F gives a toric morphism π : XΣ′ → XΣ, where XΣ′ = Ck \ Z and Z is a
union of coordinate subspaces. We now give a description of Z as the affine variety of
a radical monomial ideal. Let S = C[x1, . . . , xk] be the coordinate ring of Ck and for
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each σ ∈ Σ, consider the monomial

xσ̂ =
∏
ρi 6⊂σ

xi,

where the product ranges over all i ∈ {1, . . . , k} such that ρi 6⊂ σ. Then Z = VCk (B)
with

B =
〈
xσ̂ | σ ∈ Σ

〉
=
〈
xσ̂ | σ ∈ Σ(n)

〉
.

The morphism π is an extension of a map of tori π|(C∗)k : (C∗)k → (C∗)n, which has
an easy description based on the matrix F . It is given by the Laurent monomial map

π|(C∗)k = F⊗ZC∗ : (C∗)k → (C∗)n where (z1, . . . , zk) 7→ (zF1,: , . . . , zFn,:). (5.5.2)

This uses the short notation za = zai
1 · · · z

ak

k and Fi,: for the i-th row of F . The kernel
of π|(C∗)k (as a group homomorphism) is given by

G = {g ∈ (C∗)k | gF1,: = · · · = gFn,: = 1}. (5.5.3)

This is a subgroup G ⊂ (C∗)k which acts on Ck by

(g1, . . . , gk) · (x1, . . . , xk) 7→ (g1x1, . . . , gkxk)

(this is the restriction of the action of (C∗)k on Ck to G) and the morphism π is
constant on G-orbits in Ck \Z. The following theorem uses some terminology for GIT
(geometric invariant theory) quotients from [CLS11, Section 5.0].

Theorem 5.5.1. The morphism π : Ck \ Z → XΣ coming from F = [u1 · · · uk]
is an almost geometric quotient for the action of G on Ck \ Z. Moreover, the open
subset U ⊂ XΣ for which π|π−1(U) is a geometric quotient is such that (XΣ \ U) has
codimension at least 3 in XΣ.

Proof. See [Cox95, Theorem 2.1] or [CLS11, Theorem 5.1.11].

Here is a longer, equivalent formulation of Theorem 5.5.1 which uses less terminology.

Theorem 5.5.2. Consider the action of the group G in (5.5.3) on Ck \ Z. There is
a one-to-one correspondence

{ closed G-orbits in Ck \ Z } ↔ { points in XΣ }.

Moreover, there is an open subset U ⊂ XΣ which is such that codimXΣ(XΣ \ U) ≥ 3
for which there is a one-to-one correspondence

{ G-orbits in π−1(U) } ↔ { points in U }.

These correspondences are realized by the toric morphism π : Ck \ Z → XΣ coming
from F = [u1 · · · uk].
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Remark 5.5.1. The open subset U ⊂ XΣ in Theorems 5.5.1 and 5.5.2 is the toric
variety corresponding to the largest simplicial4 subfan of Σ, see for instance the proof
of Theorem 5.1.11 in [CLS11]. The fact that XΣ \ U has codimension at least 3 in
XΣ corresponds to the fact that all cones of dimension ≤ 2 are simplicial. If Σ is a
simplicial fan, then π : Ck \ Z → XΣ is a geometric quotient, meaning that the nicest
possible correspondence holds: G-orbits in Ck \ Z are points in XΣ. 4

Example 5.5.2. The matrix F , the variety Z and the ideal B for XΣ = P2 were given
in Example 5.5.1. One can check that π|(C∗)3 is given by (t1, t2, t3) 7→ (t1t−1

3 , t2t
−1
3 )

with kernel G = {(g1, g2, g3) ∈ (C∗)3 | g1 = g2 = g3} ' C∗. The (real part of the)
closure of three G-orbits in C3 are shown in Figure 5.10. This corresponds to the
familiar fact that points in P2 are lines through the origin in C3. We now consider the

Figure 5.10: Real G-orbits (closures in R3) of three points (orange dots) in the quotient
construction of P2 (left) and P(1,2,1) (right).

complete fan in R2 whose rays are given by

F =
[
1 0 −1
0 1 −2

]
.

For this example Z = {0} and G = {(λ, λ2, λ) | λ ∈ C∗} ' C∗. Some orbits are shown
in the right part of Figure 5.10. This is the toric variety corresponding to the weighted
projective space P(1,2,1). The figure suggests that we can think of points in P(1,2,1) as
‘curves through the origin in C3’. 4

In order to associate the ring S (with its distinguished ideal B) to our toric variety
XΣ, we will equip it with a grading such that homogeneous elements in S define
varieties in Ck which are stable under the action of G. The grading will be by the

4A convex polyhedral cone is simplicial if it is generated by an R-linearly independent set. A fan
is simplicial if all its cones are. See [CLS11, Definitions 1.2.16 and 3.1.18].
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(divisor) class group Cl(XΣ) of XΣ, which is the group of Weil divisors modulo linear
equivalence [CLS11, Chapter 4] (this group is sometimes written as An−1(X), see for
instance [EH16, Section 1.2]). For toric varieties, the class group is easy to describe
explicitly. Let D1, . . . , Dk be the torus invariant prime divisors on XΣ corresponding
to ρ1, . . . , ρk ∈ Σ(1) respectively. These are the closures of the codimension 1 torus
orbits of XΣ, see Theorem E.2.3. The divisors D1, . . . , Dk generate the free group of
torus invariant Weil divisors

DivT (XΣ) = {
k∑
i=1

aiDi | ai ∈ Z} ' Zk.

Characters m ∈M give rational functions tm on XΣ whose divisor is given by

div(tm) =
k∑
i=1
〈ui,m〉Di ∈ DivT (XΣ),

see [Ful93, page 61]. Identifying DivT (XΣ) ' Zk, there is a short exact sequence
[Ful93, page 63]

0 −→M
F>

−→ Zk −→ Cl(XΣ) −→ 0 (5.5.4)

where the first map is F> = div and the second map takes a torus invariant divisor to
its class in Cl(XΣ). Note that taking HomZ(−,C∗) of (5.5.4) gives us back the map
of tori π|(C∗)k : (C∗)k → (C∗)n from the geometric construction discussed above. This
shows that the group G is G = HomZ(Cl(XΣ),C∗) ⊂ (C∗)k. The sequence (5.5.4)
shows that Cl(XΣ) ' Zk/ imF> and every element of Cl(XΣ) can be written as the
class [D] of some torus invariant divisor D =

∑k
i=1 aiDi ∈ DivT (XΣ). For an element

α = [
∑k
i=1 aiDi] ∈ Cl(XΣ), we define the C-vector subspace

Sα =
⊕

F>m+a≥0

C · xF
>m+a ⊂ S,

where the sum ranges over all m ∈M satisfying 〈ui,m〉+ ai ≥ 0 (here 〈·, ·〉 denotes
the usual pairing between N ' Zn and its dual M ' Zn), for i = 1, . . . , k. One can
check that this definition is independent of the chosen representative for α: setting
a′ = a+ F>m′ for some m′ ∈M gives the same vector subspace Sα. We consider the
grading

S =
⊕

α∈Cl(XΣ)

Sα (5.5.5)

on the ring S. The ring S with its irrelevant ideal B and the grading (5.5.5) is
called the homogeneous coordinate ring, total coordinate ring or Cox ring of XΣ. If
f =

∑
F>m+a≥0 cmx

F>m+a ∈ Sα is homogeneous of degree α, then for g ∈ G ⊂ (C∗)k
we have

f(g · x) =
∑

F>m+a≥0

cm(g · x)F
>m+a = gaf(x),
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where we use that gF>m = 1 by definition of G. It follows that the set

VXΣ(f) = {ζ ∈ XΣ | f(z) = 0 for some z ∈ π−1(ζ)}

is well defined. The generalized definition for homogeneous ideals I ⊂ S is

VXΣ(I) = {ζ ∈ XΣ | f(z) = 0 for some z ∈ π−1(ζ) for all f ∈ I}.

The set VXΣ(I) has a scheme structure and we will say more about the local defining
equations soon. We generalize the table from Example 5.5.1 for compact toric varieties
XΣ and add some terminology.

Algebra Geometry
Cox ring S

MaxSpec(·)−→ Ck total coordinate space
irrelevant ideal B

VCk (·)
−→ Z base locus

class group Cl(XΣ) HomZ(·,C∗)−→ G reductive group

We point out that under our assumption that Σ is complete, all of the graded pieces
Sα, α ∈ Cl(XΣ) are finite dimensional C-vector spaces [CLS11, Proposition 4.3.8].

Remark 5.5.2. In this construction, there is a one-to-one correspondence between

1. the variables x1, . . . , xk of S,
2. the rays ρ1, . . . , ρk of Σ(1),
3. the columns u1, . . . , uk of F ,
4. the torus invariant prime divisors D1, . . . , Dk,
5. the facets of P .

We have that Di = VXΣ(xi) and π(x) ∈ Di ⇔ xi = 0. 4

Example 5.5.3. Let XΣ = P2. The class group Cl(P2) is given by

Z3

/
im

 1 0
0 1
−1 −1

 ' Z .

Using, for instance, the identification Z3/ imF> → Z given by (a1, a2, a3) + imF> =
(0, 0, a1 + a2 + a3) + imF> 7→ a1 + a2 + a3 ∈ Z (the divisors a1D1 + a2D2 + a3D3 and
(a1 + a2 + a3)D3 are linearly equivalent), we see that the Z-grading on S is the usual
grading of the homogeneous coordinate ring of P2: deg(xa1

1 xa2
2 xa3

3 ) = a1 + a2 + a3 and
the graded piece

S[dD3] =
⊕
m1≥0
m2≥0

d−m1−m2≥0

C · xm1
1 xm2

2 xd−m1−m2
3

is spanned by monomials of ‘degree’ d, in the classical sense. 4
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Example 5.5.4. Consider the Hirzebruch surface H2 (see Example 5.4.5). The
associated fan Σ is shown in Figure 5.8. The matrix F is

F =
[
1 0 −1 0
0 1 2 −1

]
.

The Cox ring S = C[x1, x2, x3, x4] is graded by Cl(H2) ' Z4/ imF> ' Z2, with
deg(xa) = deg(xa1

1 xa2
2 xa3

3 xa4
4 ) = (a1 − 2a2 + a3, a2 + a4). The reductive group and

base locus are given by G = {(λ, µ, λ, λ2µ) | (λ, µ) ∈ (C∗)2} ⊂ (C∗)4 and Z =
VC4(x1, x3) ∪ VC4(x2, x4) ⊂ C4 respectively. Since H2 is smooth, it is simplicial (in
the notation from above U = H2). 4

With this information, we are able to get more insight in Theorems 5.5.1 and 5.5.2
by explicitly describing the restriction of π to the affine subvarieties in an affine open
cover of Ck \ Z. For a cone σ ∈ Σ, consider the cone σ′ = Cone(ei | ρi ∈ σ) ⊂ Rk.
Note that (FR)|σ′ sends σ′ into σ, so σ′ ∈ Σ′ and (FR)|σ′ : σ′ → σ gives a morphism
of affine toric varieties πσ = π|Uσ′ : Uσ′ → Uσ ⊂ XΣ. Here

Uσ′ = (Ck)xσ̂ = {x ∈ Ck | xσ̂ 6= 0}

and by construction XΣ \ Z =
⋃
σ∈Σ Uσ′ . The map πσ corresponds to a map of

coordinate rings

π∗
σ : C[Uσ]→ C[Uσ′ ] = Sxσ̂ given by tm 7→ xF

>m.

In particular, in the grading on Sxσ̂ induced by the grading (5.5.5) on S, we see that
π∗
σ factors as π∗

σ : C[Uσ] ∼→ (Sxσ̂ )0 → Sxσ̂ (see the proof of Theorem 5.1.11 in [CLS11]).
For the reader who is familiar with invariant theory, we note that since the elements
of degree 0 in Sxσ̂ are precisely the G-invariant elements [CLS11, Exercise 5.3.1], the
morphism πσ corresponds to the inclusion C[Uσ′ ]G → C[Uσ′ ], which shows that Uσ is
a GIT quotient of Uσ′ by the action of G.

Now that we understand the coordinate rings of the affine charts of XΣ, we are ready to
discuss (de-)homogenization. For some degrees α ∈ Cl(XΣ), there is a nice, canonical
way of dehomogenizing homogeneous elements f ∈ Sα to obtain an element fσ ∈ C[Uσ]
for each σ ∈ ΣP (n). These degrees are the classes of special divisors, called Cartier
divisors.
Definition 5.5.1 (Cartier divisors and the Picard group). A torus invariant divisor
D =

∑k
i=1 aiDi ∈ DivT (XΣ) is called Cartier if it is locally principal (see [CLS11,

Definition 4.0.12]). Equivalently, D is Cartier if for each σ ∈ Σ there is mσ ∈M such
that 〈ui,mσ〉+ ai = 0 for all i such that ρi ∈ σ. Moreover, for σ ∈ Σ(n), mσ is unique
(see [CLS11, Theorem 4.2.8] or [Ful93, §3.3]). The Picard group Pic(XΣ) ⊂ Cl(XΣ) is
the group of Cartier divisors modulo linear equivalence.

For each α ∈ Pic(XΣ) and each σ ∈ Σ(n), take any representative α = [
∑k
i=1 aiDi] =

[D] and let mσ ∈M be as in Definition 5.5.1. We define

xσ̂,α = xF
>mσ+a
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(note that this doesn’t depend on the choice of representative). For f ∈ Sα and
σ ∈ Σ(n), we set

fσ = f

xσ̂,α
∈ (Sxσ̂ )0 = C[Uσ]. (5.5.6)

It is instructive to check that for XΣ = Pn, this corresponds to what we defined as
dehomogenization η−1

α to the affine charts U0, . . . , Un.

We now discuss the ‘inverse’ operation of homogenization. For that we consider the
following scenario. We take f̂1, . . . , f̂s ∈ C[M ]. Let Pi ⊂ Rn be the Newton polytope
of f̂i for i = 1, . . . , s. Let P = P1 + . . . + Ps be the Minkowski sum of all these
polytopes. We will assume that P is full-dimensional. The normal fan Σ = ΣP of P
defines a complete, normal toric variety X = XΣ (we drop the index Σ for simplicity
of notation). To each of the polytopes Pi, we associate a torus invariant divisor
DPi ∈ DivT (X) as follows. Let ai = (ai,1, . . . , ai,k) ∈ Zk be such that

ai,j = min
Z
c s.t. Pi ⊂ {m ∈MR | 〈uj ,m〉+ c ≥ 0}.

The divisors DPi =
∑k
j=1 ai,jDj obtained in this manner are Cartier (they are also

basepoint free, see Subsection 5.5.2). We denote αi = [DPi ] ∈ Pic(X). In order to
send the f̂i to the Cox ring S of X, we observe that by construction

f̂i ∈
⊕

m∈Pi∩M
C · tm '

⊕
F>m+ai≥0

C · tm '
⊕

F>m+ai≥0

C · xF
>m+ai = Sαi

.

This gives a canonical way of homogenizing5 the f̂i:

f̂i =
∑

F>m+ai≥0

cm,it
m 7→ fi =

∑
F>m+ai≥0

cm,ix
F>m+ai ∈ Sαi

.

Dehomogenizing to an affine chart Uσ for σ ∈ Σ(n) yields fσi ∈ C[Uσ]. One can check
that these are exactly the elements of C[Uσ] we obtained in Subsection 5.4.2. Moreover,
for each σ ∈ Σ(n) we have VX(fi) ∩ Uσ = VUσ

(fσi ) and hence

VX(fi) = div0(f̂i).

The homogeneous elements f1, . . . , fs generate the homogeneous ideal I = 〈f1, . . . , fs〉 ⊂
S, whose zero locus satisfies

VX(I) = VX(f̂1, . . . , f̂s).
5This map can be defined for any torus invariant divisor

∑k

i=1 aiDi and it identifies the graded
pieces of S with the vector spaces of global sections of divisoral sheaves on X [CLS11, Proposition
4.3.2, Proposition 5.3.7]:

S
[
∑k

i=1
aiDi]

' H0

(
X,OX

(
k∑

i=1

aiDi

))
=

⊕
F >m+a≥0

C · tm.
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This is a subvariety (in fact, it’s a subscheme) of X which is locally given by the ideal

I (Uσ) = 〈fσ1 , . . . , fσs 〉 ⊂ C[Uσ],

for σ ∈ Σ(n). The multiplicity of a point ζ ∈ VX(I)∩Uσ is given by its multiplicity as
a point of VUσ

(I (Uσ)). We conclude that the ideal I gives a global description of the
zero set defined by extending f̂1 = · · · = f̂s = 0 to X. We will work with the following
assumptions on the ideal I.

Assumption 1. VX(I) is zero-dimensional. We denote VX(I) = {ζ1, . . . , ζδ} ⊂ X.

Assumption 2. VX(I) ⊂ U ⊂ X, where U is the largest simplicial open subset of X.

Assumption 3. I defines a reduced subscheme of U ⊂ X. That is, all points
ζi ∈ VX(I) have multiplicity one.

The first assumption we will need throughout the text. The second assumption makes
sure that the points in VX(I) have ‘nice homogeneous coordinates’. That is, it implies
that π−1(ζi) = G · z for any z ∈ π−1(ζi), so that any homogeneous f ∈ S vanishes at
ζi if and only if it vanishes (as a function on Ck) on the entire preimage π−1(ζi). For
ζ ∈ U ⊂ X, we say that any point z ∈ π−1(ζ) is a set of homogeneous coordinates for
ζ. It is clear that whenever X is simplicial, Assumption 2 is automatically satisfied.
This includes all examples where n = 2. For n = 3, U is the complement of finitely
many points in X: one point for each vertex of P corresponding to a non-simplicial,
full dimensional cone of ΣP . It follows that Assumption 2 is automatically satisfied
also when n = s = 3, since ‘face systems’ corresponding to vertices do not contribute
any solutions (see for instance the appendix in [HS95]). We will say a few things about
what we can do without Assumption 3 in Subsection 5.5.5.

Example 5.5.5. Consider the Laurent polynomials f̂1, f̂2 ∈ C[t±1
1 , t±1

2 ] given by

f̂1 = 1 + t1 + t2 + t1t2 + t21t2 + t31t2,

f̂2 = 1 + t2 + t1t2 + t21t2.

These are the equations from Example 5.4.5, which we view as relations on the
Hirzebruch surface H2. The polytopes and fan are shown in Figures 5.7 and 5.8. The
matrix F was given in Example 5.5.4. As we have seen in Example 5.4.5, the BKK
bound for the system f̂1 = f̂2 = 0 equals 3 and the point (−1,−1) is the unique
solution (with multiplicity 1) in (C∗)2. The divisor DP2 is given by DP2 = D4 (i.e.
a2,1 = a2,2 = a2,3 = 0, a2,4 = 1, or a2 = (0, 0, 0, 1)>). The homogenization of the
monomials tm in f̂2 is given by F>m+ a2:

F>
[
0 0 1 2
0 1 1 1

]
+


0 0 0 0
0 0 0 0
0 0 0 0
1 1 1 1

 =


0 0 1 2
0 1 1 1
0 2 1 0
1 0 0 0


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which gives
f2 = x4 + x2x

2
3 + x1x2x3 + x2

1x3 ∈ S[D4].

Analogously, using DP1 = D3 +D4 we find

f1 = x3x4 + x1x4 + x2x
3
3 + x1x2x

2
3 + x2

1x2x3 + x3
1x2 ∈ S[D3+D4].

We now see that for I = 〈f1, f2〉 ⊂ S, the vanishing locus VX(I) on X consists of three
points, with homogeneous coordinates

z1 = (−1,−1, 1, 1), z2 = (0,−1, 1, 1), z3 = (1,−1, 0, 1).

We see that f̂1 = f̂2 = 0 defines 3 isolated points on X, which confirms what we
observed in Example 5.4.5. The ideal I satisfies Assumptions 1-3. Note that π(z1) is
the toric solution (−1,−1) (π denotes the quotient π : C4 \ Z →H2) and the other
solutions are on the boundary of the torus: π(z2) ∈ D1, π(z3) ∈ D3. Figure 5.11
illustrates what is going on in the total coordinate space C4 of H2. In order to make
a picture, we consider the 3-dimensional slice given by x4 = 1 of C4 (note that this
contains all the solutions). In this slice, f1 = 0 and f2 = 0 define surfaces whose
real parts are shown as the blue and orange surfaces in Figure 5.11. These surfaces
intersect in the intersections of the orbits G · zi with {x4 = 1}, which are shown as
black curves (it looks like there are six curves in the intersection, but these actually
belong together two by two). The representatives z1, z2, z3 are shown as red dots. 4

With all this terminology introduced, we are now ready to give a specific formulation
of our goal in this section. Given f̂1, . . . , f̂s ∈ C[M ] such that I = 〈f1, . . . , fs〉
satisfies Assumptions 1-3 (or maybe only Assumptions 1 and 2), we want to compute
homogeneous coordinates of the points in VX(I) via eigenvalue computations. More
specifically, we want to generalize the results of Subsection 3.2.2 and Section 4.5 to the
multigraded, toric setting. For that, a first thing we need to do is give an appropriate
definition of regularity in the multigraded case. This will be discussed in the next
subsection.

5.5.2 Multigraded regularity

Many of the results of this section are taken from [Tel20, Section 4]. Let S be an
E-graded ring. The regularity of a graded S-module measures its complexity (for
instance, in terms of the degree of minimal generators). A classical notion of regularity
(in the case where E = Z) is that of Castelnuovo-Mumford regularity, see for instance
[Eis13, Section 20.5] or [BS87], whose definition requires minimal free resolutions
and would take us too far. Castelnuovo-Mumford regularity has been studied in a
multigraded context by Maclagan and Smith in [MS03]. The zero-dimensional case is
further investigated in [ŞS16], where the authors start from a subscheme of X and
investigate the regularity of the ‘nicest’ corresponding graded S-module. Some more
results in a multiprojective setting can be found in [BFT18, SVTW06].
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Figure 5.11: Illustration of the affine varieties defined by f1 and f2 from Example
5.5.5 in a 3-dimensional slice of the 4-dimensional total coordinate space of H2.

Let X = XΣ be a toric variety corresponding to a complete fan Σ, which is the normal
fan of a full-dimensional polytope P ⊂MR ' Rn as in Subsection 5.5.1. We consider
a homogeneous ideal I = 〈f1, . . . , fs〉 ⊂ S which we require to satisfy Assumptions
1-3 from Subsection 5.5.1. We denote VX(I) = {ζ1, . . . , ζδ} ⊂ U (here U is the open
subset of Remark 5.5.1) and we let zj ∈ Ck \ Z be a set of homogeneous coordinates
for ζj . In our case, the regularity (as defined below) of the homogeneous ideal I in
the Cox ring S of X will determine in which graded piece Sα of S we can work to
define our multiplication maps in Subsection 5.5.3. The ‘larger’ this graded piece (i.e.
the larger the dimension of Sα as a C-vector space), the larger the matrices involved
in the presented algorithm in Subsection 5.5.4 will be. We will define homogeneous
Lagrange polynomials and show how they are related to multigraded regularity. As
in Subsections 3.1.1 and 3.2.2, these Lagrange polynomials and their dual basis will
have a nice interpretation as eigenvectors of multiplication maps. For α ∈ Cl(X),
we denote nα = dimC(Sα). Since X is complete, nα < ∞,∀α ∈ Cl(X) [CLS11,
Proposition 4.3.8]. We will sometimes work with the B-saturated ideal J corresonding
to I. We set J = (I : B∞) ⊂ S, which is itself homogeneous. For α ∈ Cl(X), let
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Sα =
⊕nα

i=1 C · xbi , bi ∈ Nk and consider the map

Φα : Ck \ Z 99K Pnα−1 ' P(S∨
α ) : (x1, . . . , xk) 7→ (xb1 : . . . : xbnα ). (5.5.7)

The map Φα is constant on G-orbits. The reason for the dashed arrow in (5.5.7) is
the following. There may be points in z ∈ Ck \ Z for which zbi = 0, i = 1, . . . , nα. For
these points, the image of Φα is not defined. We say that ζ ∈ X is a basepoint of Sα if
π−1(ζ) contains such a point z. Note that if ζ ∈ U , ζ is a basepoint of Sα if and only
if zbi = 0, i = 1, . . . , nα for all z ∈ π−1(ζ). We say that α ∈ Cl(X) is basepoint free
if Φα has no basepoints. If α is basepoint free, by the universal property of a good
categorical quotient [CLS11, Theorem 5.0.6] the map Φα factors as Φα = φα ◦ π, with
φα : X → Pnα−1. The following lemma is straightforward and we omit the proof.

Lemma 5.5.1. Let α = [D] ∈ Cl(X) be such that no ζj is a basepoint of Sα. For
generic h ∈ Sα, we have VX(h) ∩ VX(I) = ∅ (h does not vanish at any of the points
ζj ∈ VX(I)).

Note that in particular, the condition of Lemma 5.5.1 is always satisfied for basepoint
free α. The grading on S defines a grading on the quotient S/I: (S/I)α = Sα/Iα. It
follows from Lemma 5.5.1 that for any α = [D] ∈ Cl(X) such that no ζj is a basepoint
of Sα, the following C-linear map is well defined for generic h ∈ Sα:

ψα : (S/I)α → Cδ : f + Iα 7→
(
f

h
(ζ1), . . . , f

h
(ζδ)

)
. (5.5.8)

Here we write (f/h)(ζj) for f(zj)/h(zj). This notation makes sense because the
evaluation does not depend on the choice of representative zj of G · zj . We fix such
a generic h ∈ Sα. We will now investigate for which α ∈ Cl(X) the map ψα defines
coordinates on (S/I)α, that is, for which α it is an isomorphism (note that this is
independent of the choice of h satisfying VX(h) ∩ VX(I) = ∅). It is clear that for this
to happen, we need dimC((S/I)α) = δ. The dimension of the graded parts of S/I is
given by the multigraded analog of the Hilbert function [ŞS16].

Definition 5.5.2 (Hilbert function). For a homogeneous ideal I in the Cox ring S of
X, the Hilbert function of I is given by HFI : Cl(X)→ N : α 7→ dimC((S/I)α).

In order to state a necessary and sufficient condition for surjectivity of ψα, we will
introduce a homogeneous analog of the Lagrange polynomials introduced in Subsection
3.1.1.

Definition 5.5.3 (homogeneous Lagrange polynomials). Let α ∈ Cl(X) be such that
no ζj is a basepoint of Sα and let h ∈ Sα be such that VX(h) ∩ VX(I) = ∅. A set of
elements `1, . . . , `δ ∈ Sα is called a set of homogeneous Lagrange polynomials of degree
α with respect to h if for j = 1, . . . , δ,

1. ζi ∈ VX(`j), i 6= j,
2. ζj ∈ VX(h− `j).
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In terms of the homogeneous coordinates zj , a set of homogeneous Lagrange
polynomials satisfies `j(zi) = 0, i 6= j and `j(zj) = h(zj), j = 1, . . . , δ. In what
follows, we use the same function h to define ψα and a set of homogeneous Lagrange
polynomials. The following lemma from [BT20a] will be useful.

Lemma 5.5.2. Let I ⊂ S be such that VX(I) = {ζ1, . . . , ζδ} ⊂ U ⊂ X is zero-
dimensional (I satisfies Assumptions 1-2, but not necessarily Assumption 3). We have
that, as varieties (meaning not necessarily as schemes),

VCk (I : B∞) = π−1(ζ1) ∪ · · · ∪ π−1(ζδ) = π−1(ζ1) ∪ · · · ∪ π−1(ζδ),

where the closures are taken in Ck.

Proof. By [CLO13, Chapter, §4, Theorem 10 (iii)] we have that, as varieties,

VCk (I : B∞) = VCk (I) \ Z,

where Z = VCk (B). The lemma will follow from

VCk (I) \ Z = π−1(ζ1) ∪ · · · ∪ π−1(ζδ).

The inclusion ‘⊃’ needs VX(I) ⊂ U . The other inclusion follows from z ∈ VCk (I)\Z ⇒
π(z) ∈ VX(I), and is satisfied also when VX(I) contains points outside of U .

Lemma 5.5.2 implies by the Nullstellensatz that the radical of J = (I : B∞) is the
vanishing ideal of the union of the orbits:

√
J = {f ∈ S | f(z) = 0, for all z ∈ π−1(ζ1) ∪ · · · ∪ π−1(ζδ)}. (5.5.9)

Recall that in the projective case, for an ideal satisfying Assumptions 1-3 we have
J =

√
J (Proposition 3.2.2). This is not true in the more general setting we are

considering here. Here’s an example.

Example 5.5.6. Consider the weighted projective space X = P(1,2,1) with coordinate
ring C[x, y, z] where y has degree 2 and x, z have degree 1. The fan is described
in Example 5.5.2. The irrelevant ideal is B = 〈x, y, z〉. The homogeneous ideal
I = 〈x2, xz, z2〉 defines VX(I) consisting of 1 point with multiplicity 1 and X is
simplicial, so Assumptions 1-3 are satisfied. Moreover, in this example we have
I = (I : B∞) = J . However, I = J is not radical:

√
J = 〈x, z〉 6⊂ J . 4

Proposition 5.5.1. Consider I ⊂ S such that Assumptions 1-3 are satisfied. Let
α ∈ Cl(X) be such that no ζj is a basepoint of Sα. Then

1. ψα is injective if and only if Iα = (
√
J)α. In this case HFI(α) ≤ δ,

2. ψα is surjective if and only if there exists a set of homogeneous Lagrange
polynomials of degree α. In this case HFI(α) ≥ δ.
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Proof. Let f, h ∈ Sα such that VX(h) ∩ VX(I) = ∅. If ψα is injective, then f ∈
(
√
J)α ⇒ ψα(f + Iα) = 0⇒ f ∈ Iα. So (

√
J)α ⊂ Iα and the other inclusion is trivial.

Conversely, if Iα = (
√
J)α, then ψα(f + Iα) = 0 ⇒ f ∈ (

√
J)α ⇒ f ∈ Iα, so ψα is

injective. The corresponding statement about HFI follows easily.
If ψα is surjective, take `j ∈ ψ−1

α (ej). Conversely, if `j , j = 1, . . . , δ is a set of
homogeneous Lagrange polynomials of degree α, ψα(`j + Iα) = ej and ψα is surjective.
Again, the statement about HFI follows easily.

Corollary 5.5.1. Consider I ⊂ S such that Assumptions 1-3 are satisfied. If α ∈
Pic(X) is ample6 and I is radical, then ψα is injective.

Proof. In this case, by the Nullstellensatz we have

I = IS(VCk (I)) = IS(G · z1 ∪ · · · ∪G · zδ ∪ Z ′)

where Z ′ ⊂ Z. Take f ∈ (
√
J)α. Since any polynomial in Sα for α ample vanishes

on Z (Sα ⊂ B, see e.g. [Sop05]), f vanishes on Z ′ ⊂ Z. Therefore f ∈ Iα and
(
√
J)α ⊂ Iα ⊂ (

√
J)α. Now apply Proposition 5.5.1.

Example 5.5.7. Consider the ideal I from Example 5.5.5. We computed the primary
decomposition of I over the rationals using Macaulay2 [EGSS01]. This gives

I = 〈x1 + x3, x2x
2
3 + x4〉 ∩ 〈x1, x2x

2
3 + x4〉 ∩ 〈x3, x

2
1x2 + x4〉 ∩ 〈x2, x4〉.

All primary components are prime, which implies that I is radical. This decomposition
of I corresponds to the decomposition of the associated affine variety VCk (I) = G · z1∪
G · z2∪G · z3∪Z ′ with orbit representatives z1 = (−1,−1, 1, 1), z2 = (0,−1, 1, 1), z3 =
(1,−1, 0, 1) and Z ′ = V (x2, x4) ⊂ Z. 4

The following proposition shows that the existence of homogeneous Lagrange
polynomials of degree α ∈ Cl(X) is equivalent to the fact that the points Φα(zj)
span a linear space of dimension δ − 1 in Pnα−1. Let pj ∈ Cnα be a set of
homogeneous coordinates (in the standard sense) of Φα(zj) ∈ Pnα−1 and define
the matrix Lα = [p1 · · · pδ] ∈ Cnα×δ.

Proposition 5.5.2. Consider I ⊂ S such that Assumptions 1-3 are satisfied. Let
α ∈ Cl(X) be such that no ζj is a basepoint of Sα. There exists a set of Lagrange
polynomials of degree α if and only if Lα has rank δ.

Proof. The rank of Lα is δ if and only if there exists a left inverse matrix L†
α ∈ Cδ×nα

such that L†
αLα = idδ is the δ× δ identity matrix. We will show that this is equivalent

to the existence of a set of homogeneous Lagrange polynomials of degree α. Suppose
6A divisor D and its degree α = [D] are called very ample if D is basepoint free and X →

P(Γ(X,OX(D))∨) is a closed embedding. If kD (or kα) is very ample for some k ≥ 1, then D (or α)
is called ample. See [CLS11, Chapter 6] for definitions and properties.
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that L†
α exists. The rows of L†

α should be interpreted as elements of Sα represented in
the basis {xb1 , . . . , xbnα }. The columns of Lα are elements of S∨

α represented in the
dual basis. Let the j-th row of L†

α correspond to ˜̀
j ∈ Sα. It is clear from L†

αLα = idδ
that

〈˜̀j , pi〉 = ˜̀
j(zi) =

{
1 i = j,

0 otherwise.

By Lemma 5.5.1, there is h ∈ Sα such that h(zj) 6= 0, j = 1, . . . , δ. Then `j =
h(zj)˜̀

j , j = 1, . . . , δ are a set of homogeneous Lagrange polynomials. Conversely,
if a set of homogeneous Lagrange polynomials exists, construct a matrix L̃†

α by
plugging the coefficients of `j into the j-th row. Then there is h ∈ Sα such that
L̃†
αLα = diag(h(z1), . . . , h(zδ)) is an invertible diagonal matrix. The left inverse is

L†
α = diag(h(z1), . . . , h(zδ))−1L̃†

α.

An important property of the homogeneous evaluation maps in Subsection 3.2.2 was
that, for degrees in the regularity, they are isomorphisms. In order to generalize this,
we make the following definition.

Definition 5.5.4 (Regularity). Consider I ⊂ S satisfying Assumptions 1-3 and let
J = (I : B∞). The regularity Reg(I) ⊂ Cl(X) of I is the subset of degrees α ∈ Cl(X)
for which no ζj is a basepoint of Sα and the following equivalent conditions are
satisfied:

1. ψα is an isomorphism,
2. HFI(α) = δ and Iα = (

√
J)α,

3. HFI(α) = δ and there exists a set of homogeneous Lagrange polynomials of
degree α,

4. Iα = (
√
J)α and there exists a set of homogeneous Lagrange polynomials of

degree α.

Example 5.5.8. We continue Example 5.5.7. The polytope P = P1 + P2 (shown in
Figure 5.7) has 12 lattice points. Therefore nα = 12, with α = [DP ] ∈ Pic(X). Since
δ = 3, Lα is a 12 × 3 matrix. Its rows are indexed by the monomials spanning Sα,
and its columns by the representatives zj . The transpose is given by

L>
α =

x3x
2 4

x1x
2 4

x2x
3 3x

4

x1x
2x
2 3x

4

x
2 1x

2x
3x

4

x
3 1x

2x
4

x
2 2x

5 3
x1x

2 2x
4 3

x
2 1x

2 2x
3 3

x
3 1x

2 2x
2 3

x
4 1x

2 2x
3

x
5 1x

2 2[ ]1 −1 −1 1 −1 1 1 −1 1 −1 1 −1 z1
1 0 −1 0 0 0 1 0 0 0 0 0 z2
0 1 0 0 0 −1 0 0 0 0 0 1 z3

.

Consider h = 39(x3x
2
4 − x1x

2
4) ∈ Sα and note that h(zj) 6= 0 for all j. A set of

homogeneous Lagrange polynomials w.r.t. h is given by
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2 L̃†
α

13 =
x3x

2 4
x1x

2 4
x2x

3 3x
4

x1x
2x
2 3x

4

x
2 1x

2x
3x

4

x
3 1x

2x
4

x
2 2x

5 3
x1x

2 2x
4 3

x
2 1x

2 2x
3 3

x
3 1x

2 2x
2 3

x
4 1x

2 2x
3

x
5 1x

2 2[ ]0 0 0 2 −2 0 0 −2 2 −2 2 0 `1
2 0 −2 −1 1 0 2 1 −1 1 −1 0 `2
0 2 0 1 −1 −2 0 −1 1 −1 1 2 `3

,

which is related to the pseudo inverse of Lα by

L†
α = diag(h(z1), h(z2), h(z3))−1L̃†

α = diag(1/78, 1/39, 1/39)L̃†
α.

To check that Iα = (
√
J)α we compute HFI(α) = HF√

J(α) = 3. Because I ⊂
√
J ,

we conclude α ∈ Reg(I). In fact, in this example I is radical and α is ample, so
Iα = (

√
J)α follows from Corollary 5.5.1. 4

The following proposition shows that, in the case where X = Pn and I is a zero-
dimensional homogeneous ideal whose projective variety consists of isolated points
with multiplicity 1, Definition 5.5.4 agrees with Definition 3.2.4.

Proposition 5.5.3. Let I = 〈f1, . . . , fs〉 ⊂ S be such that Assumptions 1-3 are
satisfied. We have that Jα = (I : B∞)α = (

√
(I : B∞))α = (

√
J)α for all α ∈ Pic(X).

Proof. The inclusion J ⊂
√
J holds for all degrees. We sketch a proof of the opposite

inclusion, which is very similar to the proof of Proposition 3.2.2. For g ∈ (
√
J)α with

α ∈ Pic(X), we consider the dehomogenization gσ as in (5.5.6). Since gσ vanishes at
all the points ζ ∈ VX(I) ∩ Uσ (Lemma 5.5.2) we have that

gσ = hσ1f
σ
1 + · · ·+ hσs f

σ
s ,

for some hσi ∈ C[Uσ], which implies that there is some ` ∈ N such that (xσ̂)`g ∈ I for
all σ ∈ Σ(n). Hence g ∈ (I : B∞)α = Jα.

Remark 5.5.3. Proposition 5.5.3 implies that
√
J in Definition 5.5.4 may be replaced

by J when X is smooth (because in this case Cl(X) = Pic(X)). In particular, this
holds when X = Pn. 4

What we will prove in the next subsection is that, in analogy with Subsection 3.2.2, if
α, α+α0 are in the regularity, then ‘multiplication of elements in (S/I)α with elements
of degree α0’ has some nice properties. It makes sense to require α0 to be such that
Sα0 has some nonzero elements. We define the following submonoid of the class group:

Cl(X)+ = {α ∈ Cl(X) | α = [
k∑
i=1

aiDi] with ai ≥ 0, i = 1, . . . , k}.

These are the divisor classes represented by effective divisors. This is sometimes called
the weight monoid of S. Note that Sα = {0} for α ∈ Cl(X) \Cl(X)+. Since all points
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of X are basepoints of Sα for α ∈ Cl(X) \ Cl(X)+, we have that Reg(I) ⊂ Cl(X)+.
The following definition helps to reduce the length of some statements in what follows
and was suggested to the author by Matías Bender.

Definition 5.5.5 (Regularity pair). Let I ⊂ S be such that VX(I) = {ζ1, . . . , ζδ} and
Assumptions 1-3 are satisfied. A tuple (α, α0) ∈ Cl(X)2

+ is called a regularity pair for
I if α, α+ α0 ∈ Reg(I) and no ζj is a basepoint of Sα0 .

In general, characterizing the regularity Reg(I) is a hard problem. This is a topic of
ongoing research. There are some things we can say in the case where I is generated by
s = n elements (i.e. the square case), and some general properties are known. These
results are listed in Subsection 5.5.5. For now, we assume that we can compute a
regularity pair (α, α0) and show what we can do under this assumption.

5.5.3 Toric eigenvalue-eigenvector theorem

The material presented here can be found in Section 5 of [Tel20]. Throughout this
subsection, I ⊂ S is a homogeneous ideal satisfying Assumptions 1-3. We denote the
points in VX(I) by VX(I) = {ζ1, . . . , ζδ}. For α, α0 ∈ Cl(X)+, a homogeneous element
g ∈ Sα0 defines a C-linear map

Mg : (S/I)α → (S/I)α+α0 : f + Iα 7→ gf + Iα+α0

representing ‘multiplication with g’. Just as in the affine and projective case, these
multiplication maps will be the key ingredient to formulate our root finding problem
as a linear algebra problem. We state a toric version of the eigenvalue, eigenvector
theorem and show how the eigenvalues can be used to recover homogeneous coordinates
of the solutions and equations for the corresponding G-orbits. Our main result uses
the following lemma.

Lemma 5.5.3. Let (α, α0) ∈ Cl(X)2
+ be a regularity pair for I. Then for h0 ∈ Sα0

such that VX(h0)∩ VX(I) = ∅, Mh0 : (S/I)α → (S/I)α+α0 : f + Iα 7→ h0f + Iα+α0 is
an isomorphism of vector spaces.

Proof. Let ψα be given as in (5.5.8) for some h ∈ Sα. We can take hh0 ∈ Sα+α0 to
define ψα+α0 . Then ψα+α0 ◦Mh0 = ψα shows that Mh0 is invertible.

For α ∈ Reg(I), a set of Lagrange polynomials `j , j = 1, . . . , δ of degree α with respect
to h ∈ Sα gives a basis {`j + Iα}j=1,...,δ for (S/I)α. The dual basis is given by

evζj
: (S/I)α → C with evζj

(f + Iα) = f

h
(ζj).

Note that ψα = (evζ1 , . . . , evζδ
). The following theorem is a generalization of Theorem

3.2.4. The proofs are identical.
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Theorem 5.5.3 (Toric eigenvalue, eigenvector theorem). Let (α, α0) ∈ Cl(X)2
+ be

a regularity pair for I and let h0 ∈ Sα0 be such that VX(h0) ∩ VX(I) = ∅. For any
g ∈ Sα0 , the C-linear map Mg/h0 = M−1

h0
◦Mg : (S/I)α → (S/I)α has eigenpairs(

g

h0
(ζj), `j + Iα

)
,

(
evζj

,
g

h0
(ζj)

)
, j = 1, . . . , δ,

where the `j + Iα are cosets of homogeneous Lagrange polynomials of degree α and the
evζj are the dual basis of (S/I)∨

α.

Proof. The map Mh0 is an isomorphism by Lemma 5.5.3. We define ψα, ψα+α0 as in
(5.5.8) with h ∈ Sα, hh0 ∈ Sα+α0 respectively. A straightforward computation shows
that ψα+α0 ◦Mh0(`j + Iα) = ej . Analogously, we have ψα+α0 ◦Mg(`j + Iα) = g

h0
(ζj)ej .

It follows that h0(zj)Mg(`j + Iα) = g(zj)Mh0(`j + Iα), and therefore

Mg/h0(`j + Iα) = g

h0
(ζj)(`j + Iα),

which proves the statement about the right eigenpairs, since the `j + Iα are linearly
independent. For the statement about the left eigenpairs, note that for any f ∈ Sα

evζj ◦Mg/h0(f + Iα) = evζj ◦M−1
h0

(gf + Iα+α0)

and since Mh0 is an isomorphism, there is f̃ ∈ Sα such that gf − h0f̃ ∈ Iα+α0 .
Therefore, for each ζj ∈ VX(I) we have

gf − h0f̃

h0h
(ζj) = 0⇒ f̃

h
(ζj) = g

h0
(ζj)

f

h
(ζj)

and thus, since M−1
h0

(gf + Iα+α0) = f̃ + Iα, we have

evζj
◦Mg/h0(f + Iα) = evζj

(f̃ + Iα) = g

h0
(zj) evζj

(f + Iα).

The evζj
are linearly independent, so this concludes the proof.

Remark 5.5.4. The condition ‘h0 ∈ Sα0 such that VX(h0) ∩ VX(I) = ∅’ in Lemma
5.5.3 and Theorem 5.5.3 holds for generic elements of Sα0 . 4

Theorem 5.5.3 suggests a strategy for achieving our goal, which is to compute
(approximations of) the homogeneous coordinates zj of the points ζj in VX(I). For a
regularity pair (α, α0) ∈ Cl(X)2

+, we consider all monomials xbi ∈ Sα0 , i = 1, . . . , nα0 .
For each of these monomials, we compute the multiplication map Mxbi/h0 in some
basis. The eigenvalues, by Theorem 5.5.3, are

λij =
zbi
j

h0(zj)
, i = 1, . . . , nα0 , j = 1, . . . , δ.

After simultaneous diagonalization (or simultaneous upper-triangularization) of the
matrices Mxbi/h0 , we can construct a table
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· · · xbi/h0 · · ·
...

...
zj · · · λij · · ·
...

...

whose columns are indexed by the multiplication maps Mxbi/h0 and filled with
their eigenvalues. The order in which the eigenvalues are plugged into the columns
corresponds to the ordering of the shared eigenvectors. Up to the factor h0(zj)−1 we
have computed the evaluation of nα0 monomials at a set of homogeneous coordinates
zj for ζj . Intuitively, if Sα0 has ‘enough’ monomials, we should be able to recover
the homogeneous coordinates from our table. The rest of this subsection is dedicated
to the problem of finding the coordinates of zj from the eigenvalues λij . Before we
continue, we illustrate how the construction works for our running example.

Example 5.5.9. We consider again the curves on the Hirzebruch surface from Example
5.5.5. Take α = (1, 2), α0 = (0, 1), h0 = x4 ∈ Sα0 . Recall that VX(h0) ∩ VX(I) = ∅.
One can check that (α, α0) is a regularity pair (and we will prove this, see Theorem
5.5.7). The monomials in Sα0 are x4, x2x

2
3, x1x2x3, x

2
1x2. We use the bases

(S/I)α = spanC(x3x
2
4 + Iα, x1x

2
4 + Iα, x1x2x

2
3x4 + Iα),

(S/I)α+α0 = spanC(x3x
3
4 + Iα+α0 , x1x

3
4 + Iα+α0 , x1x2x

2
3x

2
4 + Iα+α0)

to construct matrices of the multiplication maps. To construct Mx2x2
3

we use

x2x
2
3 · (x3x

2
4 + Iα) = −x3x

3
4 + Iα+α0

x2x
2
3 · (x1x

2
4 + Iα) = x1x2x

2
3x

2
4 + Iα+α0

x2x
2
3 · (x1x2x

2
3x4 + Iα) = −x1x2x

2
3x

2
4 + Iα+α0

Mx2x2
3

=

−1

1 −1

 .
One can check that in these bases, Mx4 is the identity matrix. The matrices of Mxbi/h0

for all monomials xbi of degree α0 are

Mx4/x4 =

1
1

1

 , Mx2x2
3/x4 =

−1

1 −1

 ,
Mx1x2x3/x4 =


1 −1 1

 , Mx2
1x2/x4 =

 −1
−1 −1

 .
After the eigenvalue computations, we obtain the following table.

x4/x4 x2x
2
3/x4 x1x2x3/x4 x2

1x2/x4
z1 = (−1,−1, 1, 1) 1 -1 1 -1
z2 = (0,−1, 1, 1) 1 -1 0 0
z3 = (1,−1, 0, 1) 1 0 0 -1

4
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Let Sα0 =
⊕nα0

i=1 C · xbi where α0 ∈ Cl(X)+ is such that no ζj is a basepoint of Sα0 .
Our goal in what follows is to show how the eigenvalues of the Mxbi/h0 lead directly
to a set of defining equations of G · zj , j = 1, . . . , δ if α0 is ‘large enough’. We now
specify what we mean by ‘defining equations’ and ‘large enough’.

For every cone σ ∈ ΣP (recall that this is the normal fan of a full-dimensional lattice
polytope P ⊂MR ' Rn), we define Uσ′ = Ck \ V (xσ̂) = MaxSpec(Sxσ̂ ). These open
subsets of Ck appeared also in Subsection 5.5.1. By Assumption 3, the orbit G · zj
is contained in Uσ′ for some simplicial cone σ ∈ ΣP . Moreover, G · zj is closed in
Ck \ Z, which implies that it is closed in Uσ′ . What we are looking for is an ideal of
C[Uσ′ ] = Sxσ̂ whose variety is G · zj .

Let Dα0 be a representative divisor for α0: α0 = [Dα0 ] = [
∑k
i=1 a0,iDi]. Since

α0 ∈ Cl(X)+, we may assume that a0,i ≥ 0, i = 1, . . . , k. Let P0 ⊂ MR be the
polytope {m ∈MR | F>m+ a0 ≥ 0} with a0 = (a0,1, . . . , a0,k). If Dα0 is Cartier and
basepoint free, then for every σ ∈ ΣP there is mσ ∈ P0 ∩M such that

〈ui,mσ〉+ a0,i = 0, ∀ρi ∈ σ(1), (5.5.10)

see [CLS11, Theorem 6.1.7]. If Dα0 is not Cartier and basepoint free, such an mσ

does not exist for every cone σ ∈ ΣP . We will denote the subset of cones for which
mσ ∈ P0 ∩M satisfying (5.5.10) exists by Σ̃P ⊂ ΣP . This set is nonempty since
{0} ∈ Σ̃P . We write P0∩M = {m1, . . . ,mnα0

}, bi = F>mi+a0 and bσ = F>mσ +a0.
For all σ ∈ Σ̃P we denote P0 ∩M −mσ = {m1 −mσ, . . . ,mnα0

−mσ} (note that
0 ∈ P0 ∩M −mσ) and

σ∨ = {m ∈MR | 〈u,m〉 ≥ 0,∀u ∈ σ}, σ⊥ = {m ∈MR | 〈u,m〉 = 0,∀u ∈ σ}.

We partition P0 ∩M −mσ into

M⊥
σ = (P0 ∩M −mσ) ∩ σ⊥ and Mσ = (P0 ∩M −mσ) \M⊥

σ .

These sets depend on α0, although it is not explicit in the notation. The inclusion

NMσ + ZM⊥
σ =

 ∑
m∈Mσ

cmm+
∑

m∈M⊥
σ

dmm | cm ∈ N, dm ∈ Z

 ⊂ σ∨ ∩M

is clear. In what follows, we will show that if equality holds for some simplicial
σ ∈ Σ̃P , then α0 is ‘large enough’ to recover equations for G · z from the evaluations
of xbi/h0, i = 1, . . . , nα0 at ζ = π(z) for each point z ∈ Uσ′ \ VCk (h0) (or, equivalently,
ζ ∈ Uσ \ VX(h0) = π(Uσ′ \ VCk (h0))). To illustrate the idea and the notation, we first
apply this to our running example.

Example 5.5.10. We consider again the Hirzebruch surface X = H2 and its Z2-
graded Cox ring S. As in Example 5.5.9, let α0 = (0, 1) = [D4] ∈ Cl(X). That is,
we choose Dα0 = D4 and a0 = (0, 0, 0, 1) (a0,1 = a0,2 = a0,3 = 0, a0,4 = 1). For the
reader’s convenience, the fan ΣP of X (with its cones labeled in consistency with the
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σ1

ρ1

ρ2ρ3

ρ4

σ2

σ3

σ4

P0

x4

x2x
2
3

x1x2x3 x2
1x2

Figure 5.12: Fan of the Hirzebruch surface H2 (left) and the polytope P0 from Example
5.5.10 (right).

previous examples) is shown once more in the left part of Figure 5.12. The polytope
P0, whose lattice points correspond to the monomials in S of degree α0, is shown in
the right part of the same figure. The polytope P , of which ΣP is the normal fan,
is shown in Figure 5.7. Since α0 ∈ Pic(X) is basepoint free, mσ satisfying (5.5.10)
exists for each σ ∈ ΣP . In other words, in this example Σ̃P = ΣP . For a selection
of cones in Σ̃P = ΣP , the sets Mσ,M⊥

σ , σ
∨ ∩M and NMσ + ZM⊥

σ are shown in
Table 5.3. One can check that the equality σ∨ ∩M = NMσ + ZM⊥

σ holds for
σ = σ2, σ3, ρ1, ρ3, ρ4, {0}, and it fails for the other cones of ΣP . We will see that this
implies that, in order for it to be possible to recover the homogeneous coordinates of
a point ζ ∈ X from the evaluations of xbi/h0 at ζ, for xbi ∈ Sα0 and h0 ∈ Sα0 such
that ζ /∈ VX(h0), it is sufficient that

ζ ∈
⋃

σ∈{σ2,σ3,ρ1,ρ3,ρ4,{0}}

Uσ = X \D2,

where the last equality follows from the orbit-cone correspondence (Theorem E.2.3).
Note that if ζ ∈ D2, then all monomials in Sα0 , except for x4, vanish at ζ. Knowing
only the evaluation of these monomials at ζ, we do not have sufficient information to
recover the first and third homogeneous coordinates. 4

Theorem 5.5.4. Let z ∈ Uσ′ for a simplicial cone σ ∈ Σ̃P such that ζ = π(z) is not
a basepoint of Sα0 . Take h0 ∈ Sα0 such that ζ /∈ VX(h0) and let λi = zbi/h0(z), i =
1, . . . , nα0 be the evaluations of xbi/h0 at ζ. If α0 is such that σ∨∩M = NMσ+ZM⊥

σ ,
then G · z ⊂ Uσ′ is the subvariety

VUσ′

(
xbi−bσ − λi

h0(x)
xbσ

, i = 1, . . . , nα0

)
⊂ Uσ′ .

We will use the following lemma in the proof of Theorem 5.5.4.
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σ mσ bσ M⊥
σ ,Mσ σ∨ ∩M, NMσ + ZM⊥

σ

σ1 (0, 0) (0, 0, 0, 1)

σ2 (0, 1) (0, 1, 2, 0)

σ3 (2, 1) (2, 1, 0, 0)

ρ1 (0, 0) (0, 0, 0, 1)

ρ2 (0, 0) (0, 0, 0, 1)

Table 5.3: Sets of lattice points corresponding to α0 and some cones of ΣP in Example
5.5.10.

Lemma 5.5.4. Let σ ∈ Σ̃P be a simplicial cone. For any point z ∈ Uσ′ , the orbit
G · z is the subvariety

G · z = VUσ′

(
xF

>m − zF
>m,m ∈ σ∨ ∩M

)
⊂ Uσ′ .

If σ∨ ∩M = N{m1, . . . ,mκ}+ Z{mκ+1, . . . ,ms}, then

VUσ′

(
xF

>m − zF
>m,m ∈ σ∨ ∩M

)
= VUσ′

(
xF

>mi − zF
>mi , i = 1, . . . , s

)
.
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Proof. Note that xF>m − zF>m ∈ Sxσ̂ = C[Uσ′ ],∀m ∈ σ∨ ∩M and mκ+1, . . . ,ms ∈
σ⊥ ∩M . The first statement is shown in the proof of Theorem 2.1 in [Cox95]. For the
second statement, the inclusion ‘⊂’ is obvious. To show the opposite inclusion, take
m ∈ σ∨ ∩M and write m = c1m1 + . . .+ csms with c1, . . . , cκ ∈ N, cκ+1, . . . , cs ∈ Z.
Then

xF
>m =

κ∏
i=1

(xF
>mi)ci

s∏
j=κ+1

(xF
>mj )cj

and if xF>mi = zF
>mi , i = 1, . . . , s, it follows that xF>m = zF

>m.

Proof of Theorem 5.5.4. It follows from Lemma 5.5.4 that G · z is the variety of

〈xF
>(mi−mσ) − zF

>(mi−mσ) | i = 1, . . . , nα0〉 = 〈xbi−bσ − zbi−bσ | i = 1, . . . , nα0〉.

Write h0(x) =
∑nα0
i=1 cix

bi , ci ∈ C. It is easy to check thatidnα0 −

 λ1
...

λnα0

[c1 . . . cnα0

]
 xb1−bσ − zb1−bσ

...
xbnα0 −bσ − zbnα0 −bσ

 =

 xb1−bσ − λ1
h0(x)
xbσ

...
xbnα0 −bσ − λnα0

h0(x)
xbσ

 .

Now, if x ∈ G · z it is clear that xbi−bσ − λi(h0(x)/xbσ ) = 0, i = 1, . . . , nα0 . For the
other implication, we observe that if for some x ∈ Uσ′ , xbi−bσ − λi(h0(x)/xbσ ) =
0, i = 1, . . . , nα0 , then the vector (xbi−bσ − zbi−bσ )i=1,...,nα0

is a multiple µv of the
eigenvector v = (λ1, . . . , λnα0

)> of the rank-one matrix (λicj)1≤i,j≤nα0
. For bi = bσ

we have λi 6= 0, yet xbi−bσ−zbi−bσ = 0. We conclude µ = 0. Hence xbi−bσ−zbi−bσ = 0
and x ∈ G · z by Lemma 5.5.4.

In what follows, we derive a set of simple, non-homogeneous binomial equations on
Ck defining a subvariety of G · z.

Theorem 5.5.5. Let z ∈ Uσ′ with σ ∈ Σ̃P simplicial be such that π(z) is not a
basepoint of Sα0 and σ∨ ∩ M = NMσ + ZM⊥

σ . For generic h0 ∈ Sα0 satisfying
h0(z) 6= 0, the affine variety

Yz = VCk

(
xbi − zbi

h0(z) , i = 1, . . . , nα0

)
⊂ Ck

is nonempty and Yz ⊂ G · z.

The proof of Theorem 5.5.5 uses the following lemma.

Lemma 5.5.5. If α0 ∈ Cl(X)+, then α0 is not a torsion element of Cl(X).

Proof. Suppose `α0 = 0 for some ` ∈ N>0. Then F>m + `a0 = 0 for some m ∈ M ,
and therefore F>(m/`) + a0 = 0. Since ΣP is complete, this means that P0 = {m/`}
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and P0 either has 1 lattice point if m/` ∈ M , or it has none. The latter situation
is excluded by α0 ∈ Cl(X)+, since we can assume 0 ∈ P0 ∩ M . Hence we have
m/` = m′ ∈M such that F>m′ + a0 = 0, which shows that α0 = 0.

Proof of Theorem 5.5.5. Since α0 is not a torsion element of Cl(X) (Lemma 5.5.5),
we have the exact sequence

0 −→ Z −→ Cl(X) −→ Cl(X)/(Z · α0) −→ 0

where Z→ Cl(X) sends ` 7→ `α0 ∈ Cl(X). Taking HomZ(−,C∗) shows that G→ C∗ :
g 7→ ga0 is surjective (because C∗ is divisible). Therefore we can find g ∈ G such that
ga0 = h0(z)−1 and thus h0(g · z) = 1. Every x ∈ Yz satisfies xbi − (g · z)bi = 0, i =
1, . . . , nα0 : this follows from (g · z)bi = zbi/h0(z). In particular, xbσ = (g · z)bσ 6= 0
(z ∈ Uσ′ and hence g · z ∈ Uσ′ since Uσ′ is G-invariant) and therefore x satisfies
xbi−bσ = (g ·z)bi−bσ , i = 1, . . . nα0 . By Lemma 5.5.4 it follows that g ·z ∈ Yz ⊂ G·z.

Recall that I ⊂ S is an ideal satisfying Assumptions 1-3 with VX(I) = {ζ1, . . . , ζδ},
zj ∈ Ck \ Z is a set of homogeneous coordinates of ζj and we took α0 such that no ζj
is a basepoint of Sα0 . We have the following immediate corollary of Theorems 5.5.4
and 5.5.5.

Corollary 5.5.2. Let λij = zbi
j /h0(zj) be the j-th eigenvalue of the i-th multiplication

map Mxbi/h0 , i = 1, . . . , nα0 , j = 1, . . . , δ. Assume that α0 is such that, for j = 1, . . . , δ,
zj ∈ Uσ′

j
for a simplicial cone σj ∈ Σ̃P satisfying σ∨

j ∩M = NMσj
+ZM⊥

σj
. For each

j, we have that

G · zj = VUσ′
j

(
xbi−bσj − λij

h0(x)
xbσj

, i = 1, . . . , nα0

)
⊂ Uσ′

j

and for any point z′
j ∈ Yzj = VCk (xbi − λij , i = 1, . . . , nα0) ⊂ Uσ′

j
, we have π(z′

j) = ζj .

Corollary 5.5.2 implies that we can find homogeneous coordinates of the solutions
from the eigenvalues λij by solving a system of binomial equations

{xbi − λij , i = 1, . . . , nα0} (5.5.11)

provided that P0 ‘has enough lattice points’. Concretely, for every point ζj ∈ VX(I)
there has to be a cone σj ∈ Σ̃P such that ζj ∈ Uσj and σ∨

j ∩M = NMσj + ZM⊥
σj

.
Note that if all solutions are in the torus, then ζj ∈ Uσ for σ = {0} ∈ Σ̃P and this
condition translates to the fact that Z(P0 ∩M −m) = M for some m ∈ P0 ∩M . If
P0 is very ample, then Σ̃P = ΣP and σ∨ ∩M = NMσ + ZM⊥

σ holds for all σ ∈ ΣP

[CLS11, Proposition 1.3.16].

We conclude this subsection with a discussion on how to solve the systems of binomial
equations (5.5.11). Note that by Corollary 5.5.2, in this context it is enough to consider
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the system ‘solved’ once we have found one point on the variety Yzj , j = 1, . . . , δ. This
can be done using Newton iteration with the necessary adaptations. For instance,
it should take the possibility of divergence into account and use a good criterion for
convergence. For those ζj that are in the torus of X, there is a more clever way of doing
this. For these solutions, all eigenvalues λij , i = 1, . . . , nα0 are nonzero. The method
we describe here is suggested by Lemma 3.2 in [HS95]. Let A = [b1 · · · bnα0

] ∈ Zk×nα0

be the matrix of exponents and compute its Smith normal form: PAQ = S with
P,Q unimodular and S = [diag(s1, . . . , sr, 0, . . . , 0) 0] ∈ Zk×nα0 , where si|si+1. We
make the substitution of variables x` = yP1`

1 · · · yPk`

k to obtain the equivalent system
of equations given by yPbi = λij . Applying the invertible transformation given by the
matrix Q, this simplifies to

ys`

` =
nα0∏
i=1

λQi`

ij , ` = 1, . . . , r and 1 =
nα0∏
i=1

λQi`

ij , r < ` ≤ k.

This imposes no conditions on y`, ` > r, so we can put y` = 1, ` > r. Taking the
logarithm then shows that

log y = [log y1 · · · log yk] = [w 0k−r]

where w = [log λ1j · · · log λnα0 j
][Q:,1 · · · Q:,r]diag(1/s1, . . . , 1/sr) and 0k−r is a row

vector of length k− r with zero entries. To find the homogeneous coordinates, we only
need to invert our change of coordinates and the logarithm:

log x = [log x1 · · · log xk] = log y P, x` = elog x` , ` = 1, . . . , k.

Taking the logarithm has some advantages for the implementation: it reduces all
computations to some matrix multiplications and it may prevent overflow. Since
the exponent matrix A is the same for all binomial systems (5.5.11), we can solve
all systems for which this technique applies together by performing only one Smith
normal form computation and a series of (small) matrix-matrix multiplications. We
gather the eigenvalues λij in a size δ∗ × nα0 matrix

Λji = λij =
zbi
j

h0(zj)
,

whose δ∗ ≤ δ rows correspond to the solutions zj for which all λij are nonzero (these
are the solutions in the torus). This is a selection of the rows of the table we saw before,
e.g., in Example 5.5.9. The resulting algorithm is Algorithm 5.4. After computing the
Smith normal form, in line 3 we compute the entry-wise logarithm of the matrix Λ. In
the next lines, we execute the steps explained above. In line 5, 0δ∗,k−r is a δ∗× (k− r)
matrix filled with zeros. The algorithm returns a set of homogeneous coordinates for
each of the solutions represented by the rows of Λ.

As indicated before, Algorithm 5.4 fails for solutions on the boundary of the torus,
for which some of the λij are zero. We mentioned Newton iteration as an alternative.
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Algorithm 5.4 Solves the binomial systems given by the exponents in A and the
rows of Λ ∈ Cδ∗×nα0

1: procedure SolveBinomialSystem(A,Λ)
2: P,Q,S← Smith normal form of A
3: log Λ← (log(Λij))1≤i≤δ∗,1≤j≤nα0
4: W ← log Λ [Q:,1 · · · Q:,r] diag(1/s1, . . . , 1/sr)
5: log Y ← [W 0δ∗,k−r]
6: logZ ← log yP
7: for j = 1, . . . , δ∗ do
8: z′

j ← (e(logZ)j1 , . . . , e(logZ)jk )
9: end for

10: return z′
1, . . . , z

′
δ∗

11: end procedure

There are other possibilities for dealing with this, such as dropping the equations in
(5.5.11) for which λij = 0 (which should be tested numerically using some robust
criterion), and using the Smith normal form approach to solve for the remaining
variables only. Note that if one is only interested in computing the solutions in the
torus, computing the homogeneous coordinates for the solutions on the boundary can
be skipped. We do not go into more detail here.

Now that we have presented what to do with the multiplication maps Mxbi/h0 once we
have them (i.e. find their eigenvalues and apply Algorithm 5.4), the next subsection
will discuss how to compute the Mxbi/h0 .

5.5.4 Toric homogeneous normal forms

In this subsection we generalize the framework of homogeneous normal forms to the
toric setting. With the definitions of the regularity and the homogeneous multiplication
maps from Subsections 5.5.2 and 5.5.3, the proofs are identical to those in Section 4.5.

Definition 5.5.6 (Homogeneous normal form (HNF)). Let I ⊂ S be a homogeneous
ideal satisfying Assumptions 1-3. Let (α, α0) ∈ Cl(X)2

+ be a regularity pair and let
B ⊂ Sd be a C-vector subspace. A homogeneous normal form (HNF) of degree α+α0
w.r.t. I is a C-linear map Nα,α0 : Sα+α0 → B such that

0 −→ Iα+α0 −→ Sα+α0

Nα,α0−→ B −→ 0

is a short exact sequence and for some h0 ∈ Sα0 satisfying VX(h0) ∩ VX(I) = ∅,

B (S/I)α

(S/I)α+α0 (S/I)α

N

Mh0

id
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commutes, where B → (S/I)α is given by b 7→ b+ Iα and N (f + Iα+α0) = Nα,α0(f).

In Definition 5.5.6, the maps id and N are isomorphisms of C-vector spaces. We
have seen (Lemma 5.5.3) that Mh0 is an isomorphism as well, hence B ' (S/I)α via
b 7→ b+ Iα. Definition 5.5.6 should be slightly adapted when we want to consider the
more general case where the points in VX(I) are allowed to have multiplicities. More
precisely, we need a different notion of regularity. We will say a few things about this
in Subsection 5.5.5 but stick to the case where all points have multiplicity 1 for now.

Just like in the projective case, if we want to specify the function h0 ∈ Sα0 in
Definition 5.5.6, we say that Nα,α0 is a HNF with respect to I and h0. The way
homogeneous multiplication matrices are obtained from homogeneous normal forms
should come as no surprise. For a HNF Nα,α0 and g ∈ Sα0 we define Ng : Sα → B by
Ng(f) = Nα,α0(fg).

Proposition 5.5.4. Let I, α, α0, B be as in Definition 5.5.6. If Nα,α0 is a HNF with
respect to I and h0 ∈ Sα0 , then for any g ∈ Sα0 , (Ng)|B : B → B is similar to the
map Mg/h0 = M−1

h0
◦Mg from Theorem 5.5.3.

Proof. The proof is identical to that of Proposition 4.5.1.

Definition 5.5.7. Let I, α, α0, B be as in Definition 5.5.6. A C-linear map N :
Sα+α0 → Cδ covers a HNF Nα,α0 : Sα+α0 → B with respect to I if there is an
isomorphism P : B → Cδ such that Nα,α0 = P−1 ◦N .

Proposition 5.5.5. Let I ⊂ S be a zero-dimensional homogeneous ideal satisfying
Assumptions 1-3. Let (α, α0) ∈ Cl(X)2

+ be a regularity pair. A C-linear map N :
Sα+α0 → Cδ covers a HNF if and only if

0 −→ Iα+α0 −→ Sα+α0
N−→ Cδ −→ 0 (5.5.12)

is a short exact sequence. In this case, N covers a HNF Nα,α0 : Sα+α0 → B with
respect to I and h0 for any h0 ∈ Sα0 such that VX(h0) ∩ VX(I) = ∅ and for any
δ-dimensional subspace B ⊂ Sα such that

(Nh0)|B : B → Cδ

is invertible, where Nh0 : Sα → Cδ is given by Nh0(f) = N(h0f). The HNF Nα,α0 is
given by Nα,α0 = (Nh0)−1

|B ◦N .

Proof. Note that Nh0 is surjective by Lemma 5.5.3, so there is some δ-dimensional
C-vector subspace for which the restriction (Nh0)|B is invertible. The proof of the
proposition is identical to that of Proposition 4.5.2.

We conclude from Proposition 5.5.5 that if for a regularity pair (α, α0) we have
computed a C-linear map N : Sα+α0 → Cδ such that (5.5.12) is exact, then for any
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h0 ∈ Sα0 such that VX(h0) ∩ VX(I) = ∅ and any B ⊂ Sα such that (Nh0)|B is
invertible, we have that for any g ∈ Sα0 , ‘multiplication with g/h0’ is given by

Mg/h0 = (Nh0)−1
|B ◦ (Ng)|B ,

where Ng : Sα → Cδ is given by Ng(f) = N(fg).

As in the projective case, we compute a map N : Sα+α0 → Cδ such that (5.5.12) is
exact as a cokernel map of a map whose image is Iα+α0 . To this end, we extend the
definition of a graded resultant map (Definition 4.3.2) to the toric case.

Definition 5.5.8 (Graded resultant map). Fix α ∈ Cl(X)+. For a tuple (f1, . . . , fs) ∈
Sα1 × · · · × Sαs

with αi ∈ Cl(X)+ and finite dimensional C-vector subspaces Λi ⊂
Sα−αi , i = 1, . . . , s, Λ = Sα, the graded resultant map is the C-linear map

resf1,...,fs : Λ1 × · · · × Λs → Λ given by resf1,...,fs(q1, . . . , qs) = q1f1 + · · ·+ qsfs.

Suppose (α, α0) ∈ Cl(X)2
+ is a regularity pair for I = 〈f1, . . . , fs〉. The graded

resultant map

resf1,...,fs : Λ1 × · · · × Λs → Λ with Λ = Sα+α0 ,Λi = Sα+α0−deg(fi) (5.5.13)

has the property that im resf1,...,fs = Iα+α0 . A cokernel map N : Λ → Cδ therefore
satisfies (5.5.12) and covers a HNF by Proposition 5.5.5. This leads to Algorithm
5.5 for computing the homogeneous multiplication matrices in the toric setting. The

Algorithm 5.5 Computes homogeneous multiplication matrices for I = 〈f1, . . . , fs〉 ⊂
S satisfying Assumptions 1-3

1: procedure HomogeneousMultiplicationMatrices(f1, . . . , fs, (α, α0))
2: resf1,...,fs ← the resultant map Λ1 × · · · × Λs → Λ from (5.5.13)
3: N ← coker resf1,...,fs

4: h0 ← generic element of Sα0

5: Nh0 ← matrix of the map Sα → Cδ where f 7→ N(h0f)
6: (Nh0)|B ← invertible restriction of Nh0 to B ⊂ Sα, dimCB = δ
7: for i = 1, . . . , nα0 do
8: (Nxbi )|B ← restriction of the map Sα → Cδ given by f 7→ N(xbif) to B
9: Mxbi/h0 ← (Nh0)−1

|B (Nxbi )|B
10: end for
11: return Mxb1/h0 , . . . ,Mx

bnα0 /h0

12: end procedure

algorithm takes homogeneous generators for I and a regularity pair as its input. It
returns the multiplication matrices corresponding to all monomials of degree α0. The
usual remarks concerning the basis choice in line 6 apply. Note that Algorithm 5.5
also provides a generalization of Algorithm 4.2 in the non-square case.
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The case we are particularly interested in is that where n = s and I = 〈f1, . . . , fn〉
where fi comes from homogenizing f̂i and X = XP where P = P1 + . . .+Pn is the sum
of Pi = Newt(f̂i), i = 1, . . . , n. In this case αi = deg(fi) ∈ Pic(X) is basepoint free.
We will show in Subsection 5.5.5 that if VX(I) is zero-dimensional, α = α1 + · · ·+αn ∈
Reg(I). Moreover, for any basepoint free α0 ∈ Pic(X), α + α0 ∈ Reg(I). Hence
(α, α0) ∈ Cl(X)2

+ is a regularity pair. We observe in experiments that it is too strict
to require α0 to be basepoint free and contained in Pic(X). In practice, one can work
with any α0 such that

(α, α0) is a regularity pair and Corollary 5.5.2 applies for α0. (5.5.14)

Concretely, the polytope P0 associated to α0 should have ‘enough lattice points’, see
the discussion following Corollary 5.5.2. This leads to Algorithm 5.6 for computing the
homogeneous coordinates of the solutions. Lines 6 and 7 use some notation introduced

Algorithm 5.6 Computes homogeneous coordinates on X = XP1+···+Pn of the
solutions of (f̂1, . . . , f̂n) ∈ FC[M ](P1, · · · , Pn) where I = 〈f1, . . . , fn〉 ⊂ S satisfies
Assumptions 1-3

1: procedure SolveHomogeneous(f̂1, . . . , f̂n)
2: f1, . . . , fn ← homogenize f̂1, . . . , f̂n
3: α← deg(f1) + · · ·+ deg(fn) ∈ Pic(X)
4: α0 ← element of Cl(X)+ such that (5.5.14) is satisfied
5: {Mxbi/h0} ← HomogeneousMultiplicationMatrices(f1, . . . , fn, (α, α0))
6: A← exponent matrix in Zk×nα0 of the monomials in Sα0

7: Λ← eigenvalues of Mxb1/h0 , . . . ,Mx
bnα0 /h0

such that Λji = λij

8: return SolveBinomialSystem(A,Λ)
9: end procedure

in Subsection 5.5.3. In Line 8, Algorithm 5.4 is used to solve the binomial systems
(5.5.11). As we have mentioned before, the Smith normal form based algorithm will
only work for solutions in the torus. For the other solutions, one has to adapt the solving
method. For simplicity, in Algorithm 5.6 we assume that SolveBinomialSystem
takes care of this. The approach taken in the experiments below is the same as in
[Tel20, Algorithm 1]. The Smith normal form method is used for a solution ζj for
which

min
1≤i≤nα0

|λij | >

(nα0∑
i=1
|λij |2

)1/2

tol, (5.5.15)

where tol is a predefined tolerance. For solutions not satisfying (5.5.15), an adapted
Newton iteration is applied for solving the corresponding binomial system. Once
the homogeneous coordinates zj = (zj,1, . . . , zj,k) are computed, we can obtain the
coordinates of these solutions in the torus via the Laurent monomial map (5.5.2). The
following is Remark 6.1 in [Tel20].
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Remark 5.5.5. We briefly discuss the complexity of Algorithm 5.5 as compared
to Algorithm 5.3. The first step in both algorithms is to compute the cokernel of
a resultant map res. Since for both algorithms the monomials indexing the vector
spaces V and Λ in the definition of res are the lattice points contained in a slightly
enlarged (and shifted) version of the polytope P = P1 + . . . + Pn, this step takes
roughly the same computation time for both algorithms. Even though the Cox ring
has dimension k > n, the dimensions of its graded pieces correspond to the lattice
points contained in n-dimensional polytopes. The grading of S by the class group is
such a fine grading that it’s almost like we are only implicitly working with k variables
instead of n. This is an important observation, because for larger problems, the
computation of the cokernel of res is the most expensive step of the algorithm. Next,
both algorithms compute the multiplication matrices from this cokernel. This is more
expensive for Algorithm 5.5: there are more multiplication maps. Another important
difference is that for the TNF algorithm, the eigenvalues of the multiplication maps
immediately give the coordinates of the solutions, whereas Algorithm 5.6 processes
these eigenvalues to find the homogeneous coordinates by solving binomial systems of
equations. We conclude that Algorithm 5.6 is computationally more expensive overall.
This should be considered the price that is payed for being more robust in nearly
degenerate situations, which is our main reason for developing the algorithm. However,
the increase of complexity is not dramatic: systems with thousands of solutions can
be solved within reasonable time (see the experiments below). 4

We conclude the subsection with some experiments illustrating the effectiveness
of Algorithm 5.6. They are taken from [Tel20, Section 7]. We use a Matlab
implementation of Algorithm 5.6. As in Section 5.3, we call Polymake from Matlab
for all computations involving polytopes, except for the mixed volume computation,
which is done using PHCpack. To reduce the overhead caused by calling Polymake
through Matlab we have implemented an online and an offline version of the algorithm.
The offline version takes the polytope information as an input. The online version
computes everything from the input polynomials and automatically generates an α0
whose lattice points affinely generate M . The basis selection is done using the SVD
and all eigenvalue computations use the Schur factorization. The experiments were
executed on the same machine. To measure the quality of an approximate solution,
we compute the residual of the dehomogenized solutions as detailed in Appendix C.
The goal of the experiments is to show that Algorithm 5.6 meets our objectives: it
finds all solutions with good accuracy within reasonable time. In particular, it does so
for (nearly) degenerate systems with solutions on or near the exceptional divisors of
X that cannot be solved by other state of the art solvers.

Experiment 5.5.1 (Points on H2). We finish our running example by using Algorithm
5.6 to compute homogeneous coordinates of the solutions of the system defined in
Example 5.4.5. We use tol = 10−12, α = α1 + α2. For α0 = α2, Algorithm 5.6 finds
three solutions. All three residuals are of order 10−16.
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Figure 5.13: Left: images in P of the real part of V (f1) and V (f2) from Example
5.4.3 under the moment map µ. The images of the computed real solutions are shown
as black dots. Right: same picture for a different system.

To illustrate the results, we use the moment map

µ : Ck \ Z → P : x 7→ 1∑
m∈P∩M |xF

>m+a|
∑

m∈P∩M
|xF

>m+a|m,

where | · | denotes the modulus. The map µ is constant on G-orbits and takes a point
x ∈ Ck \ Z to a convex combination of the lattice points of P . It has the property
that torus invariant prime divisors are sent to their corresponding facets and (C∗)k is
sent to the interior of P . More information can be found in [Ful93, Section 4.2] and
[Sot17, Section 2]. Figure 5.13 shows that two of the computed solutions lie on divisors
and one is in the torus. The image under µ of all of the solutions must lie on an
intersection of the images of V (f1) \Z, V (f2) \Z (but not all intersections correspond
to solutions). As an illustration, we have included the same picture for a system with
more solutions in the right part of the same figure. The polytopes for this system are
P1 = [0, 4]× [0, 4] and P2 = 5∆2 where ∆2 is the standard simplex. There are δ = 40
solutions, 12 of them are real. 4

Experiment 5.5.2 (A problem from computer vision). The author is grateful to
Tomas Pajdla and Zuzana Kukelova for suggesting this example. One of the so-called
‘minimal problems’ in computer vision is the problem of estimating radial distortion
from eight point correspondences in two images. In [KP07], Kukelova and Pajdla
propose a formulation of this problem as a system of 3 polynomial equations in 3
unknowns. The Newton polytopes are visualized in Figure 5.14. The mixed volume is
δ = MV(P1, P2, P3) = 17 and the matrix of facet normals is

F =

0 −1 −1 0 1 0
1 −1 −1 0 0 0
0 0 −1 1 0 −1

 ,
so the Cox ring S has dimension 6. We assign random real coefficients drawn from a
standard normal distribution to all lattice points in the polytopes and solve the system



206 TORIC METHODS

(a) P1 (b) P2 (c) P3

Figure 5.14: Newton polytopes of the equations of the eight point radial distortion
problem.

using Algorithm 5.6. We first run the offline version, which generates the polytope P0.
In this case, P0 is the standard simplex. All 17 solutions are found with a residual of
order 10−16 within ±0.1 s (using the online version of the algorithm). To show the
robustness of Algorithm 5.6 in the nearly degenerate case, i.e. the case where there
are solutions on or near the torus invariant prime divisors, we perform the following
experiment. Consider the lattice points

F3 = {m ∈ P1 ∩M | 〈u3,m〉+ 3 = 0}, G3 = (P1 ∩M) \F3.

The points in F3 are the lattice points on the facet of P1 corresponding to u3 =
(−1,−1,−1). Set

ĝi =
∑
m∈F3

cm,it
m +

∑
m∈G3

cm,it
m, i = 1, 2

with cm,i real numbers drawn from a standard normal distribution. Now let f̂1 = ĝ1
and

f̂2(e) =
∑
m∈F3

(10−ecm,2 + (1− 10−e)cm,1)tm +
∑
m∈G3

cm,2t
m, e ∈ [0,∞).

The equation f̂2 = 0 is parametrized by the real parameter e. The third equation
f̂3 = 0 is chosen randomly. When e = 0, f̂2 = ĝ2 and the system is generic, as
before. When e → ∞, the part of f̂2 corresponding to F3 converges to the part
of f̂1 corresponding to F3, meaning that there will be solutions ‘at infinity’ on the
divisor D3. We solve the system for e = 0, 1/2, 1, 3/2, . . . , 16 and compute both the
maximal residual rmax and the minimal residual rmin for the 17 solutions found by
Algorithm 5.6 with tol = 10−4 and the solutions found by Algorithm 5.3. The result
of the experiment is shown in Figure 5.15. Note that not only the residuals of the
solutions approaching the divisor deteriorate for the TNF algorithm. Accuracy is lost
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on all solutions. The reason is that even for the ‘best’ basis selected by this algorithm,
the computation of the classical multiplication matrices is ill-conditioned because the
system is nearly degenerate. Looking at the computed Cox coordinates, we see that
for three of the solutions, the coordinate x3 goes to zero as e increases, so 3 out of 17
solutions approach the divisor D3.

0 2 4 6 8 10 12 14 1610−17

10−12

10−7

10−2

e

Figure 5.15: Minimal and maximal residual for different values of the parameter e for
the parametrized eight point radial distortion problem, for Algorithm 5.6 (blue) and
Algorithm 5.3 (orange).

One can perform the same experiment for any other facet of P1. However, in order to
find the solutions on the divisors, the polytope P0 must be large enough and it might
not be sufficient that its lattice points generate the lattice (Corollary 5.5.2). Repeating
the same experiment, but this time using F2 instead of F3, the solutions in the torus
are still found with good accuracy by Algorithm 5.6. Accuracy is lost on the solutions
approaching D2. The reason is that the standard simplex does not ‘show’ this facet.
Using P0 = Conv((0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1), (0, 0, 2)) we find
homogeneous coordinates of all solutions. 4

Experiment 5.5.3 (Generic problems). To give an idea of the computation time and
the type of systems Algorithm 5.6 can handle, we perform the following experiment.
Consider the parameters n, NZ, dmax ∈ N \ {0}. For j = 1, . . . , n we generate a set
Aj ⊂ Zn of NZ lattice points by selecting NZ points in Nn with coordinates drawn
uniformly from {0, 1, . . . , dmax} and shifting these points by substracting the first point
from all other points. Then for each m ∈ Aj we generate a random real number cm,j
drawn from a standard normal distribution and we set

f̂j =
∑
m∈Aj

cm,jt
m.

If two or more points m ∈ Aj coincide, we add the cm,j together, so NZ is an upper
bound for the number of terms in f̂j . We use Algorithm 5.6 to compute the Cox
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n NZ dmax δ k nα0
OFFLINE ONLINE

t Dmean Dmax t Dmean Dmax
2 20 10 144 12 3 1.9e+1 15 14 2.0e-1 15 14
2 20 20 505 14 4 2.4e+1 14 12 1.9e+0 14 11
2 20 30 1268 15 3 5.8e+1 14 12 1.9e+1 14 12
2 20 40 2390 16 3 2.6e+2 14 11 1.4e+2 14 13
2 20 50 3275 16 3 3.7e+2 14 12 2.3e+2 14 11
2 20 60 4469 12 3 7.8e+2 11 7 5.2e+2 11 8
2 40 30 1522 15 3 9.5e+1 14 11 3.4e+1 14 10
2 60 30 1670 15 4 1.2e+2 14 12 5.3e+1 14 12
2 200 30 1672 10 3 1.1e+2 15 10 6.0e+1 15 9
3 5 3 18 21 4 2.2e+1 14 12 1.1e-1 15 13
3 5 5 136 36 4 3.9e+1 14 9 6.3e-1 14 13
3 10 5 190 60 5 3.5e+1 15 7 2.1e+0 15 11
3 10 7 592 63 5 1.3e+2 14 10 3.2e+1 15 7
4 5 3 81 106 6 6.9e+1 14 11 3.7e+1 14 11

Table 5.4: Results for generic systems with mixed supports.

coordinates of the solutions of the resulting system and their image under (5.5.2).
In Table 5.4 we report the number of solutions δ, the dimension k of the Cox ring,
the number nα0 for the automatically generated α0, and, for both the offline and
the online solver, the maximal residual rmax, the geometric mean of the residuals
of all solutions rmean and the computation time t (in seconds). The residuals are
represented by Dmean = d− log10 rmeane and Dmax = d− log10 rmaxe. It follows from
Bernstein’s second theorem [Ber75, HS95] that solutions on divisors can only occur if
the polytopes involved have common tropisms corresponding to positive dimensional
faces. An important case in which this may happen is the unmixed case in which
all input polytopes are equal. We repeat the experiment, but this time we keep the
supports A = A1 = . . . = An fixed. Table 5.5 shows some results. Of course, for this
type of systems, the dimension of the Cox ring (or, equivalently, the number of facets
of the Minkowski sum of the input polytopes) is lower and the system of binomial
equations from Corollary 5.5.2 is easier to solve. 4

n NZ dmax δ k nα0
OFFLINE ONLINE

t Dmean Dmax t Dmean Dmax
2 20 60 3638 7 3 5.8e+2 13 11 3.8e+2 13 10
3 10 10 834 14 6 3.5e+2 13 12 1.9e+2 13 12
4 6 3 15 7 8 3.3e+1 15 15 8.4e-1 15 14
4 6 4 28 6 11 4.3e+1 14 13 5.4e+0 15 14
4 6 5 216 9 7 5.7e+2 12 11 2.7e+2 12 11
4 6 6 339 8 6 1.5e+3 6 4 2.0e+3 6 5
5 6 3 10 6 8 7.5e+1 15 14 1.0e+1 15 15

Table 5.5: Results for generic systems with unmixed supports.
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5.5.5 More on regularity and fat points

In this subsection we discuss how the results from the previous subsections generalize
to the case where some of the points in VX(I) have multiplicity > 1 and we state
some results about the regularity Reg(I). The presented material is taken from
[Tel20] and from [BT20a]. Throughout the subsection, I = 〈f1, . . . , fs〉 ⊂ S is a
homogeneous ideal such that VX(I) is zero-dimensional, consisting of the δ points
{ζ1, . . . , ζδ} with multiplicities µ1, . . . , µδ respectively. We set δ+ = µ1 + · · ·+ µδ. We
say that VX(I) has degree δ+. We will also assume that the fi are homogeneous of
degree deg(fi) = αi ∈ Pic(X). The fan of X is denoted by Σ and as before, we let
J = (I : B∞). When we need the extra assumption that all points have multiplicity 1
(δ = δ+), we will say that VX(I) is reduced. In the non-reduced case, Definition 5.5.4
for the regularity of I is not the right one to use.

Definition 5.5.9 (Regularity (general case)). Let I ⊂ S be such that VX(I) =
{ζ1, . . . , ζδ} is zero-dimensional of degree δ+ and let J = (I : B∞). The regularity
Reg(I) ⊂ Cl(X) of I is

Reg(I) = {α ∈ Cl(X) | HFI(α) = δ+, Iα = Jα, no ζj is a basepoint of Sα}.

We say that (α, α0) ∈ Cl(X)2
+ is a regularity pair if α, α+ α0 ∈ Reg(I) and no ζj is a

basepoint of Sα0 .

Although we change the definition slightly, we keep the same notation for Reg(I) as
before. The new definition does not change anything for statements about degrees in
Reg(I)∩Pic(X) in the reduced case, for which the two definitions coincide (Proposition
5.5.3). We will add a remark where there is danger for confusion. For α ∈ Pic(X) and
f ∈ Sα, we denote fσ for the dehomogenization of f with respect to the affine chart
Uσ ⊂ X as in (5.5.6). The ideal defined by I in C[Uσ] (i.e. the sections of the ideal sheaf
I on Uσ) is denoted by I (Uσ) = 〈fσ1 , . . . , fσs 〉 ⊂ C[Uσ]. For σ ∈ Σ(n), α ∈ Pic(X),
we denote the operation of ‘dehomogenization modulo the ideal I’ by

η−1
α,σ : (S/I)α → C[Uσ]/I (Uσ) where η−1

α,σ(f + Iα) = fσ + I (Uσ).

Note that this is well-defined since for any f ∈ Iα we can find homogeneous gi ∈ Sα−αi

such that f = g1f1 + · · ·+ gsfs and fσ = gσ1 f
σ
1 + · · ·+ gσs f

σ
s ∈ I (Uσ).

Lemma 5.5.6. For α ∈ Reg(I)∩Pic(X) we have that f ∈ Iα if and only if fσ ∈ I (Uσ)
for all σ ∈ Σ(n).

Proof. It is clear that f ∈ Iα implies fσ ∈ I (Uσ), for all σ ∈ Σ(n). Conversely,
suppose that fσ ∈ I (Uσ) for all σ ∈ Σ(n). Then we can find gσ1 , . . . , g

σ
s such that

fσ = gσ1 f
σ
1 + · · ·+ gσs f

σ
s .

Note that this is an equality in the localization Sxσ̂ , and clearing denominators shows
that there is ` ∈ N such that (xσ̂)`f ∈ I. Since B = 〈xσ̂ | σ ∈ Σ(n)〉, we have that
f ∈ (I : B∞) = J . Since f ∈ Sα and α ∈ Reg(I), this implies f ∈ Iα.
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For each ζi ∈ VX(I), let σi ∈ Σ(n) be such that ζi ∈ Uσi . We will use an embedding
of Uσi in an affine space Cnσi in order to apply the theory developed in Subsection
3.1.3. We denote the coordinate ring of this affine space Cnσi by Rσi

. The embedding
Uσi
→ Cnσi gives an isomorphism C[Uσi

]/I (Uσi
) ' Rσi

/Iσi
for some zero-dimensional

ideal Iσi
⊂ Rσi

. We denote the C-vector space of differential operators on Cnσi by
Dσi

. The point ζi corresponds to some primary ideal Qi ⊂ Rσi
containing Iσi

, which
gives a closed subspace Di ⊂ Dσi of dimension dimCDi = µi (Theorem 3.1.3). Let
∂i1, . . . , ∂iµi be a consistently ordered basis for Di. Note that evζi ◦ ∂ij gives an
element of (Rσi

/Iσi
)∨ ' (C[Uσi

]/I (Uσi
))∨ (see the discussion following Theorem

3.1.3). For α ∈ Pic(X), i = 1, . . . , δ and j = 1, . . . , µi we define

vij,α : (S/I)α → C with vij,α = evζi
◦ ∂ij ◦ η−1

α,σi
.

Consider the map ψα : (S/I)α → Cδ+ given by

ψα(f + Iα) = (vij,α(f + Iα) | i = 1, . . . , δ, j = 1, . . . , µi). (5.5.16)

If VX(I) is reduced, this is the map ψα from (5.5.8) up to an invertible diagonal
scaling.

Proposition 5.5.6. For α ∈ Reg(I) ∩ Pic(X), the map ψα from (5.5.16) is an
isomorphism of C-vector spaces.

Proof. The condition vij,α(f + Iα) = 0, i = 1, . . . , µi is independent from the choice of
σi ∈ Σ(n) such that ζi ∈ Uσi

. We have that vij,α(f+Iα) = 0, i = 1, . . . , δ, j = 1, . . . , µi
if and only if fσ ∈ I (Uσ) for all σ ∈ Σ(n). Because α ∈ Reg(I), Lemma 5.5.6 applies.
We conclude that ψα is an injective map between C-vector spaces of the same dimension.
The proposition follows.

Theorem 5.5.6 (Toric eigenvalue, eigenvector theorem (non-reduced case)). Let
I ⊂ S be such that VX(I) = {ζ1, . . . , ζδ} ⊂ U is zero-dimensional, where ζi has
multiplicity µi. Let (α, α0) ∈ Pic(X)2 be a regularity pair. For any g ∈ Sα0 and a
generic h0 ∈ Sα0 , consider the linear map Mg ◦M−1

h0
: (S/I)α+α0 → (S/I)α+α0 . We

have

det(λidCδ+ −Mg ◦M−1
h0

) =
δ∏
i=1

(
λ− g

h0
(ζi)
)µi

.

Proof. The map Mh0 is invertible by Corollary 5.5.3 below. Our strategy is to prove
that there exist C-linear maps Lh0 and Lg such that Lh0◦ψα+α0◦Mg = Lg◦ψα+α0◦Mh0

where Lh0 is invertible and

det(λidCδ+ − L−1
h0
◦ Lg) =

δ∏
i=1

(
λ− g

h0
(ζi)
)µi

. (5.5.17)

Recall that vij,α+α0 = evζi ◦ ∂ij ◦ ηα+α0,σi and hence

vij,α+α0(gf + Iα+α0) = (evζi ◦ ∂ij)(gσifσi + I (Uσi)).



COX RINGS AND HOMOGENEOUS NORMAL FORMS 211

Viewing ∂ij as a differential operator on C[Uσi ], by Leibniz’ rule we have

∂ij(hσi
0 g

σifσi) =
∑
b∈N`

∂b(hσi
0 )sb(∂ij)(gσifσi) =

∑
b∈N`

∂b(gσi)sb(∂ij)(hσi
0 f

σi).

Composing with evζi
, by consistent ordering of the ∂ij , as in (3.1.8) we get

hσi
0 (ζi)
c

(1)
i2 hσi

0 (ζi)
... . . .
c

(1)
iµi

c
(2)
iµi

. . . hσi
0 (ζi)


︸ ︷︷ ︸

Li,h0


vi1,α+α0

vi2,α+α0
...

viµi,α+α0

 ◦Mg

=


gσi(ζi)
d

(1)
i2 gσi(ζi)
... . . .

d
(1)
iµi

d
(2)
iµi

. . . gσi(ζi)


︸ ︷︷ ︸

Li,g


vi1,α+α0

vi2,α+α0
...

viµi,α+α0

 ◦Mh0 .

Putting all the equations together for i = 1, . . . , δ, we get
L1,h0

L2,h0

. . .
Lδ,h0

◦ψα+α0 ◦Mg =


L1,g

L2,g
. . .

Lδ,g

◦ψα+α0 ◦Mh0 , (5.5.18)

which is the desired relation Lh0 ◦ ψα+α0 ◦ Mg = Lg ◦ ψα+α0 ◦ Mh0 . Indeed, by
construction, hσi

0 (ζi) 6= 0,∀i and gσi

h
σi
0

(ζi) = g
h0

(ζi), so Lh0 is invertible and (5.5.17) is
satisfied.

Remark 5.5.6. In the proof of Theorem 5.5.6 we represented ψα+α0 : (S/I)α+α0 →
Cδ+ as a vector of linear functionals vij,α+α0 . Fixing bases for (S/I)α and (S/I)α+α0 ,
(5.5.18) can be written as the matrix equation

Lh0VMg = LgVMh0 ,

where V represents ψα+α0 in the chosen basis. We now relate Theorem 5.5.6 to
Theorem 5.5.3. We have that

V (MgM
−1
h0

)V −1 = L−1
h0
Lg and so VMh0(M−1

h0
Mg)M−1

h0
V −1 = L−1

h0
Lg.

If VX(I) is reduced (δ = δ+), then L−1
h0
Lg is a diagonal matrix containing the

evaluations of the rational function (g/h0)(ζi), which are the eigenvalues of M−1
h0
◦Mg
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y3y2y1

y2
2 = y1y3

Figure 5.16: Illustration of the fan Σ (left) of the toric variety from Example 5.5.11,
and of the semigroup algebra C[Uσ1 ] ' C[y1, y2, y3]/〈y2

2 − y1y3〉 corresponding to the
(dual cone of the) blue cone (right).

corresponding to the left eigenvectors given by the functionals (evζi
◦∂0◦ηα+α0,σi

)◦Mh0

(these are the rows of VMh0 in the matrix representation). We observe that

(evζi
◦∂0 ◦ η−1

α+α0,σi
) ◦Mh0(f + Iα) = h0

xσ̂i,α0
(ζi)

f

xσ̂i,α
(ζi) = h0h

xσ̂i,α+α0
(ζi) evζi

(f + Iα),

where h, evζi
are as in (the proof of) Theorem 5.5.3. 4

Example 5.5.11. Let n = 2, C[M ] = C[t±1
1 , t±1

2 ] and consider the equations

f̂1 = t1 − t−1
2 + t2 + t−1

1 , f̂2 = 2t1 + t−1
2 − t2 − t

−1
1 .

There are no solutions of f̂1 = f̂2 = 0 in (C∗)2 (note that f̂1 + f̂2 is a unit in C[M ]).
The mixed volume of the Newton polygons P1, P2 is 4 and the associated toric variety
X corresponds to the fan Σ depicted in Figure 5.16. We arrange the primitive ray
generators of Σ(1) in the matrix

F = [u1 u2 u3 u4] =
[
1 −1 −1 1
1 1 −1 −1

]
.

Our equations homogenize to

f1 = x2
1x

2
4 − x2

3x
2
4 + x2

1x
2
2 + x2

2x
2
3, f2 = 2x2

1x
2
4 + x2

3x
2
4 − x2

1x
2
2 − x2

2x
2
3

in the Cox ring S of X. The degrees are α1 = α2 = [
∑4
i=1 Di]. Here VX(f1, f2)

consists of two points, each with multiplicity two. These points correspond to the
orbits of

z1 = (0, 1, 1, 1), z2 = (1, 1, 0,
√
−1).

Let α = 2α1 and α0 = α1. One can check that in the bases

Bα = {x4
3x

4
4 + Iα, x1x2x

3
3x

3
4 + Iα, x1x

3
2x

3
3x4 + Iα, x

4
1x

4
2 + Iα}

Bα+α0 = {x2
2x

6
3x

4
4 + Iα+α0 , x1x

3
2x

5
3x

3
4 + Iα+α0 , x1x

5
2x

5
3x4 + Iα+α0 , x

4
1x

6
2x

2
3 + Iα+α0}
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of (S/I)α and (S/I)α+α0 respectively, multiplication with x2
2x

2
3, x1x2x3x4 ∈ Sα0 looks

like this:

Mx2
2x

2
3

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , Mx1x2x3x4 =


0 0 0 0
1 0 0 1
0 0 0 −1
0 0 0 0

 .
Let σ1 be the blue cone in Figure 5.16. The ideal I (Uσ1) = 〈fσ1

1 , fσ1
2 〉 ⊂ C[Uσ1 ]

corresponds to the ideal

Iσ1 = 〈y1y3 − y2
2 , y

2
2 − y1 + y3 + 1, 2y2

2 + y1 − y3 − 1〉 ⊂ C[y1, y2, y3] = Rσ1 .

The ordering of the variables yi of Rσ1 is clarified in the right part of Figure 5.16. Only
the solution ζ1 corresponding to the orbit of z1 is contained in Uσ1 , which explains that
dimC C[y1, y2, y3]/Iσ1 = 2. It has coordinates (y1, y2, y3) = (1, 0, 0), and a consistently
ordered basis for D1 is {∂(0,0,0), ∂(0,1,0)}. This gives

v11,α+α0 = evζ1 ◦ ηα+α0,σ1 , v12,α+α0 = evζ1 ◦
∂

∂y2
◦ ηα+α0,σ1 .

Representing this in the basis Bα+α0 we get[
v11,α+α0

v12,α+α0

]
=
[

evζ1 ◦ ηα+α0,σ1

evζ1 ◦ ∂
∂y2
◦ ηα+α0,σ1

]
=
[
1 0 0 0
0 1 1 0

]
,

which follows from ηα+α0,σ1(Bα+α0) = {y1, y1y2, y
2
1y2, y1y

4
2}. For any g ∈ Sα0 , the

lower triangular matrix L1,g is given by

L1,g =

 gσ1(ζ1) 0
∂gσ1

∂y2
(ζ1) gσ1(ζ1)

 ,
which gives, for g = x1x2x3x4, h0 = x2

2x
2
3,

L1,g =
[
0 0
1 0

]
, L1,h0 =

[
1 0
0 1

]
,

which follows from gσ1 ∼ y2, hσ1
0 ∼ y1. This gives for the rows of (5.5.18) corresponding

to ζ1:

[
1 0
0 1

] [
1 0 0 0
0 1 1 0

]
0 0 0 0
1 0 0 1
0 0 0 −1
0 0 0 0

 =
[
0 0
1 0

] [
1 0 0 0
0 1 1 0

]
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
In order to complete this equation with the rows corresponding to ζ2, one has to work
in the chart corresponding to either the purple or the yellow cone in Figure 5.16. 4
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Example 5.5.12 (27 lines on a cubic surface). The author is grateful to Marta
Panizzut and Sascha Timme for bringing this example to his attention. A classical
result in intersection theory states that a general cubic surface in P3 given by

c0w
3 + c1w

2z + c2wz
2 + c3z

3 + c4w
2y + c5wyz + c6yz

2 + c7wy
2

+c8y
2z + c9y

3 + c10w
2x+ c11wxz + c12xz

2 + c13wxy + c14xyz

+c15xy
2 + c16wx

2 + c17x
2z + c18x

2y + c19x
3 = 0

contains 27 lines, see for instance [EH16, Subsection 6.2.1]. As detailed in [PSS19,
Section 4], these lines correspond to the solutions of the polynomial system given by
f̂1 = · · · = f̂4 = 0 with

f̂1 = c0t
3 + c1t

2v + c2tv
2 + c3v

3 + c4t
2 + c5tv + c6v

2 + c7t+ c8v + c9,

f̂2 = c0s
3 + c1s

2u+ c2su
2 + c3u

3 + c10s
2 + c11su+ c12u

2 + c16s+ c17u+ c19,

f̂3 = 3c0st
2 + 2c1stv + c2sv

2 + c1t
2u+ 2c2tuv + 3c3uv

2 + 2c4st+ c5sv + c10t
2

+ c5tu+ c11tv + 2c6uv + c12v
2 + c7s+ c13t+ c8u+ c14v + c15,

f̂4 = 3c0s
2t+ c1s

2v + 2c1stu+ 2c2suv + c2tu
2 + 3c3u

2v + c4s
2 + 2c10st+ c5su

+ c11sv + c11tu+ c6u
2 + 2c12uv + c13s+ c16t+ c14u+ c17v + c18.

The mixed volume MV(P1, P2, P3, P4) = 45 (with Pi = Newt(f̂i)), yet we know that
for generic parameter values c0, . . . , c19, there are only 27 solutions in (C∗)4. The
relations defined by f̂1, . . . , f̂4 on (C∗)4 extend naturally to a toric compactification
X = XΣ ⊃ (C∗)4, where X is the toric variety coming from the fan Σ that we will
now describe. We define

F =


0 0 −1 0 1 0
0 0 0 −1 0 1
1 0 −1 0 0 0
0 1 0 −1 0 0

 = [u1 u2 u3 u4 u5 u6] and a =


0
0
6
6
0
0


and the convex polytope P = P1 + · · ·+ P4 ⊂ R4 is given by

P = {m ∈ R4 | F>m+ a ≥ 0}.

The fan Σ is the normal fan of P . It has 6 rays, whose primitive generators ui
are the columns of F . Theorem 5.4.2 states that the maximal number of isolated
solutions of f1 = · · · = f4 = 0 on X is 45. Solving a generic instance of our
system using the algorithm, we find that there are in fact 45 isolated solutions on
X (counting multiplicities), of which 18 are on the boundary X \ (C∗)4. Figure 5.17
shows the computed coordinates. The figure suggests clearly that there are indeed 27
solutions in the torus, and 18 solutions that are on the intersection of the 3rd and 4th
torus invariant prime divisors, which we will denote by D3, D4 ⊂ X. These are the
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Figure 5.17: Absolute value of the computed homogeneous coordinates of 45 solutions.
The i-th row corresponds to the i-th torus invariant prime divisor, associated to the
ray generated by ui, and the j-th column corresponds to the j-th computed solution.
Dark colors correspond to small absolute values.

Figure 5.18: Absolute values of the entries of the block upper triangularized form
of one of the homogeneous multiplication matrices Mxbi/h0 in Example 5.5.12. Dark
colors correspond to small absolute values.

divisors corresponding to u3 and u4. In fact, having a closer look at the intermediate
computations, there should be only 3 solutions on D3 ∩D4, each with multiplicity
6. These multiplicities become apparent when the U′ matrix in the ordered Schur
factorization of a generic linear combination of the Mxbi/h0 brings the matrix Mxb1/h0

into block upper triangular instead of upper triangular form (see the discussion at the
end of Subsection 4.3.2). One of the matrices U′Mxbi/h0(U′)H is shown in Figure
5.18. We now explicitly compute the three solutions on the boundary by solving the
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face system7 corresponding to u3 and u4:

(f̂1)u3,u4(s, u, t, v) = c0t
3 + c1t

2v + c2tv
2 + c3v

3,

(f̂2)u3,u4(s, u, t, v) = c0s
3 + c1s

2u+ c2su
2 + c3u

3,

(f̂3)u3,u4(s, u, t, v) = 3c0st
2 + 2c1stv + c2sv

2 + c1t
2u+ 2c2tuv + 3c3uv

2,

(f̂4)u3,u4(s, u, t, v) = 3c0s
2t+ c1s

2v + 2c1stu+ 2c2suv + c2tu
2 + 3c3u

2v.

One can see from these equations that D3 ∩D4 ' P1 × P1, with coordinates (s : u)
and (t : v) on the first and second copy of P1 respectively. The bidegrees of the
equations are (0, 1), (1, 0), (1, 2), (2, 1). We now interpret (f̂1)u3,u4 as an equation on
P1 and consider its three roots (t∗j : v∗

j ), j = 1, 2, 3 (for which we can write down
explicit expressions) and we define ζj = ((t∗j : v∗

j ), (t∗j : v∗
j )) ∈ P1 × P1. It is clear that

(f̂1)u3,u4(ζj) = (f̂2)u3,u4(ζj) = 0. If we substitute s = t, u = v in (f̂3)u3,u4 , (f̂4)u3,u4

we find that

(f̂3)u3,u4(t, v, t, v) = (f̂4)u3,u4(t, v, t, v) = 3(f̂1)u3,u4(s, u, t, v).

From this it is clear that also (f̂3)u3,u4(ζj) = (f̂4)u3,u4(ζj) = 0, j = 1, . . . , 3, and we
have identified the three solutions on D3 ∩D4. 4

The rest of this subsection is devoted to some results related to the regularity Reg(I).
The first result is perhaps the most conclusive one. The strategy of proof is strongly
related to that of Theorem 3 in [Mas16].

Theorem 5.5.7. Let I = 〈f1, . . . , fn〉 ⊂ S with fi ∈ Sαi such that αi ∈ Pic(X) is
basepoint free and VX(I) is zero-dimensional. For any basepoint free α0 ∈ Pic(X), the
degree β =

∑n
i=1 αi + α0 belongs to the regularity Reg(I). In particular,

∑n
i=1 αi ∈

Reg(I).

Proof. The proof requires some tools from homological algebra that were not introduced
in this text. We present a sketch. Details can be found in [BT20a]. Let OX be the
structure sheaf of X and let OZ be the structure sheaf of Z = VX(I) (this is the
coherent sheaf associated to the S-module S/I, see [Cox95, §3]). Consider the Koszul
complex of sheaves

K(f1, . . . , fn) : 0→ Kn → · · · → K1 → OX with Kj =
⊕

T ⊂{1,...,n}
|T |=j

OX(−
∑
i∈T

αi),

where K1 =
⊕n

i=1 OX(−αi) → OX is given locally on Uσ by (g1, . . . , gn) 7→
g1f

σ
1 + · · · + gnf

σ
n . By Exercise 17.20 in [Eis13] and the fact that X is locally

7This is the system defined by the terms of the f̂i with exponents m for which both 〈u3,m〉 and
〈u4,m〉 are minimized. This gives a system of equations in a 2-dimensional lattice which can be
interpreted as the restriction of the original system to the dense torus of D3 ∩D4. See for instance
[HS95].
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Cohen Macaulay [CLS11, Theorem 9.2.9], K(f1, . . . , fn) is a free resolution of OZ ,
meaning that K(f1, . . . , fn) → OZ → 0 is an exact sequence of sheaves. Tensoring
with OX(β) preserves exactness (β =

∑n
i=1 αi + α0 is Cartier, so OX(β) is invertible).

Taking global sections then gives the sequence

0→ S(β−
∑n

i=1
αi) → · · · →

n⊕
i=1

S(β−αi) → Sβ → H0(X,OZ)→ 0, (5.5.19)

by [CLS11, Proposition 5.3.7] and the fact that H0(X,OZ ⊗OX
OX(β)) = H0(X,OZ)

because Z is zero-dimensional. The exactness of this complex will follow from [GKZ94,
Chapter 2, Lemma 2.4], which states that it is enough to show that the higher
order sheaf cohomologies vanish for all terms in the finite sequence K(f1, . . . , fn)→
OZ → 0. We have that Hp(X,Kj ⊗OX

OX(β)) = 0 for j = 1, . . . , n and p > 0,
by Demazure vanishing [CLS11, Theorem 9.2.3]. The vanishing of Hp(X,OZ ⊗OX

OX(β)) = Hp(X,OZ) for p > 0 is proved by using Serre’s criterion [Har77, Chapter
III, Theorem 3.7] (Z is zero-dimensional so it’s affine). Exactness of (5.5.19) implies
that

H0(X,OZ) ' Sβ/ im
(

n⊕
i=1

S(β − αi)→ Sβ

)
= (S/I)β .

It follows that HFI(β) = δ+. The fact that Iβ = Jβ follows from the last
sequence in [CLS11, Theorem 9.5.7], which shows that Jβ/Iβ is the kernel of
(S/I)β → H0(X,OZ(β)) = H0(X,OZ).

Theorem 5.5.7 guarantees that the regularity for a square system is nonempty and
it gives some degrees in Pic(X) which must be contained in it. However, we see
in practice that the regularity is larger. For instance, it is often possible to choose
α0 ∈ Cl(X)+ \ Pic(X) in Theorem 5.5.7 without leaving the regularity.

We now prove a result that has been used earlier in this chapter and previous chapters.

Lemma 5.5.7. Let I ⊂ S be such that VX(I) is zero-dimensional. For any α0 ∈
Cl(X)+ and h0 ∈ Sα0 such that VX(h0)∩ VX(I) = ∅, we have that the image of h0 in
S/J and in S/

√
J is not a zero divisor, where J = (I : B∞).

Proof. Let J = Q1 ∩ · · · ∩ Q` be a minimal primary decomposition. Since J is B-
saturated, VCk (Qi) 6⊂ VCk (B) for every i = 1, . . . , `. Indeed, if VCk (Qi) ⊂ VCk (B) then
B`′ ⊂ Qi for some `′ ∈ N. Take f ∈

⋂
j 6=iQj such that f /∈ Qi. Then f /∈ J , but

b`
′
f ∈ J for all b ∈ B. This contradicts J = (J : B∞).

Consider h0 ∈ Sα0 such that the image of h0 in S/J is a zero divisor. We can find
f /∈ J such that h0f ∈ J . Therefore, there is a primary ideal Qi in the decomposition
of J such that f 6∈ Qi. Since Qi is primary, this implies hq0 ∈ Qi for some q, and
so h0 ∈

√
Qi. As VCk (Qi) 6⊂ VCk (B), we conclude that VX(h0) ∩ VX(I) 6= ∅. This

shows that if VX(h0) ∩ VX(I) = ∅, h0 + J is not a zero divisor in S/J . To show the
statement for

√
J , we note that h0f ∈

√
J implies that hq0fq ∈ J for some q and hence

fq ∈ J , which implies f ∈
√
J .
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Corollary 5.5.3. Let I ⊂ S be such that VX(I) is zero-dimensional. For a regularity
pair (α, α0) ∈ Cl(X)2

+ and an element h0 ∈ Sα0 such that VX(h0) ∩ VX(I) = ∅, we
have that Mh0 : (S/I)α → (S/I)α+α0 is an isomorphism of C-vector spaces.

Proof. By assumption, HFI(α) = HFI(α + α0), so it suffices to show that Mh0 is
injective. This follows immediately from α, α+ α0 ∈ Reg(I) and Lemma 5.5.7.

Remark 5.5.7. It is a straightforward consequence of Lemma 5.5.7 that Corollary
5.5.3 also holds for regularity pairs with respect to Definition 5.5.4. 4

We now state a possibly useful proposition which guarantees that once we have found
α ∈ Reg(I), in order to ‘jump’ to another degree in the regularity, all we need to check
is the value of the Hilbert function.

Proposition 5.5.7. Let I ⊂ S be such that VX(I) is zero-dimensional. If α ∈ Reg(I),
α0 ∈ Cl(X)+ is such that no ζj is a basepoint of Sα0 and HFI(α + α0) = δ+, then
α+ α0 ∈ Reg(I).

Proof. By Lemma 5.5.7, Mh0 : (S/J)α → (S/J)α+α0 is injective for generic h0.
Therefore HFJ(α + α0) ≥ HFJ(α) = HFI(α) = δ+. Since I ⊂ J we also have
HFJ(α+ α0) ≤ HFI(α+ α0) = HFI(α) = δ+. We conclude that Iα+α0 = Jα+α0 .

We consider the question for which α ∈ Cl(X) we have HFI(α) = δ+ in the case
where VX(I) is a complete intersection, i.e., where I = 〈f1, . . . , fn〉 is generated by n
elements. We prove some results that are implied by Theorem 5.5.7 but their proofs
do not require the same advanced tools. A formula for the mixed volume that will be
useful is (see [ŞS16, Theorem 3.16])

MV(P1, . . . , Pn) =
n∑
`=0

(−1)n−`
∑

T ⊂{1,...,n}
|T |=`

|(P0 + PT ) ∩M | , (5.5.20)

for any lattice polytope P0 ⊂ Rn corresponding to a torus invariant, basepoint free
Cartier divisor DP0 on X. Some of the proofs of the following statements make use of
the Koszul complex and its properties, see Subsection A.2.5. The following theorem
generalizes Theorem 3.16 in [ŞS16] in the case where Z is small enough. It is Theorem
4.2 in [Tel20].

Theorem 5.5.8. Let I = 〈f1, . . . , fn〉 ⊂ S be such that VX(I) is a zero-dimensional
subscheme of U ⊂ X of degree δ+. Let αi = deg(fi) ∈ Pic(X) be the basepoint free
degrees of the generators. If codimZ ≥ n then for all basepoint free α0 ∈ Pic(X)+,
HFI(α0 + α1 + . . .+ αn) = δ+.
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Proof. Consider the Koszul complex

0→ S(−
n∑

i=1

αi)→
⊕

T ⊂{1,...,n}
|T |=n−1

S(−αT )→ · · · →
⊕

T ⊂{1,...,n}
|T |=2

S(−αT )→
n⊕

i=1

S(−αi)→ S

where αT =
∑
i∈T αi and S(−α) is the Cox ring with twisted grading: S(−α)β =

S(β − α). Since the orbit closures G · zj have dimension k − n [SR17, Theorem
4.22] and by assumption dim(Z) ≤ k − n, the fi form a regular sequence in S (S
is Cohen-Macaulay). Hence the Koszul complex is exact. Restricting to the degree
β = α0 + α1 + . . .+ αn part we get

0→ Sα0 →
⊕

T ⊂{1,...,n}
|T |=n−1

Sβ−αT → · · · →
⊕

T ⊂{1,...,n}
|T |=2

Sβ−αT →
n⊕

i=1

Sβ−αi → Sβ .

Let P0 be the polytope corresponding to the basepoint free degree α0 ∈ Pic(X), we
have

dimC(Sα0+αT ) = |(P0 + PT ) ∩M |

with PT =
∑
i∈T Pi for any subset T ⊂ {0, . . . , n}. Counting dimensions we get

dimC((S/I)β) =
n∑
`=0

(−1)n−`
∑

T ⊂{1,...,n}
|T |=`

|(P0 + PT ) ∩M |,

and the right hand side is the formula (5.5.20) for the mixed volume δ+ =
MV(P1, . . . , Pn) (Theorem 5.4.2).

Note that the conditions of Theorem 5.5.8 are satisfied by all toric surfaces (n = 2).
Here is an analogous result (Theorem 4.3 from [Tel20]) for the case where the system
is ‘unmixed’ (in some sense) and the corresponding polytope is normal.

Theorem 5.5.9. Let I = 〈f1, . . . , fn〉 ⊂ S such that VX(I) is a zero-dimensional
subscheme of X of degree δ+. Let αi = deg(fi) ∈ Pic(X) be the basepoint free degrees
of the generators. If there is a basepoint free degree α? ∈ Pic(X) corresponding to a
normal polytope, such that αi = tiα? for positive integers ti, then HFI(tα?) = δ+ for
t ≥

∑n
i=1 ti.

Proof. The assumption on αi implies that Pi = tiP? +mi for a normal polytope P?,
lattice points mi and positive integers ti. We can assume without loss of generality
that mi = 0, i = 1, . . . , n. We consider the embedding XA ⊂ P|A |−1 of X where
A = P? ∩M . More precisely, XA is the image of Φα? [CLS11, Proposition 5.4.7]. Let
um,m ∈ A be homogeneous coordinates on Pnα? −1 = P|A |−1. The toric ideal of XA

is denoted IA ⊂ C[um,m ∈ A ] and the Z-graded coordinate ring of XA is C[XA ] =
C[um,m ∈ A ]/IA . By [CLS11, Theorem 5.4.8], we have Sαi

' C[XA ]ti and fi ∈ Sαi

corresponds to an element hi + IA ∈ C[XA ]ti . We define the homogeneous ideal
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I ′ = 〈h1 + IA , . . . , hn + IA 〉 ⊂ C[XA ]. By assumption, I ′ defines a 0-dimensional
subscheme of XA , so h1 + IA , . . . , hn + IA is a regular sequence in C[XA ] (the ring
C[XA ] is arithmetically Cohen-Macaulay [CLS11, Exercise 9.2.8]). As a consequence
(Theorem A.2.6), the corresponding Koszul complex

0→ Kn → Kn−1 → · · · → K2 → K1 → C[XA ] with Kt =
⊕

T ⊂{1,...,n}
|T |=t

C[XA ](−
∑
i∈T

ti)

is exact. Since P? is a normal polytope, we have dimC(C[XA ]t) = |tP? ∩ M |.
Counting dimensions and using the same formula as before for δ+ = MV(P1, . . . , Pn) =
MV(t1P?, . . . , tnP?) we find that dimC((C[XA ]/I ′)t) = δ+ for t ≥

∑n
i=1 ti. Combining

this with (C[XA ]/I ′)t ' (S/I)tα?
(see [CLS11, Theorem 5.4.8]) we get the desired

result.

We note that in the case where X is a product of projective spaces, stronger bounds
than those of Theorem 5.5.8 and Theorem 5.5.9 are known [BFT18].

Theorem 5.5.8 exploits the fact that when the base locus is small, an ideal 〈f1, . . . , fn〉
behaves like a complete intersection in Ck. Here’s another series of results that makes
use of this to prove a conjecture in [Tel20] in some special cases. Recall that U ⊂ X
is the largest simplicial open subset of X (see Remark 5.5.1).

Theorem 5.5.10. Let X be such that the base locus Z ⊂ Ck satisfies codimCk Z >
n. If I = 〈f1, . . . , fn〉 ⊂ S is a homogeneous ideal such that VX(I) ⊂ U is zero-
dimensional, then I = (I : B∞).

Proof. By assumption, VCk (I) \ Z is a finite union of fibers of π|π−1(U), where π :
Ck \ Z → X is the quotient map from the Cox construction. The closure of each fiber
in Ck has dimension k − n, and by the assumption codimVCk (B) > n, we conclude
codimCk VCk (I) = n. Consider a primary decomposition

I = Q1 ∩ · · · ∩Qs.

Suppose f ∈ (I : B∞) \ I. This implies, in particular, that f /∈ Qi for some i. Since
f ∈ (I : B∞), for any b ∈ B we have that b`f ∈ Qi for some ` ∈ N. Because
Qi is primary and f /∈ Qi, we find that B ⊂

√
Qi. However, by the unmixedness

theorem [Eis13, Corollary 18.14] and the fact that S is Cohen-Macaulay, the associated
prime

√
Qi has codimension n. Hence, we arrive at a contradiction and conclude that

I = (I : B∞).

Theorem 5.5.10 implies that one of the conditions for being in the regularity is satisfied
for all degrees α ∈ Cl(X) in the special case where the base locus Z = VCk (B) is very
small.

Corollary 5.5.4. Let X be such that the base locus Z ⊂ Ck satisfies codimCk Z > n.
Let I = 〈f1, . . . , fn〉 ⊂ S be a homogeneous ideal such that deg(fi) = αi ∈ Pic(X) is
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basepoint free and VX(I) ⊂ U is zero-dimensional, then α0 + α1 + · · ·+ αn ∈ Reg(I)
for any α0 ∈ Cl(X)+ such that `α0 ∈ Pic(X) is basepoint free for some ` ∈ N and
VX(h0) ∩ VX(I) = ∅ for some h0 ∈ Sα0 .

Proof. Let α = α1 + · · ·+αn. By Theorem 5.5.10, I = J = (I : B∞) and we only need
to show that HFS/I(α+ α0) = δ+, where δ+ is the degree of VX(I). Let α0 ∈ Cl(X)+
be such that VX(h0) ∩ VX(I) = ∅ for some h0 ∈ Sα0 . By Lemma 5.5.7, h0 is not a
zero-divisor in S/I = S/J . By Theorem 5.5.7, we know that HFS/I(α) = δ+. Since
Mh0 : (S/I)α → (S/I)α+α0 is injective, we see that HFS/I(α) ≤ HFS/I(α+ α0). By
assumption, there is ` ∈ N such that `α0 ∈ Pic(X) and `α0 is basepoint free, so by
Theorem 5.5.7 we find HFS/I(α+ `α0) = δ+. Using the same reasoning as before for
the map Mh`−1

0
: (S/I)α+α0 → (S/I)α+`α0 we get

δ+ = HFS/I(α) ≤ HFS/I(α+ α0) ≤ HFS/I(α+ `α0) = δ+.

Note that if X is simplicial, then each Weil divisor is Q-Cartier [CLS11, Proposition
4.2.7], hence for every α0 ∈ Cl(X), there is ` ∈ N such that `α0 ∈ Pic(X). By [BC94,
Proposition 2.8], the only toric varieties satisfying the conditions of Corollary 5.5.4 are
the so-called fake weighted projective spaces. These are the simplicial toric varieties
corresponding to simplices. We can use Corollary 5.5.4 to prove a conjecture proposed
in [Tel20] for this special class of toric varieties. We prove a helpful lemma first. Let
Pic(X)+ = Pic(X) ∩ Cl(X)+.
Lemma 5.5.8. If X is a toric variety associated to a lattice simplex in Rn, we have
that every element α ∈ Pic(X)+ is basepoint free.

Proof. Let Σ be the fan of X. Since Σ is the normal fan of a simplex, the Cox ring
has n+ 1 variables and the base locus is Z = {0}. Therefore, it suffices to show that
for any element α ∈ Pic(X)+, there are `1, . . . , `n+1 ∈ N such that x`j

j ∈ Sα. Let
α = [

∑n+1
i=1 aiDi] with ai ∈ N. Since α ∈ Pic(X) and any collection of n rays in Σ(1)

corresponds to an n-dimensional cone in Σ(n), for j = 1, . . . , n+ 1 there is mj ∈M
such that 〈ui,mj〉+ ai = 0, for all i 6= j. Hence

〈ui,−mj〉 ≥ 0, i 6= j, which means mj ∈ −σ∨
j ,

where σj is the cone of Σ whose rays are generated by ui, i 6= j. Since Σ is a complete fan
and all its cones are pointed, we must also have uj ∈ −σj , which implies 〈uj ,mj〉 ≥ 0
and thus 〈uj ,mj〉+ aj ≥ 0. It follows that x`j

j ∈ Sα with `j = 〈uj ,mj〉+ aj .

The following is a direct consequence.
Corollary 5.5.5. Let X be a toric variety associated to a lattice simplex in Rn (i.e.
X is a fake weighted projective space) and let I = 〈f1, . . . , fn〉 ⊂ S be a homogeneous
ideal such that VX(I) is zero-dimensional and deg(fi) = αi ∈ Pic(X) is basepoint free.
Then α0 + α1 + · · ·+ αn ∈ Reg(I) for all α0 ∈ Cl(X)+ such that no ζj is a basepoint
of Sα0 .
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Proof. A toric variety coming from a simplex is simplicial. Its fan has k = n+ 1 rays
and the base locus satisfies Z = {0}. Moreover, any element of Pic(X)+ is basepoint
free (Lemma 5.5.8), so for any α0 ∈ Cl(X)+ and any ` such that `α0 ∈ Pic(X)+, `α0
is basepoint free. Now apply Corollary 5.5.4.

Remark 5.5.8. The assumptions of Corollary 5.5.5 are satisfied for all weighted
projective spaces. 4

Corollary 5.5.5 is Conjecture 1 in [Tel20] with the extra assumption that X is a fake
weighted projective space. The conjecture is false in general. A counter example is
given in [BT20a]. However, Theorem 5.5.7 shows that the conjecture holds for any
toric variety with the extra assumption that α0 ∈ Pic(X) is basepoint free.



Chapter 6

Homotopy continuation

In this chapter we switch gears and consider a completely different approach to the
problem of solving a system of polynomial equations. The presented material is mostly
taken from [TVBV19]. Homotopy continuation is an important tool in numerical
algebraic geometry. It is used for, among others, isolated polynomial root finding and
for the numerical decomposition of algebraic varieties into irreducible components.
We revisit the fundamental task of a polynomial homotopy algorithm, which is the
numerical tracking of a smooth path in a homotopy, and propose a new algorithm for
doing this in a robust way. For introductory texts on numerical algebraic geometry
and homotopy continuation, we refer to [AG12, Li97, SVW01, SVW05, WS05] and
references therein.

Let Y be an affine variety of dimension n with coordinate ring R = C[Y ] and let
hi, i = 1, . . . , n be elements of R[t] = C[Y ×C] = C[Y ]⊗C C[t]. The hi define the map

H : Y × C→ Cn

given by H(x, t) = (hi(x, t))ni=1. Such a map H should be thought of as a family of
morphisms Y → Cn parametrized by t, which defines a homotopy with continuation
parameter t. This gives the solution variety

Z = H−1(0) = {(x, t) ∈ Y × C | hi(x, t) = 0, i = 1, . . . , n} ⊂ Y × C.

We will limit ourselves to the cases Y = Cn, R = C[x1, . . . , xn] and Y = (C∗)n, R =
C[x±1

1 , . . . , x±1
n ]. In both cases, we will use the coordinates x = (x1, . . . , xn) on Y .

Note that for every fixed parameter value t∗ ∈ C, Ht∗ : Y → Cn : x 7→ H(x, t∗)
represents a system of n (Laurent) polynomial equations in n variables with solutions
H−1
t∗ (0) ⊂ Y . Typically, for some parameter value t0 ∈ C, Ht0 is a start system with

known, isolated and regular (i.e. multiplicity 1) solutions and for some other t1 6= t0,
Ht1 represents a target system in which we are interested. Suppose we know a point
(z0, t0) ∈ Z. The task of a homotopy continuation algorithm is to track the point

223
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(z0, t0) ∈ Z to a point (z1, t1) ∈ Z along a smooth continuous path

{(x(s),Γ(s)), s ∈ [0, 1]} ⊂ Z

with Γ : [0, 1] → C and x(s) ∈ Y, s ∈ [0, 1] such that Γ(0) = t0, x(0) = z0,Γ(1) =
t1, x(1) = z1. This is assuming that such a path exists. In practice there may be
singular points on the path (e.g. path crossing), which may cause trouble for numerical
path tracking. We will see an example in Section 6.1. In the cases we are interested
in, issues may arise when the parameter s approaches 1. That is, there is a continuous
path

{(x(s),Γ(s)), s ∈ [0, 1)} ⊂ Z

which ‘escapes’ from Y × C when s→ 1. For example, solutions may move to infinity
or out of the algebraic torus. Many tools have been developed for dealing with such
situations [HV98, MSW90, MSW92b, PV10]. In this text, we do not focus on this
kind of difficulties. Existing techniques can be incorporated in the algorithms we
present. We will work with s ∈ [0, 1) in some of our definitions to take these issues into
account. We will mainly restrict ourselves to paths of the form {(x(t), t), t ∈ [0, 1)}
(i.e. Γ(s) = s), but other Γ will be useful for constructing illustrative examples.

In typical constructions, such as linear homotopies for polynomial system solving, H is
randomized such that the paths that need to be tracked do not contain singular points
with probability one for s ∈ [0, 1) [WS05, Lemma 7.1.2]. This implies for example
that all paths are disjoint. However, there might be singularities very near the path
in the parameter space. In this situation, the coordinates in Y along the path may
become very large, which causes scaling problems1, or two different paths may be very
near to each other for some parameter values. The latter phenomenon causes path
jumping, which is considered one of the main problems for numerical path trackers.
Path jumping occurs when along the way, the solution that is being tracked ‘jumps’
from one path to another. The typical reason is that starting from a point in H−1

t∗ (0),
the predictor step in the path tracking algorithm returns a point in Y × {t∗ + ∆t}
which, according to the corrector step, is a numerical approximation of a point in
H−1
t∗+∆t(0) which is on a different path than the one being tracked. We will say more

about predictors and correctors in Section 6.1. It is clear that path jumping is more
likely to occur in the case where two or more paths come near each other. Ideally, a
numerical path tracker should take small steps ∆t in such ‘difficult’ regions and larger
steps where there’s no risk for path jumping. There have been many efforts to design
such adaptive stepsize path trackers [GS04, KX94, SC87]. However, the state of the
art homotopy software packages such as PHCpack [Ver99], Bertini [BSHW13] and
HomotopyContinuation.jl [BT18] still suffer from path jumping, as we will show in our
experiments. We should mention that the algorithm presented in [Tim20] will soon be
implemented in HomotopyContinuation.jl and shows some very promising results in
terms of both robustness and computation time. A typical way to adjust the stepsize

1Scaling problems caused by large coordinates can be resolved by using homogeneous coordinates,
after a projective transformation [Mor09]. These issues are addressed in a different way in [Tim20,
Subsection 2.2].
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is by an a posteriori step control. This is represented schematically (in a simplified
way) by Figure 6.1. In the figure, 0 < β < 1 is a real constant, the ‖ · ‖ should be

∆t← β∆t
predictor corrector

‖H(z̃, t∗ + ∆t)‖ > tol

‖H(zt∗+∆t, t∗ + ∆t)‖ > ε

Figure 6.1: Two feedback loops in a predictor-corrector method for a posteriori step
control.

interpreted as a relative measure of the backward error and z̃ is the predicted solution
which is refined to zt∗+∆t by the corrector. If tol ≤ ε, then the corrector stage is
not needed. If tol = ∞, then the first feedback loop never happens. Such extreme
choices for tol are not recommended. With well chosen values for tol and ε, the second
feedback loop never occurs, as Newton’s method converges to the required accuracy
of ε in just a couple of steps. This type of feedback loops is implemented in, e.g.,
PHCpack [Ver99] and Bertini [BHSW08].

Certified path trackers have been developed to prevent path jumping [BL13, BC13,
vdH15, XBY18], but they require more computational effort. Moreover, the
certification assumes that the coefficients of the input systems are exact rational
numbers, as stated in [BL13].

In this thesis, we propose an adaptive stepsize path tracking algorithm that is robust
yet efficient. As opposed to standard methods, we use a priori step control: we
compute the appropriate stepsize before taking the step. We use Padé approximants
[BJGM96] of the solution curve x(t) in the predictor step, not only to generate a next
approximate solution, but also to detect nearby singularities in the parameter space.
In the case of type (L, 1) approximants (see Section 6.2 for a definition), this is a direct
application of Fabry’s ratio theorem (Theorem 6.2.2). The Padé approximants are
computed from the series expansion of x(t). We use the iterative, symbolic-numeric
algorithm from [BV18a] to compute this series expansion. Let C[[t]] be the ring of
formal power series in the variable t with coefficients in C. For an appropriate starting
value x(0)(t) ∈ C[[t]], we prove ‘second order convergence’ of this iteration in the
sense that x(t) − x(k)(t) = 0 mod 〈t2k〉 where x(k)(t) ∈ C[[t]] is the approximate
series solution after the k-th iteration and 〈·〉 denotes the ideal generated in the power
series ring C[[t]] (see Proposition 6.3.1). We use information contained in the Padé
approximant to determine a trust region for the predictor and use this as a first
criterion to compute the adaptive stepsize. A second criterion is based on an estimate
for the distance to the most nearby path and a standard approximation error estimate
for the Padé approximant.
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We note that Padé approximants have been used before in path tracking algorithms
[GS04, SC87]. In these articles, their use has been limited to type (2, 1) Padé
approximants (see later for a definition) and they have not been used as nearby
singularity detectors.

The chapter is organized as follows. In Section 6.1, we describe numerical path
tracking algorithms for smooth paths in general and give some examples. In Section
6.2 we discuss fractional power series solutions and Padé approximants. Section 6.3
discusses the algorithmic aspects of computing power series solutions. Our path
tracking algorithm is described in Section 6.4 and implemented in version 2.4.72 of
PHCpack, which is available on github. We show the algorithm’s effectiveness through
several numerical experiments in Section 6.5. We compare with the built-in path
tracking routines in (previous versions of) PHCpack [Ver99], Bertini [BSHW13] and
HomotopyContinuation.jl [BT18].

6.1 Tracking smooth paths

Let H(x, t) : Y × C → Cn be as above where Y is either Cn or (C∗)n. We denote
Z = H−1(0) and we assume that dimZ = 1. To avoid ambiguities, we will denote t
for the coordinate on C in Y ×C and t∗ ∈ C for points in C. We define the projection
map Π : Z → C : (x, t) 7→ t. By [WS05, Theorem 7.1.1] Π is a branched covering of
C with ramification locus S consisting of a finite set of points in C, such that the
fiber Π−1(t∗) consists of a fixed number deg Π = δ ∈ N of points in Z if and only if
t∗ ∈ C \ S. Let

JH(x, t) =
(
∂hi
∂xj

)
1≤i,j≤n

be the Jacobian matrix of H with respect to the xj .

Definition 6.1.1. Let H,Z be defined as above. Let Γ : [0, 1] → C and let Γ̂ =
{(x(s),Γ(s)), s ∈ [0, 1)} ⊂ Z be a continuous path in Z. We say that Γ̂ is smooth if
JH(x, t) is invertible for all (x, t) ∈ Γ̂.

If Γ̂ = {(x(s),Γ(s)) | s ∈ [0, 1)} ⊂ Z is continuous with Γ([0, 1)) ∩ S = ∅, then
Γ̂ ⊂ Π−1(C \ S) is smooth. In this case, Γ is called a smooth parameter path. In
more down to earth terms, Γ = Π(Γ̂) is smooth if {Γ(s), s ∈ [0, 1)} ⊂ C contains only
parameter values t∗ for which Ht∗ represents a (Laurent) polynomial system with the
expected number of regular solutions.
Example 6.1.1. Consider the homotopy taken from [KX94] defined by

H(x, t) = x2 − (t− 1/2)2 − p2 (6.1.1)

where p ∈ R is a parameter which we take to be 0.1 in this example. It is clear that a
generic fiber Π−1(t∗) consists of the two points

±
√

(t∗ − 1/2)2 + p2
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and the ramification locus is S = {1/2± p
√
−1}. Note that JH = ∂H

∂x is equal to zero
at Π−1(t∗) for t∗ ∈ S. We consider three different parameter paths:

Γ1 : s 7→ s, Γ2 : s 7→ s− 4ps(s− 1)
√
−1, Γ3 : s 7→ s+ 0.2 sin(πs)

√
−1.

In Figure 6.2 these paths are drawn in the complex plane. The background colour
at t∗ ∈ C in this figure corresponds to the absolute value of JH evaluated at a
point in Π−1(t∗): dark (blue) regions correspond to a small value. For each Γi, we

Figure 6.2: The image of [0, 1] under Γ1 (full line), Γ2 (dashed line) and Γ3 (dotted
line) as defined in Example 6.1.1.

track two different paths in Z for s ∈ [0, 1] starting at (z(1)
0 , 0) = (

√
1/4 + p2, 0) and

(z(2)
0 , 0) = (−

√
1/4 + p2, 0) respectively. The result is shown in Figure 6.3. Denote the

s

Re(x)

Im(x) s

Re(x)

Im(x) s

Re(x)

Im(x)

Figure 6.3: Solution curves with respect to s using, from left to right, Γ1,Γ2 and Γ3.

corresponding paths on Z by Γ̂(i)
j = {(x(i)(s),Γj(s)), s ∈ [0, 1]} where x(i)(0) = z

(i)
0 .

Since Γ1 and Γ3 do not hit any singular points in the parameter space (Figure 6.2),
the corresponding paths Γ̂(i)

j are disjoint and smooth. The paths corresponding to Γ2,
on the other hand, cross a singularity. They intersect at s = 1/2, as can be seen from
Figure 6.3. We conclude that Γ2 is not smooth. 4
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An important application of smooth path tracking is the solution of systems of
polynomial equations. The typical setup is the following. Define

F : Y → Cn : x 7→ (f1(x), . . . , fn(x))

with fi ∈ R. We want to compute F−1(0), that is, all points x ∈ Y such that
fi(x) = 0, i = 1, . . . , n. The homotopy approach to this problem is to construct
H : Y × C → Cn such that H1 : x 7→ H(x, 1) satisfies Z1 = H−1

1 (0) = F−1(0) (the
target system is equivalent to F ) and the start system G = H0 : x 7→ H(x, 0) is such
that Z0 = G−1(0) is easy to compute and contains the expected number δ of regular
solutions. Moreover, H has the additional property that Γ : [0, 1) → C : s 7→ s is a
smooth parameter path.

Example 6.1.2 (Straight line homotopies). A typical construction that meets these
criteria is given by a straight line homotopy between G and F , i.e.

H(x, t) = (1− t)G(x) + γtF (x),

where γ is a random nonzero complex constant, used to guarantee (with probability
1) that Γ : s 7→ s is smooth. This is called the γ-trick, see for instance [WS05, Page
18]. 4

The number δ is equal to, for example, the Bézout number in the case of total degree
homotopies, or the mixed volume of the Newton polytopes in the case of polyhedral
homotopies [WS05, HS95, VVC94]. We denote

Z0 = G−1(0) = {z(1)
0 , . . . , z

(δ)
0 }

and by smoothness of Γ, we have that

Zt∗ = H−1
t∗ (0) = {z(1)

t∗ , . . . , z
(δ)
t∗ }

consists of δ distinct points in Y for t∗ ∈ [0, 1) and the paths {(z(i)
t∗ , t

∗), t∗ ∈ [0, 1)}
are smooth and disjoint. Depending on the given system F , Z1 may consist of fewer
than δ points, or it might even consist of infinitely many points. Two or more paths
may approach the same point as t∗ → 1 or paths may diverge to infinity. As stated in
the introduction to this chapter, several end games have been developed to deal with
this kind of situations [HV98, MSW90, MSW92b, PV10]. We will focus here on the
path tracking before the paths enter the end game operating region. We assume, for
simplicity that this region is [tEG, 1], for tEG a parameter value ‘near’ 1. Algorithm
6.7 is a simple template algorithm for smooth path tracking. With a slight abuse of
notation, we use z(i)

t∗ both for actual points on the path and ‘satisfactory’ numerical
approximations of the z(i)

t∗ .

The algorithm uses several auxiliary procedures. The predictor (line 6) computes a
point z̃ ∈ Y and a stepsize ∆t such that z̃ is an approximation for z(i)

t∗+∆t. Some
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Algorithm 6.7 Template path tracking algorithm with a priori step control
1: procedure Track(H, Z0)
2: Z1 ← ∅
3: for z

(i)
0 ∈ Z0 do

4: t∗ ← 0
5: while t∗ < tEG do
6: (z̃, ∆t)← Predict(H, z

(i)
t∗ , t∗)

7: z
(i)
t∗+∆t ← Correct(H, z̃, t∗ + ∆t)

8: t∗ ← t∗ + ∆t
9: end while

10: z
(i)
1 ← endgame(H, z

(i)
t∗ , t∗)

11: Z1 ← Z1 ∪ {z(i)
1 }

12: end for
13: return Z1
14: end procedure

existing predictors use an Euler step (tangent predictor) or higher order integrating
techniques such as RK4.2 Intuitively, the computed stepsize ∆t should be small in
‘difficult’ regions. Algorithms that take this into account are called adaptive stepsize
algorithms. Our main contribution is the adaptive stepsize predictor algorithm which
we present in detail in Section 6.4. Our predictor computes an appropriate stepsize
before the step is taken (a priori step control). The corrector step (line 7) then refines
z̃ to a satisfactory numerical approximation of z(i)

t∗+∆t. Typically, satisfactory means
that the residual (see Appendix C) of z(i)

t∗+∆t is of size ± the unit roundoff. The
endgame procedure in line 10 finishes the path tracking by performing an appropriate
end game.

6.2 Puiseux series and Padé approximants

In this section we introduce some aspects of Puiseux series solutions and Padé
approximants that are relevant for this text. References are provided for the reader
who is interested in a more detailed treatment. In a first subsection we introduce
Puiseux series. This will give us insight in the local behavior of the fibers of Π : Z → C
near the branch locus S. In the second subsection, we discuss Padé approximants
with an emphasis on how they behave in the presence of these kinds of singularities.
Since we assume smoothness of the path, as described in the previous section, we
will not construct series approximations at singularities in our algorithm. The Padé
approximant at a regular point is influenced by nearby singular points, and it can be
used to estimate their location.

2Some higher order predictors need several previous points on the path in order to compute z̃.
The predictor we present in this algorithm uses only the last computed point, hence the notation in
Algorithm 6.7.



230 HOMOTOPY CONTINUATION

Let C[[t]] be the ring of formal power series in the variable t and let m = 〈t〉 be its
maximal ideal. We denote C[t]≤d ' C[[t]]/md+1 for the C-vector space of polynomials
of degree at most d. For f, g ∈ C[[t]], the notation f = g + O(td+1) means that
f − g ∈ md+1. The field of fractions of C[t] is denoted by C(t).

6.2.1 Puiseux series

Let R = C[x±1
1 , . . . , x±1

n ] be the ring of Laurent polynomials in n variables and let
Y = (C \ {0})n be the n-dimensional algebraic torus. We consider a homotopy given
by H(x, t) : Y × C→ Cn:

H(x, t) = (h1(x, t), . . . , hn(x, t))

with hi ∈ R[t]. We will denote

hi =
∑
q̂∈Ai

cq̂x
qtkq

where q̂ = (q, kq) ∈ Zn × N represents the exponent of a Laurent monomial in R[t],
cq̂ ∈ C∗ and Ai ⊂ Zn × N is the support of hi. A series solution at t∗ = 0 of H(x, t)
is a parametrization of the form{

xj(s) = ajs
ωj
(
1 +

∑∞
`=1 aj`s

`
)
, j = 1, . . . , n

t(s) = sm
(6.2.1)

with m ∈ N \ {0}, ω = (ω1, . . . , ωn) ∈ Zn, a = (a1, . . . , an) ∈ (C∗)n, aj` ∈ C and such
that H(x(s), t(s)) = H(x1(s), . . . , xn(s), t(s)) ≡ 0 and there is a real ε > 0 such that
the series xj(s) converge for 0 < |s| ≤ ε. Such a series representation can be found
for all irreducible components of Z = H−1(0) intersecting but not contained in the
hyperplane {t = 0} (see for instance [HV98, MM12, Mau80, MSW92b]). Substituting
(6.2.1) in a monomial of hi we get

x(s)qt(s)kq = aqs〈ω,q〉+mkq (1 +O(s))

where 〈·, ·〉 is the usual pairing in Zn. It follows that the lowest order term in the series
hi(x(s), t(s)) has exponent minq̂∈Ai

(〈ω, q〉+mkq). Denoting ω̂ = (ω,m) ∈ Zn+1 and

∂ω̂Ai = {q̂ ∈ Ai|〈ω̂, q̂〉 = min
q̂∈Ai

(〈ω̂, q̂〉)}, ∂ω̂hi =
∑

q̂∈∂ω̂Ai

cq̂x
qtkq ,

the vanishing of the lower order terms of H(x(s), t(s)) gives

∂ω̂hi(a, 1) =
∑

q̂∈∂ω̂Ai

cq̂a
q = 0, i = 1, . . . , n.

We note three things.
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1. The set ∂ω̂Ai contains at least two exponents, since none of the cq̂ are zero and
a ∈ (C∗)n. It follows that ∂ω̂Ai corresponds to a positive dimensional face Qω̂
of the convex hull Pi of Ai. Since it is defined by ω̂ = (ω,m) with m ∈ N \ {0},
Qω̂ is contained in the lower hull of Pi (the facet normal points in the positive
t-direction).

2. The point (a, 1) ∈ (C∗)n+1 is a solution of the face system corresponding to ω̂:

∂ω̂h1(a, 1) = · · · = ∂ω̂hn(a, 1) = 0.

3. The algorithm to compute more terms of the series is a generalization of the
Newton-Puiseux procedure for algebraic plane curves and can be found, for
instance, in [Mau80].

For t = 0, H0 = H(x, 0) represents a square polynomial system in the xi and a series
solution at t = 0 corresponds to a solution x(0) of this system. If ω = 0, H(a, 0) = 0
and hence a ∈ (C∗)n is a toric solution. If one of the coordinates of ω, say ωj is
nonzero, then xj(s) is either zero for s = 0 (ωj > 0) or escapes to infinity as s → 0
(ωj < 0).

Remark 6.2.1. A series solution at t = t∗, t∗ ∈ C of H(x, t) can be obtained from a
series solution around t = 0 of H ′(x, t) = H(x, t+ t∗). It satisfies H(x(s), t(s)) = 0
and has the form{

xj(s) = ajs
ωj
(
1 +

∑∞
`=1 aj`s

`
)
, j = 1, . . . , n

t(s) = t∗ + sm
.

4

Substituting s = t1/m in the coordinate functions we get

xj(t) = ajt
ωj/m

(
1 +

∞∑
`=1

aj`t
`/m

)
, j = 1, . . . , n (6.2.2)

which is a Puiseux series of order ωj/m. We think of xj(t) as a function of a complex
variable t, convergent by assumption in the punctured disk 0 < |t| ≤ εm. Then t∗ = 0
is either a regular point if (6.2.2) is a Taylor series, a pole if it is a Laurent series
with strictly negative powers, or a branch point if non integer fractional powers occur.
Since in a regular point t∗, the xj(t) are Taylor series, they will have convergence
radii equal to the distance to the nearest singular point ts. The corresponding series
solution(s) of H(x, t) around t = ts will give the type of singularity. The discussion in
this subsection shows that t = ts is either a branchpoint or a pole.

Example 6.2.1. Consider the algebraic plane curve given by H(x, t) = tx3 + 2x2 + t.
The Newton polygon is given in the left part of Figure 6.4. The faces of the lower hull
are indicated with bold blue lines. The facet normals are also shown in the figure (not
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to scale). From the discussion above, the parameters of any series solution (x(s), t(s))
must be such that x(s) = asω(1 + O(s)), t(s) = sm with ω̂ = (ω,m) equal to one of
these facet normals. Furthermore, the constant a must be a nonzero solution of the
face system ∂ω̂H(a, 1) = 0. For ω̂1 = (−1, 1), the face equation is tx3 + 2x2 = 0 with
nonzero solution a = −2 for t = 1. We expect a series solution x1(t) = −2t−1 +O(1).
There are no other nonzero solutions to the face equation, so we consider the next
facet normal. The vector ω̂2 = (1, 2) gives face equation 2x2 + 1 with two nonzero
solutions ±

√
−2/2. This gives x2 =

√
−2t/2 +O(t) and x3 = −

√
−2t/2 +O(t). The

real parts of the solution curves are shown in the right part of Figure 6.4. 4

0 1 2 3

0

1
ω̂2 ω̂1

−2 2

−2

2

t

x

Figure 6.4: Left: Newton polygon of H(x, t) from Example 6.2.1. Right: the curve
H(x, t) = 0 (black), and the first term of the series expansions x1 (orange), x2 (green)
and x3 (blue).

6.2.2 Padé approximants

In this subsection we discuss Padé approximants and the way they behave in the
presence of poles and branch points. An extensive treatment of Padé approximants
can be found in [BJGM96]. We will limit ourselves to the definition and the properties
that are relevant to the heuristics of our algorithm. The following definition uses some
notation from [BJGM96].

Definition 6.2.1 (Padé approximant). Let x(t) =
∑∞
`=0 c`t

` ∈ C[[t]]. The type
(L,M) Padé approximant of x(t) is

[L/M ]x = p(t)
q(t) ∈ C(t)

such that p(t) ∈ C[t]≤L and q(t) ∈ C[t]≤M is a unit in C[[t]], with

[L/M ]x − x ∈ mk (6.2.3)
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for k maximal.

Informally, Padé approximants are rational functions agreeing with the Maclaurin
series of a function x up to a degree that is as large as possible. They are generalizations
of truncated Maclaurin series, which are type (L, 0) Padé approximants. Just like
Maclaurin expansions are specific instances of Taylor expansions, it is straightforward
to define Padé approximants around points t = t∗ in the complex plane different from
0. Without loss of generality, we consider only approximants around t∗ = 0, since the
general case reduces to this case after a simple change of coordinates. The type (L,M)
Padé approximant is known to exist and it is unique. Multiplying the condition (6.2.3)
by q yields

p(t)− x(t)q(t) ∈ mk or equivalently, p(t) = x(t)q(t) +O(tk) (6.2.4)

for k maximal. Writing p(t) = a0 + a1t+ . . .+ aLt
L, q(t) = b0 + b1t+ . . .+ bM t

M and
equating terms of the same degree, this gives k linear conditions on the ai, bi, which
can always be satisfied for k ≤M + L+ 1. So for the linearized condition (6.2.4), k is
at least M+L+1. Computing the ai and bi in practice is a nontrivial task. Difficulties
are, for instance, degenerate situations where deg(p) < L or deg(q) < M and the
presence of so-called Froissart doublets (spurious pole-zero pairs [Tre19, Chapter 27]).
Some of the issues are discussed in [BJGM96, Chapter 2] and in [BM15, GGT13, IA13].
In [GGT13], a robust algorithm is proposed for computing Padé approximants. We
will use this algorithm to compute Padé approximants from the coefficients ci in
our algorithm, presented in Section 6.4. The algorithm we use to compute the ci is
discussed in the next section.

What’s important for our purpose is that a Padé approximant can be used to detect
singularities of x(t) of the types we are interested in (poles and branch points) close to
t∗ = 0, even for relatively small L and M . The idea is to compute Padé approximants of
the coordinate functions xi(t) from local information on the path (the series coefficients
ci) and use them as a radar for detecting difficulties near the path. We are now going
to motivate this. Since we intend to use Padé approximants to detect only nearby
singularities, a natural first class to consider is the type (L, 1) approximants. We
allow the approximant to have only one singularity, and hope that it chooses to place
this singularity near the actual nearest singularity to capture the nearby non-analytic
behaviour. Here is a powerful result due to Beardon [Bea68].

Theorem 6.2.1. Let xj(t) be analytic in {t∗ ∈ C | |t∗| ≤ r}. An infinite subsequence
of {[L/1]xj}∞

L=0 converges to xj(t) uniformly in {t∗ ∈ C | |t∗| ≤ r}.

Proof. We refer to [Bea68] or [BJGM96, Theorem 6.1.1] for a proof.

This applies in our case as follows. Suppose that (a, 0) ∈ Y × C is a regular point
of the variety Z = H−1(0) and the irreducible component of Z containing (a, 0) is
not contained in {(x, t∗) ∈ Y × C | t∗ = 0}. Then there is a holomorphic function
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x : C → Y such that x(0) = a and H(x(t∗), t∗) = 0 for t∗ in some nonempty open
neighborhood of 0 (see for instance Theorem A.3.2 in [WS05]). That is, if a is a
regular solution of H0, then the corresponding power series solution (6.2.1) consists of
n Taylor series xj(t). The function x(t) can be continued analytically in a disk with
radius r if no singularities lie within a distance r from the origin. Theorem 6.2.1 makes
the following statement precise. For large enough degrees L of the numerator of the
Padé approximant, the [L/1]xj are expected to approximate the coordinate functions
xj(t) in a disk centered at the origin with radius ± the distance to the most nearby
singularity. The fact that for sufficiently large L, the pole of [L/1]xj

is expected to
give an indication of the distance to the nearest singularity (also if it is a branch point)
can be seen as follows. Write xj(t) =

∑∞
`=0 c`t

` for the Maclaurin expansion of the
coordinate function xj(t). Then a simple computation shows that if cL 6= 0,

[L/1]xj = c0 + c1t+ . . .+ cL−1t
L−1 + cLt

L

1− cL+1t/cL
.

Hence the pole of [L/1]xj
is cL/cL+1 (or it is∞ if cL+1 = 0). For large L, the modulus

|cL/cL+1| can be considered an approximation of the limit

lim
L→∞

∣∣∣∣ cLcL+1

∣∣∣∣
if this limit exists. Also, if this limit exists it is a well-known expression for the
convergence radius of the power series xj(t) =

∑∞
`=0 c`t

`, which is the distance to
the nearest singularity. Since the main application we have in mind is polynomial
system solving, in which the homotopy is usually ‘randomized’, in practice this limit
exists and for reasonably small L, |cL/cL+1| is a satisfactory approximation of the
convergence radius of the power series. Theorem 6.2.1 suggests that more is true:
it can be expected that the ratio cL/cL+1 is a reasonable estimate for the actual
location of the most nearby singularity. This is Fabry’s ratio theorem [Fab96]; see
also [Bie55, Die57, Sue02].

Theorem 6.2.2. If the coefficients of the power series xj(t) =
∑∞
`=0 c`t

` satisfy
limL→∞ cL/cL+1 = ts, then t = ts is a singular point of the sum of this series. The
point t = ts belongs to the boundary of the circle of convergence of the series.

Proof. See [Fab96].

We now briefly discuss the behaviour of type (L,M) Padé approximants in the presence
of poles and branch points and end the section with two illustrative examples.

Padé approximants and nearby poles

Since Padé approximants are rational functions, it is reasonable to expect that they
can capture this kind of behaviour quite well. The following theorem, due to de
Montessus [dM02], gives strong evidence of this intuition.
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Theorem 6.2.3. Suppose xj(t) is meromorphic in the disk {t∗ ∈ C | |t∗| ≤ r},
with m distinct poles z1, . . . , zm ∈ C in the punctured disk {t∗ ∈ C \ {0} | |t∗| < r}.
Furthermore, suppose that µi is the multiplicity of the pole zi and

∑m
i=1 µi = M .

Then limL→∞[L/M ]xj
= xj on any compact subset of {t∗ ∈ C | |t∗| ≤ r, t∗ 6= zi, i =

1, . . . , µ}.

Proof. This is Theorem 6.2.2 in [BJGM96].

Loosely speaking, this tells us that the poles of [L/M ]xj
, for large enough L, will

converge to the M most nearby poles of xj(t) (counting multiplicities), if these are
the only singularities encountered in the disk {t∗ ∈ C | |t∗| ≤ r}. For the [L/1]xj

approximant, this means that convergence may be expected beyond the nearest
singularity if this is a simple pole, and the pole of [L/1]xj will approximate the actual
nearby pole. This may be considered as a practical approach to analytic continuation
[Tre20]. Padé approximants also give answers to the inverse problem: the asymptotic
behaviour of the poles of [L/M ]xj

as L → ∞ can be used to describe meromorphic
continuations of the function xj(t). We do not give any details here, the interested
reader is referred to [Gon81, Sue85, VLLP79].

Padé approximants and nearby branch points

Many singularities encountered in polynomial homotopy continuation are not poles,
but branch points. This situation is more subtle since the Padé approximant, being
a rational function, cannot have branch points. For an intuitive description of the
behavior of Padé approximants for functions with multi-valued continuations, the
reader may consult [BJGM96, Section 2.2]. The conclusion is that the poles and
zeros of [L/M ]xj are expected to delineate a ‘natural’ branch cut. The authors also
describe some ways to estimate the location and winding number of branch points
using Padé approximants. We should also mention that there are convergence results
in the presence of branch points which involve potential theory. We refer to [Sta97]
for some important results for convergence of sequences of Padé approximants with
L,M →∞, L/M → 1 (so-called near-diagonal sequences). These results are beyond
the scope of this chapter, mainly because we will limit ourselves to near-polynomial
approximants: we allow only a small number of poles (often we even take M = 1) and
we will estimate nearby singularities directly from [L/M ]xj

. This is an unusual choice,
since near-diagonal approximants tend to show better behavior for the approximation
of algebraic functions (see, e.g. [NST18, Section 6.2]). The reason for this choice will
become clear in Example 6.2.3.

We will show in experiments that in this way, even for small L, we can predict at least
the order of magnitude of the distance to the nearest branch point, which is enough
to ring an alarm when this distance gets small, and often we can do much better.
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The reason for limiting ourselves to a small number of parameters L + M and for
not trying to compute a very accurate location of the nearest branch point and its
winding number is of course efficiency. Moreover, for the purpose of this thesis a
local approximation of the coordinate functions and a rough estimate of the nearest
singularity suffice. The above mentioned techniques to compute more information
about nearby branch points may be powerful for approximation of algebraic curves
in compact regions of the complex plane and for computing monodromy groups. We
leave this as future research.

Example 6.2.2 (Padé approximants for function approximation and singularity
detection). We consider again the homotopy (6.1.1) from Example 6.1.1. Let us
first take p = 0.15 and consider the smooth parameter path Γ3. It is clear that the
singularity z+ = 1/2 + p

√
−1 ∈ S is the closest singularity to nearly every point in

Γ3([0, 1]). As s moves closer to 1/2, it moves closer to z+. To show how this causes
difficulties for the local approximation using Padé approximants, we have performed
the following experiment. For several points t∗ on the parameter path Γ3([0, 1]) we
have plotted the contour in C where the absolute value of the difference between
x(t) =

√
(t− 1/2)2 + p2 and its type (6, 1) Padé approximation around t∗ equals 10−4.

The result is shown in Figure 6.5. It is clear that the local approximation can be
‘trusted’ in a much larger region if the singularity is far away.
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Figure 6.5: Contours of the approximation error as described in Section 6.2.2. The
colour of the contours correspond to the color of the dots on the parameter path they
correspond to. The singularity z+ is shown as a small black cross.

We now investigate the behaviour of the pole of [L/1]x as we move along the path. We
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consider the four cases defined by p = 0.15, 0.19 and L = 2, 6. The results are shown
in Figure 6.6. The figure shows that as we move closer to Γ(0.5) on the path, the pole
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Figure 6.6: The path Γ3([0, 1]) and the corresponding path described by the pole of
the type (L, 1) Padé approximant (associated points on the two paths have been given
the same color) for p = 0.15 (first row), p = 0.19 (second row), L = 2 (left column),
L = 6 (right column).

of the Padé approximant moves closer to the actual branch point. What’s important
is that in the trouble region of the path (s close to 0.5), the pole of [L/1]x is fairly
close to z+. It gives, at least, an indication of the order of magnitude of the distance
to z+. Another way to see this is that on a point of the path near to z+, the (L, 1)
Padé approximant is not so much influenced by the presence of z−. For instance, at
t = 0, the pole is real because z+ and z− are complex conjugates and they are located
at the same distance from Γ3(0). For t∗ near Γ3(0.5), the pole has a relatively large
positive imaginary part. Comparing the first row to the second row in the figure shows
that this effect gets stronger when a singularity moves closer to the path. Comparing
the left column to the right column we see that the approximation of z+ gets better
as L increases, which is to be expected. If we use Γ1 instead of Γ3, for whatever p,
the branch points z+ and z− will have the same distance to each point of the path.
The result is that the (L, 1) Padé approximant will have poles on the real line. For
L = 4, p = 0.001, t∗ ∈ [0, 1], the pole is contained in the real interval [0.4997, 0.5003],
so the local difficulties are detected. However, in this specific situation, it is more
natural to use type (L, 2) approximants. The result for L = 6, p = 0.05 is shown in
Figure 6.7. We note that in a randomized homotopy, it is not to be expected that at
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Figure 6.7: The path Γ1([0, 1]) and the corresponding paths described by the poles of
the type (6, 2) Padé approximant (associated points on the two paths have been given
the same color) for p = 0.05.

a general point of the path two poles are equally important. As we move along the
path, the most important singularity may change, and the type (L, 1) approximant
can be expected to relocate its pole accordingly. 4

Example 6.2.3 (Near-diagonal VS near-polynomial approximants). Consider the
algebraic function x(t) =

√
(t+ 1.01)(t2 − t+ 37/4) with branch points

S = {−1.01, 1/2 + 3
√
−1, 1/2− 3

√
−1}.

For ` = 1, . . . , 13, we compute both the type (`, `) and the type (2` − 1, 1) Padé
approximant (around t = 0) of x(t) using a Matlab implementation of the algorithm
in [GGT13]. For all these approximants we compute

1. the minimum of the distances of the poles of the Padé approximant to the branch
point −1.01,

2. the difference between the smallest modulus of the poles of the Padé approximant
and the modulus of the nearest branch point, which is 1.01,

3. an estimate for the approximation error (the infinity norm of a discretized
approximation) of x(t) on the disk |t| ≤ 1/2 in the complex plane.

Results are shown in Figure 6.8. The right part of the figure shows that the diagonal
approximants behave better for function approximation. However, for small `, the
near-polynomial approximants are competitive. For the type (2`− 1, 1) approximant,
the first two quantities coincide since the pole is real. For the (`, `) case, the first
quantity is a lower bound for the second one. This is illustrated by the difference
between the dashed and the full blue line in Figure 6.8. What happens is the following.
One of the poles of the type (`, `) approximant approximates the branch point 1.01,
but some other pole indicates that there could be a branch point with smaller modulus.
This is illustrated in Figure 6.9 for ` = 3, 4 (for ` = 4, one of the poles of the (`, `)
approximant lies close to that of the (2`− 1, 1) approximant and the corresponding
dot is nearly invisible). The pole of the type (3, 3) approximant that is closest to
the origin actually comes from a Froissart doublet which was not detected using the
default settings in the algorithm of [GGT13]. As a consequence, this spurious pole
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Figure 6.8: Results of the experiment in Example 6.2.3.

would tell us that a singularity is nearby such that only a small step can be taken
(see Subsection 6.4.1), while the actual branch point is quite far away. Detecting such
Froissart doublets is often tricky. Since we will use only low orders, the approximation
quality of the (L, 1) approximant suffices for our purpose. Moreover, this example
shows that they are more robust for estimating the distance to the nearest singularity.
We will use this type of approximants for our default settings.

4

6.3 Computing power series solutions

In this section we present the algorithm for computing a power series solution of
H(x, t) = (h1(x, t), . . . , hn(x, t)) at t∗ = 0 proposed in [BV18a] and prove a result of
convergence. An analogous result for the case n = 1 can be found in [Lip76]. We will
consider the situation where the series solution has the form (6.2.1) with parameters
satisfying ωi ≥ 0. Futhermore, we assume that the winding number m is known. If
this is not the case, m can be computed by using, for instance, monodromy loops.
Note that it is sufficient to consider the case where m = 1, since if m is known and
m > 1 we can consider the homotopy

Ĥ(x, τ) = (h1(x, τm), . . . , hn(x, τm))

with power series solution{
xj(s) = ajs

ωj
(
1 +

∑∞
`=1 aj`s

`
)
, j = 1, . . . , n

τ(s) = s
.
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Figure 6.9: Poles of the type (`, `) approximant (orange dots) and pole of the type
(2` − 1, 1) approximant (purple dot) for ` = 3, 4 (left and right respectively). The
origin is indicated with a black cross. The background color corresponds to |x(t)|
(dark regions correspond to small absolute values).

Therefore, we can avoid introducing the extra parameter s and the unknown power
series solution is given by

xj(t) = ajt
ωj

(
1 +

∞∑
`=1

aj`t
`

)
, j = 1, . . . , n. (6.3.1)

We think of H(x, t) as a column vector [h1 · · · hn]> in R[[t]]n ' Rn[[t]] and the
Jacobian matrix JH(x, t) is considered an element of R[[t]]n×n ' Rn×n[[t]]. For any
h(x, t) ∈ R[[t]]n, plugging in y(t) ∈ C[[t]]n gives h(y(t), t) ∈ C[[t]]n, and the same can
be done for J(x, t) ∈ R[[t]]n×n, which gives J(y(t), t) ∈ C[[t]]n×n.

Definition 6.3.1. Let ? be either Cn or Cn×n. For v =
∑∞
`=0 v`t

` ∈ ?[[t]] \ {0}, the
order of v is

ord(v) = min
`
{v` 6= 0},

where v` ∈ ?, ` ∈ N. For w 6= v ∈ ?[[t]] we denote v = w + O(tk) if ord(v − w) ≥ k.
For v = 0, we define ord(v) =∞.

Note that this means that for a vector or matrix v with power series entries, v =
O(tk) if and only if every entry of v is in mk, where m is the maximal ideal of
C[[t]]. With elementwise addition and multiplication in C[[t]]n and the usual addition
and multiplication in C[[t]]n×n, it is clear that for v, w ∈ ?[[t]], ord(v) = ord(−v),
ord(v + w) ≥ min(ord(v), ord(w)) and ord(vw) ≥ ord(v) + ord(w). For the product
rule, equality holds if ? = Cn. Matrix-vector multiplication C[[t]]n×n×C[[t]]n → C[[t]]n
is defined in the usual way and for M ∈ C[[t]]n×n, v ∈ C[[t]]n we have ord(Mv) ≥
ord(M) + ord(v).
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Given x(0)(t) = (x(0)
1 (t), . . . , x(0)

n (t)) ∈ C[[t]]n, fix positive integers wk ∈ N \ {0} and
consider the sequence {x(k)(t)}k≥0 defined by

x̃(k+1)(t) = x(k)(t)− JH(x(k)(t), t)−1H(x(k)(t), t) =
∞∑
`=0

b`t
`,

x(k+1)(t) =
wk−1∑
`=0

b`t
` (6.3.2)

where we assume that JH(x(k)(t), t) is a unit in C[[t]]n×n for all k and this is equivalent
to assuming that JH(x(k)(0), 0) is invertible for all k ≥ 0. The iteration is clearly
based on the well-known Newton-Raphson iteration for approximating a root of a
nonlinear system of equations. The following proposition specifies the statement
that the iteration has similar ‘quadratic’ convergence properties. It is related to a
multivariate version of Hensel lifting, see for instance [Eis13, Exercise 7.26].

Proposition 6.3.1. Let H(x, t) : Y × C → C be a homotopy with power series
solution x(t) ∈ C[[t]]n given by (6.3.1) and let {x(k)(t)}k≥0 be a sequence generated as
in (6.3.2). If JH(x(k)(t), t) is a unit in C[[t]]n×n for all k ≥ 0 then

ord(x(k+1)(t)− x(t)) ≥ min(2 ord(x(k)(t)− x(t)), wk), k ≥ 0.

Proof. We know that x(t) = (x1(t), . . . , xn(t))> ∈ C[[t]]n satisfies H(x(t), t) = 0. Take
x(k)(t) ∈ C[[t]]n and define e(k)(t) = x(k)(t)− x(t). We have

0 = H(x(k)(t)− e(k)(t), t) = H(x(k)(t), t)− JH(x(k)(t), t)e(k)(t) +O(t2 ord(e(k)(t))).
(6.3.3)

By assumption, JH(x(k)(t), t) is a unit and thus ord(JH(x(k)(t), t)−1) = 0. We
now multiply (6.3.3) from the left with JH(x(k)(t), t)−1 and we get (using e(k)(t) =
x(k)(t)− x(t))

−JH(x(k)(t), t)−1H(x(k)(t), t) + (x(k)(t)− x(t)) = O(t2 ord(e(k)(t))).

It follows that x̃(k+1)(t)− x(t) = O(t2 ord(e(k)(t))). So we find that

ord(e(k+1)(t)) ≥ min(2 ord(e(k)(t)), wk).

It follows that if e(0)(t) has order ≥ 1, the iteration converges to the solution x(t) and
the order of the error doubles in every iteration, as long as the truncation orders wk
allow for it. Also, if ord(e(0)(t)) ≥ 1, H(x(0)(0), 0) = 0 and thus ord(H(x(0)(t), t)) ≥ 1.
It follows that the term −JH(x(k)(t), t)−1H(x(k)(t), t) has order at least 1 and so the
constant terms of x(1) and x(0) agree. This stays true for the following iterations as
well. We conclude that if ord(e(0)(t)) ≥ 1, the assumption that JH(x(k)(t), t) is a
unit for all k translates to the assumption that x(0)(0) = a is a regular solution of
the polynomial system defined by H0. If we want to compute a series solution that
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is accurate up to order w, and ord(e(0)(t)) = r ≥ 1, we set wk = min(r2k, w) and
execute dlog2(w/r)e steps of the iteration. We denote

JH(x(k)(t), t) = J
(k)
0 + J

(k)
1 t+ J

(k)
2 t2 + . . . ,

H(x(k)(t), t) = H
(k)
0 +H

(k)
1 t+H

(k)
2 t2 + . . . ,

∆x(k)(t) = −JH(x(k)(t), t)−1H(x(k)(t), t) = d
(k)
0 + d

(k)
1 t+ d

(k)
2 t2 + . . . .

We have to compute the first wk terms of x̃(k+1)(t) = x(k)(t) + ∆x(k)(t). The equation

−JH(x(k)(t), t)∆x(k)(t) = H(x(k)(t), t)

gives

J
(k)
0 d

(k)
0 = −H(k)

0 ,

J
(k)
0 d

(k)
1 + J

(k)
1 d

(k)
0 = −H(k)

1 ,

J
(k)
0 d

(k)
2 + J

(k)
1 d

(k)
1 + J

(k)
2 d

(k)
0 = −H(k)

2 ,

...
J

(k)
0 d

(k)
wk−1 + J

(k)
1 d

(k)
wk−2 + . . .+ J

(k)
wk−1d

(k)
0 = −H(k)

wk−1.

It is an immediate corollary from Proposition 6.3.1 that if ord(e(0)(t)) = r ≥ 1, then
d

(k)
i = 0, i = 0, . . . , wk−1 − 1 and hence H(k)

i = 0, i = 0, . . . , wk−1 − 1. It follows that
we only have to solve

J
(k)
0 d(k)

wk−1
= −H(k)

wk−1
,

...

J
(k)
0 d

(k)
wk−1 + J

(k)
1 d

(k)
wk−2 + . . .+ J

(k)
wk−wk−1−1d

(k)
wk−1

= −H(k)
wk−1. (6.3.4)

and this can be done equation by equation, via backsubstitution. In practice, we
will use these results as in Algorithm 6.8, where we assume that r = 1, t∗ ∈ C,
x(0) ∈ Cn ⊂ C[[t]]n such that H(x(0), t∗) = 0.

6.4 A robust algorithm for tracking smooth paths

In this section we show how the results of the previous sections lead to a smooth path
tracking algorithm. More specifically, we propose a new adaptive stepsize predictor
for homotopy path tracking. We will use Γ(s) = s and assume that this is a smooth
parameter path for simplicity, but the generalization to different parameter paths is
straightforward. The aim of this section is to motivate the heuristics and to present and
analyze the algorithm. In the next section we will show some convincing experiments.
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Algorithm 6.8 Computes the power series solution of H(x, t) = 0 corresponding to
x(0) around t = t∗.

1: procedure ComputeSeries(H, t∗, w, x(0))
2: H ← H(x, t+ t∗)
3: k ← 0
4: while k < dlog2(w)e do
5: wk ← min(2k, w)
6: Compute x(k+1) by solving (6.3.4)
7: k ← k + 1
8: end while
9: return {x(k)

1 (t), . . . , x(k)
n (t)}

10: end procedure

We will use Padé approximants for the prediction. The stepsize computation is based
on two criteria. That is, we compute two candidate stepsizes {∆t1,∆t2} based on
two different estimates of the largest ‘safe’ stepsize. The eventual value of ∆t that
is returned by the predictor (line 6 in Algorithm 6.7) is min(∆t1,∆t2, tEG − t∗). For
the first criterion we estimate the distance to the nearest point of a different path
in Y × {t∗}. This estimate is only accurate if we are actually in a difficult region.
Comparing this to an estimate for the Padé approximation error we compute ∆t1
such that the predicted point z̃ is much closer to the correct path than to the nearest
different path. The value of ∆t2 is an estimate for the radius of the ‘trust region’ of
the Padé approximant, which is influenced by nearby singularities in the parameter
space (see Section 6.2). We discuss these two criteria in detail in the first subsection.
In the second subsection we present the algorithm.

6.4.1 Adaptive stepsize: two criteria

The values of ∆t1 and ∆t2 are computed from an estimate of the distance to the
nearest different path, the approximation error of the Padé approximant for small
stepsizes and an estimate for some global ‘trust radius’ of the Padé approximants. We
discuss these estimates first and then turn to the computation of ∆t1 and ∆t2 from
these estimates.

Distance to the nearest path

We will use ‖·‖ to denote the euclidean 2-norm for vectors and the induced operator
norm for matrices. Consider the homotopy H : Y × C→ Cn. Suppose that for some
t∗ ∈ [0, 1) we have H(z(1)

t∗ , t
∗) = H(z(2)

t∗ , t
∗) = 0, so z(1)

t∗ 6= z
(2)
t∗ ∈ Zt∗ lie on two different

solution paths. We assume that z(1)
t∗ is close to z(2)

t∗ . Denote ∆z = z
(2)
t∗ − z

(1)
t∗ ∈ Cn

and think of ∆z as a column vector. Our goal here is to estimate ‖∆z‖. Neglecting
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higher order terms, we get

H(z(2)
t∗ , t

∗) ≈ H(z(1)
t∗ , t

∗) +JH(z(1)
t∗ , t

∗)∆z+ v

2 , v =


〈H1(z(1)

t∗ , t
∗)∆z,∆z〉
...

〈Hn(z(1)
t∗ , t

∗)∆z,∆z〉

 (6.4.1)

where
(Hi(x, t))j,k = ∂2hi

∂xj∂xk
, 1 ≤ j, k ≤ n

are the Hessian matrices of the individual equations and 〈·, ·〉 is the usual inner product
in Cn. To simplify the notation, we denote Hi = Hi(z(1)

t∗ , t
∗) and JH = JH(z(1)

t∗ , t
∗).

The Hessian matrices are Hermitian, so they have a unitary diagonalization (see
Remark B.4.2) Hi = UiTiUH

i where the Ti are diagonal matrices and the Ui are
unitary matrices with eigenvectors of Hi in their columns. We may write ∆z = Uiwi
for some coefficient vector wi such that ‖wi‖ = ‖∆z‖. We have

〈Hi∆z,∆z〉 = 〈Tiwi, wi〉.

Let σk,` = σ`(Hk) be the `-th singular value of Hk. The absolute values of the diagonal
entries of Ti are exactly these singular values, so that

|〈Hi∆z,∆z〉| ≤ σi,1‖wi‖2 = σi,1‖∆z‖2.

It follows easily that
‖v‖ ≤

√
σ2

1,1 + . . .+ σ2
n,1‖∆z‖2.

Since ‖JH∆z‖ ≥ σn(JH)‖∆z‖ and by (6.4.1) we have ‖JH∆z‖ ≈ ‖v‖/2, it follows
that

‖∆z‖ & 2σn(JH)√
σ2

1,1 + . . .+ σ2
n,1

. (6.4.2)

Intuitively, the ‘more regular’ the Jacobian at (z(1)
t∗ , t

∗), the larger the lower bound
(6.4.2) becomes. On the other hand, the ‘larger the curvature’ of Z at (z(1)

t∗ , t
∗), the

smaller the upper bound (6.4.2) becomes. Motivated by (6.4.2), we make the following
definition.
Definition 6.4.1. For z

(i)
t∗ ∈ Zt∗ , t

∗ ∈ [0, 1), set JH = JH(z(i)
t∗ , t

∗) and σk,` =
σ`(Hk(z(i)

t∗ , t
∗)) and define

ηi,t∗ = 2σn(JH)√
σ2

1,1 + . . .+ σ2
n,1

.

The numbers ηi,t∗ are estimates for the distance to the most nearby different path.
To make sure the prediction error ‖x(t∗ + ∆t)− x̃(t∗ + ∆t)‖ (where x̃(t) is the
coordinatewise Padé approximant) is highly unlikely to cause path jumping, we will
solve ‖x(t∗ + ∆t)− x̃(t∗ + ∆t)‖ = β1ηi,t∗ for a small fraction 0 < β1 � 1 to compute
an adaptive stepsize ∆t. We now discuss how to estimate ‖x(t∗ + ∆t)− x̃(t∗ + ∆t)‖.
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Approximation error of the Padé approximant

Without loss of generality, we take the current value of t to be zero and consider Padé
approximants around t∗ = 0 as in Section 6.2. Suppose that we have computed a
type (L,M) Padé approximant [L/M ]xj

= pj(t)/qj(t) of a coordinate function xj(t)
around 0. Given a small real stepsize ∆t, we want to estimate the error

|ej(∆t)| =
∣∣∣∣pj(∆t)qj(∆t)

− xj(∆t)
∣∣∣∣ =

∣∣∣∣ a0 + a1∆t+ . . .+ aL∆tL
b0 + b1∆t+ . . .+ bM∆tM − xj(∆t)

∣∣∣∣ . (6.4.3)

From Definition 6.2.1 we know that ej(t) ∈ mk (where usually k = L + M + 1), so
(6.4.3) can be written as |e0,j∆tk + e1,j∆tk+1 + . . . | with e0,j 6= 0. For small ∆t, the
first term is expected to dominate the sum and so |ej(∆t)| ≈ |e0,j∆tk|. This estimate
is also used in [GS04] for the case L = 2,M = 1 and a similar strategy is common
to estimate the error in a power series approximation. An alternative is to use an
estimate for the ‘linearized’ error

|qj(∆t)ej(∆t)| = |pj(∆t)− xj(∆t)qj(∆t)| (6.4.4)

which is equal to

|(b0 + b1∆t+ . . .+ bM∆tM )(e0,j∆tk + e1,j∆tk+1 + . . .)| ' |b0e0,j∆tk|.

Since qj(t) is a unit in C[[t]], b0 6= 0 and we can scale pj and qj such that b0 = 1 and
the estimates of (6.4.3) and (6.4.4) coincide. Taking b0 = 1, the constant e0,j is the
coefficient of tk in (a0 + a1t + . . . + aLt

L) − (1 + b1t + . . . + bM t
M )(c0 + c1t + . . .),

which is easily seen to be

e0,j = ak − (ck + b1ck−1 + . . .+ bMck−M ) (6.4.5)

where ak = 0 if k > L and cj = 0 for j < 0. Doing this for all j and assuming that k
is the same for all coordinates we get an estimate

‖x(∆t)−
(
p1(∆t)
q1(∆t) , . . . ,

pn(∆t)
qn(∆t)

)
‖ ≈ ‖e0‖|∆t|k,

with e0 = (e0,1, . . . , e0,n).

Trust region for the Padé approximant

As discussed in Subsection 6.2.2 and illustrated in Example 6.2.2, branchpoints in the
parameter space that are close to the parameter path cause problems for the Padé
approximation. If none of the poles of [L/M ]xj

are close to a current parameter value
on the path, we may be able to take a reasonably large step forward without getting
into difficulties. However, since we take L and M to be small, we cannot expect the
approximants [L/M ]xj to have already converged in a disk with radius the distance to
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the nearest singularity. Nor can we expect that the poles of [L/M ]xj are very good
approximations of the actual singularities. Taking the distance D to the most nearby
pole of [L/M ]xj

as an estimate for the convergence radius is a very rough estimate in
this case. However, we observe that D does give an estimate of the order of magnitude
of the region in which [L/M ]xj

is a satisfactory approximation. The conclusion is that
we do not use D itself, but β2D where 0 < β2 < 1 is a safety factor.

The candidate stepsizes ∆t1 and ∆t2

We now use the ingredients presented above to compute two candidate stepsizes ∆t1
and ∆t2. For ∆t1, we use the estimate ηi,t∗ for the distance to the nearest path and
the estimate ‖e0‖|∆t|k for the approximation error of the Padé approximant. The
heuristic is that we want the approximation error to be only a small fraction of the
estimated distance to the nearest path, so that the predicted point z̃ is much closer to
the path being tracked than to the nearest different path. That is, we solve

‖e0‖|∆t1|k = β1ηi,t∗

for ∆t1, where β1 > 0 is a small factor. Since the attraction basins of Newton
correction can behave in unexpected ways, it is best to take β1 to be fairly small, for
instance β1 = 0.005. This gives

∆t1 = k

√
β1ηi,t∗

‖e0‖
.

Both the estimates ηi,t∗ and ‖e0‖|∆t|k are only accurate in case trouble is near (they
are based on lowest order approximations). If the resulting ∆t1 is large, the only thing
this tells us is that we are not on a difficult point on the path with high probability.
The second candidate stepsize, ∆t2, will make sure we don’t take a step that is too
large in this situation. At the same time, ∆t2 will be small when singularities in the
parameter space are near the current point on the path. Let D be the distance to the
nearest pole out of all the poles of the [L/M ]xj

, j = 1, . . . , n. We set

∆t2 = β2D

where 0 < β2 < 1 is a safety factor which should not change the order of magnitude,
for instance β2 = 0.5.

Example 6.4.1. As mentioned above, the estimate ηi,t∗ for the distance to the nearest
different path is only accurate when another path is actually near. If this is not the
case, ∆t1 may be too large and we need ∆t2 to make sure the resulting stepsize is
still safe. To see that it is not enough to take only ∆t2 into account, consider the
homotopy

H(x, t) = (x− (t− (a+ b
√
−1))2)(x+ (t− (a+ b

√
−1))2), t ∈ [0, 1],
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with a, b ∈ R, 0 < a < 1 and |b| small. The paths corresponding to the two solutions
are smooth and can be analytically continued in the entire complex plane: there
are no singular points in x1(t), x2(t). However, for t = a + b

√
−1 the two solutions

coincide. By the assumptions on a and b, this value of t lies close to the parameter
path [0, 1]. Intuitively, the singularity of the Jacobian JH = ∂H/∂x is canceled by a
zero of ∂H/∂t: along the solution paths we have

dx

dt
=
−∂H∂t
∂H
∂x

= 4(t− (a+ b
√
−1))3

2x = 4(t− (a+ b
√
−1))3

±2(t− (a+ b
√
−1))2 = ±2(t− (a+ b

√
−1)).

For t = a, the solutions are x1 = −b2, x2 = b2, so for small b, the paths are very close
to each other. The type (1, 1) Padé approximant will have no poles (or very large ones
due to numerical artefacts), so taking only this criterion into account would allow us
to take large steps. However, the estimate (6.4.2) at t = a gives |∆z| ≈ 4b2/2, which
is exactly the distance to the nearest different path. 4

6.4.2 Path tracking algorithm

We are now ready to present the path tracking algorithm. Since our contribution is
in the predictor step (line 6 in Algoritm 6.7), we focus on this part. The predictor
algorithm is Algorithm 6.9 below. It is straightforward to embed this predictor
algorithm in the template Algorithm 6.7.

Algorithm 6.9 Predictor algorithm

1: procedure Predict(H, z(i)
t∗ , t

∗, L,M, β1, β2, tEG)
2: {x1(t), . . . , xn(t)} ← ComputeSeries(H, t∗, L+M + 2, z(i)

t∗ )
3: D ←∞
4: compute ηi,t∗ as in Definition 6.4.1
5: for j = 1, . . . , n do
6: pj , qj ← PadéApprox(xj(t), L,M)
7: compute e0,j using (6.4.5)
8: D ← min(D,min{|z| | qj(z) = 0})
9: end for

10: e0 ← (e0,1, . . . , e0,n)
11: ∆t1 ← k

√
β1ηi,t∗

‖e0‖
12: ∆t2 ← β2D
13: ∆t← min(∆t1,∆t2, tEG − t∗)
14: z̃ ← (p1(∆t)/q1(∆t), . . . , pn(∆t)/qn(∆t))
15: return z̃,∆t
16: end procedure

We briefly discuss some of the steps in Algorithm 6.9. In line 2, Algorithm 6.8 is used.
The point around which we compute the series is t∗, the current parameter value on



248 HOMOTOPY CONTINUATION

the path. The parameter w = L + M + 2 is the number of coefficients needed to
compute the Padé approximant of type (L,M) and the approximation error estimate.
The starting value of the power series is the constant vector x(0) = z

(i)
t∗ , satisfying

H(z(i)
t∗ , t

∗) = 0 such that ord(e(0)) > 0 and convergence is guaranteed. In step 6, the
type (L,M) Padé approximant of the coordinate function xj(t) is computed using
the algorithm of [GGT13]. Algorithm 6.9 has some more input parameters than the
predictor in the template algorithm. We will usually take M very small (and often 1),
motivated by the conclusions of Section 6.2. The value of L is chosen, for instance,
such that L + M + 2 is a power of 2 e.g. L = 5,M = 1, because of the quadratic
convergence property of the iteration in Algorithm 6.8 proved in Proposition 6.3.1.
Reasonable values for β1, β2 are β1 = 0.005, β2 = 0.5 as stated before. The parameter
tEG is the beginning of the endgame operating region as in Section 6.1.

Figure 6.10 shows a summary of our a priori adaptive step control algorithm: Newton’s
method is followed by the Padé approximant computation and the differentiation to
calculate the Hessians is followed by the singular value decompositions.

(H, JH , z(i)
t∗ , t

∗)

Newton

Padé

Differentiate

SVD

x(t) power series Hi Hessians

pj(t)
qj(t) ‖e0‖ σn(JH) σ1(Hk)

∆t2 = β2D ‘pole distance’ ∆t1 = k

√
β1ηi,t∗

‖e0‖ ‘curvature bound’

∆t = min(∆t1,∆t2, tEG − t∗)

Figure 6.10: Schematic summary of an a priori adaptive step control algorithm.

Remark 6.4.1. We conclude this section with a remark on the complexity of
Algorithm 6.9 as a function of the number of variables n in comparison with a
posteriori step size control algorithms. As is detailed in Subsection 4.3 in [TVBV19],
taking one step in the predictor-corrector scheme with Algorithm 6.9 can be expected
to be at most O(n log(n)) times more expensive than a standard step control using
Newton iteration in the corrector and a predictor which runs in O(n) time (e.g. a
fourth order extrapolator). This is assuming that the Padé parameters L and M
behave as O(n), which is quite restrictive. For a full complexity analysis, one should
take into account that because of the ‘a priori’ strategy, (virtually) none of the steps
have to be re-taken, making the feedback loops in Figure 6.1 unnecessary. As we
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will see in the next section, Algorithm 6.9 also allows us to track some paths using
only very few steps, even for problems with high degrees. In [Tim20], the step size
candidate ∆t1 is replaced by a different heuristic which is cheaper to compute and it
complements the step size ∆t2 in a similar way. This way the computational cost is
reduced significantly while the reliability seems to be maintained. This algorithm will
soon be the default in the Julia package HomotopyContinuation.jl [BT18]. 4

6.5 Numerical experiments

In this section we show some numerical experiments to illustrate the effectiveness of
the techniques proposed in this chapter. Algorithm 6.9 is implemented in PHCpack
(v2.4.72), available at https://github.com/janverschelde/PHCpack, and in Julia.
In the experiments, our implementations are compared with the state of the art. We
will use the following short notations for the different solvers in our experiments:

brt_DP Bertini v1.6 using double precision (MPTYPE = 0) [BSHW13],
brt_AP Bertini v1.6 using adaptive precision (MPTYPE = 2) [BHSW08],
HC.jl HomotopyContinuation.jl v1.1 [BT18],
phc -p The phc -p command of PHCpack v2.4.72 [Ver99],
phc -u Our algorithm, used in PHCpack v2.4.72 via phc -u,
Padé.jl Our algorithm, implemented in Julia.

We use default double precision settings for all these solvers, except brt_AP, for
which we use default adaptive precision settings. The experiments in all but the last
subsection are performed on an 8 GB RAM machine with an intel Core 17-6820HQ
CPU working at 2.70 GHz (this is the machine that was used for most experiments
in previous chapters as well). We restrict all solvers to the use of only one core for
all the experiments, unless stated otherwise. We will use Γ : [0, 1] 7→ C : s 7→ s,
which will be a smooth parameter path as defined in Section 6.1 by the constructions
in the experiments. Therefore, the parameter s will not occur in this section and
paths are of the form {(x(t), t), t ∈ [0, 1)} ⊂ X × [0, 1). In all experiments, we use
β1 = 0.005, β2 = 0.5. To measure the quality of a numerical solution of a system of
polynomial equations, we compute its residual as explained in Appendix C.

Experiment 6.5.1 (A family of hyperbolas). Consider again the homotopy (6.1.1)
from Example 6.1.1, which represents a family of hyperbolas parametrized by the
real parameter p. Recall that the ramification locus is S = {1/2 + p

√
−1}. We will

consider p 6= 0 here, such that [0, 1] is a smooth parameter path. The smaller |p|, the
closer the branchpoints move to the line segment [0, 1]. Figure 6.11 shows that as the
value of p > 0 decreases, the two solution paths approach each other for parameter
values t∗ ≈ 0.5 which causes danger for path jumping. This is confirmed by our
experiments. Table 6.1 shows the results. We used L = 5,M = 1 in phc -u. The
Julia implementation HC.jl checks whether the starting solutions are (coincidentally)

https://github.com/janverschelde/PHCpack
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Figure 6.11: Family of hyperbolas from Experiment 6.5.1.

Solver
k 1 2 3 4 5 6 7

brt_DP 3 3 3 7 7 7 7
brt_AP 3 3 3 3 7 7 7
HC.jl 3 7 7 7 7 7 7
phc -p 3 7 7 7 7 7 7
phc -u 3 3 3 3 3 3 3

Table 6.1: Results of Experiment 6.5.1 for p = 10−k, k = 1, . . . , 7. A ‘7’ indicates that
path jumping happened.

solutions of the target system. For this reason, with this solver, we track for t ∈ [0.1, 1].
4

Experiment 6.5.2 (Wilkinson polynomials). As a second experiment, consider the
Wilkinson polynomial Wd(x) =

∏d
i=1(x−i) for d ∈ N>0. When d > 10, it is notoriously

hard to compute the roots of these polynomials numerically when they are presented
in the standard monomial basis. For Bertini and HomotopyContinuation.jl, we use
the blackbox solvers to find the roots of the Wd(x). In PHCpack, we use

H(x, t) = (xd − 1)(1− t) + γWd(x)t

with γ a random complex number.3 The case d = 12 is illustrated in Figure 6.12.
We use default settings for other solvers and L = 5,M = 1 in our algorithm to solve
Wd(x) for d = 10, . . . , 19. The results are reported in Table 6.2. The number e is
the number of failures, i.e. d minus the number of distinct solutions (up to a certain
tolerance) returned by each solver with residual < 10−9, and T is the computation

3The other solvers use Γ(s) = 1 − s by default. This is not important here.
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Figure 6.12: Solution paths for a random linear homotopy as in Experiment 6.5.2
connecting the 12th roots of unity to the roots of W12(x). The blue dots are the
numerical approximations of points on the paths computed by our algorithm using
L = M = 1.

d
phc -p HC.jl brt_DP brt_AP phc -u

e T e T e T e T e T #
10 5 8.0e-3 0 2.5e-3 0 4.5e-2 0 2.5e-2 0 4.0e-2 23-42
11 7 2.9e-2 0 3.6e-3 0 1.9e-1 0 1.4e+0 0 5.2e-2 12-45
12 9 3.4e-2 0 6.7e-3 0 1.5e-1 0 2.0e+0 0 6.9e-2 12-50
13 10 3.5e-2 0 4.1e-3 0 3.2e-1 0 2.8e+0 0 1.1e-1 35-54
14 11 2.4e-2 1 6.2e-3 0 4.8e-1 0 3.8e+0 0 1.0e-1 12-69
15 13 1.7e-2 1 9.0e-3 15 1.5e-2 15 1.6e-2 0 1.2e-1 43-63
16 15 2.1e-2 6 6.7e-3 16 1.6e-2 16 1.4e-2 0 1.7e-1 12-74
17 16 1.6e-2 10 3.2e-3 17 1.8e-2 17 1.3e-2 0 1.9e-1 11-73
18 18 6.0e-3 11 1.4e-2 18 1.8e-2 18 1.4e-2 0 2.4e-1 57-81
19 18 1.8e-2 13 7.0e-3 19 1.8e-2 19 1.4e-2 0 2.6e-1 12-83

Table 6.2: Results for Experiment 6.5.2.
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time in seconds. The column indexed by ‘#’ gives the minimum and maximum number
of steps on a path for our solver. We conclude this experiment with a brief comparison
with certified tracking algorithms. For W4(x), the algorithm4 proposed in [BL13] takes
6261.6 steps for the path starting at z0 = −1 (this is averaged out over 5 experiments
with random, rational γ). For W15(x) the certified tracking algorithm of [XBY18]
(which is specialized for the univariate case) takes on average 790 steps per path. 4

Experiment 6.5.3 (Generic polynomial systems). In this experiment, we consider
random, square polynomial systems and solve them using the different homotopy
continuation packages and the algorithm proposed in this chapter. We now specify
what ‘random’ means. Fix n and d ∈ N\{0}. A generic polynomial system of dimension
n and degree d is given by a generic member of the square family FR(d, . . . , d). That
is, we generate

fi(x) =
∑

|a|≤d

ci,ax
a ∈ R = C[x1, . . . , xn], i = 1, . . . , n,

where ci,a are complex numbers whose real and imaginary parts are drawn from a
standard normal distribution to obtain

F : Cn → Cn : x 7→ (f1(x), . . . , fn(x)).

The solutions of F are the points in the fiber F−1(0) ⊂ Cn, and by Bézout’s theorem,
there are dn such points. In order to find these solutions, we track the paths of the
homotopy

H(x, t) = G(x)(1− t) + γF (x)t, t ∈ [0, 1]

where γ is a random complex constant and

G : Cn → Cn : x 7→ (xd1 − 1, . . . , xdn − 1)

represents the start system with dn known, regular solutions. Results are given in
Table 6.3. In the table, n and d are as in the discussion above and e is the number of
failures (i.e. dn minus the number of successfully computed solutions, as in Experiment
6.5.2). For phc -u, the column indexed by ‘#’ gives the minimum and maximum
number of steps on a path, and the column indexed by h gives the ratio of the number
of steps for which ∆t = ∆t1 is the first candidate stepsize. In this experiment, we
took L = 5,M = 1 and we set the maximum stepsize to be 0.5. Note that even for
this type of generic systems, the ‘difficulty’ of the paths (based on the number of
steps needed) can vary strongly. The case n = 1, d = 300 is not supported by HC.jl,
because only one byte is used to represent the degree. Note that HC.jl performs
extremely well in all other cases in this experiment, both in terms of speed and
robustness. The extra comparative experiment in the next subsection will show that,
for difficult (non-generic) paths, our heuristic shows better results (this was also shown
in Experiments 6.5.1 and 6.5.2). 4

4We use a Macaulay2 implementation, available at http://people.math.gatech.edu/~aleykin3/
RobustCHT/ to perform these experiments.

http://people.math.gatech.edu/~aleykin3/RobustCHT/
http://people.math.gatech.edu/~aleykin3/RobustCHT/
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n d
phc -p HC.jl brt_DP brt_AP phc -u

e T e T e T e T e T # h

1

20 0 5.0e+0 0 1.7e-3 0 3.1e-2 0 7.5e-2 0 4.2e-2 6-16 0.09
50 0 2.6e-2 0 6.3e-3 0 1.3e-1 0 2.3e+0 0 2.4e-1 5-27 0.07
100 2 9.1e-2 0 1.1e-2 49 5.3e-1 0 1.2e+1 0 8.9e-1 4-27 0.13
200 2 2.7e-1 0 3.2e-2 97 1.6e+0 1 4.5e+1 0 2.9e+0 5-25 0.13
300 5 6.6e-1 × × 221 2.8e+0 27 3.3e+2 0 8.3e+0 4-49 0.13

2

10 0 1.8e-1 0 1.5e-2 0 3.8e-1 0 2.4e+0 0 2.1e+0 8-37 0.10
20 2 2.2e+0 0 8.9e-2 0 1.4e+1 0 1.2e+2 0 2.6e+1 8-55 0.13
30 8 1.2e+1 0 3.3e-1 0 9.9e+1 0 2.0e+3 0 1.3e+2 8-68 0.13
40 22 3.7e+2 0 9.1e-1 68 3.5e+2 0 7.8e+3 0 4.2e+2 6-57 0.15
50 39 8.7e+2 0 2.3e+0 12 1.4e+3 0 3.4e+4 0 1.0e+3 7-57 0.14

3
5 0 3.5e-1 0 3.0e-2 0 7.0e-1 0 7.0e-1 0 4.8e+0 9-55 0.09
9 1 8.5e+0 0 2.3e-1 0 2.1e+1 0 4.8e+1 0 9.8e+1 8-56 0.10
13 4 6.8e+1 0 1.5e+0 0 2.3e+2 0 1.0e+3 0 8.3e+2 8-85 0.11

Table 6.3: Results for Experiment 6.5.3.

Experiment 6.5.4 (Clustered solutions). Homotopies that cause danger for path
jumping are such that for some parameter value t∗ on the path, the map H(x, t∗)
is a polynomial system with some solutions that are clustered together. Motivated
by this, we construct the following experiment. Let nc be a parameter representing
the number of solution clusters and let CS represent the ‘cluster size’. We consider
the set of clusters {C1, . . . , Cnc} where Ci = {zi,1, . . . , zi,CS} ⊂ C is a set of complex
numbers that are ‘clustered’ in the following sense. Take ci = e

i−1
nc

2π
√

−1 and for a
real parameter α, we define

zi,j = ci + αu1/CSe
j−1
CS 2π

√
−1,

where u is the unit roundoff (≈ 10−16 in double precision arithmetic). Define the
polynomial

E(x) =
nc∏
i=1

 CS∏
j=1

(x− zi,j)

 .

The situation is illustrated in Figure 6.13 for nc = CS = 5, α = 100. For α = 1, we
know from classical perturbation theory of univariate polynomials that the roots of
E(x) look like the roots of a slightly perturbed version of a polynomial whose nc roots
are the cluster centers, which have multiplicity CS. We will use α ≥ 10, such that the
roots of E(x) are not ‘numerically singular’. Let d = ncCS. Let G(x) = xd − 1 and
let F (x) be a polynomial of degree d with random complex coefficients, with real and
imaginary part drawn from a standard normal distribution. We consider the homotopy

H(x, t) = (1− t)(1/2− t)G(x) + γ1t(1− t)E(x) + γ2t(1/2− t)F (x), t ∈ [0, 1]

where γ1 and γ2 are random complex constants. G(x) represents the start system with
starting solutions the d-th roots of unity. By tracking the homotopy H, the polynomial
G(x) is continuously transformed into the random polynomial F (x), passing through
the polynomial (γ1/4)E(x) (for t∗ = 1/2) with clustered solutions. The success rate
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Figure 6.13: Roots (blue dots) and cluster centers (orange crosses) of E(x) constructed
as in Experiment 6.5.4 with nc = CS = 5, α = 100.

(SR) of a numerical path tracker for solving this problem is defined as follows. Let
d̂ be the number of points among the solutions of F (x) that coincide with a point
returned by the path tracker up to a certain tolerance (e.g. 10−6). We set SR = d̂/d.
For fixed α, nc,CS, we track 10 homotopies H(x, t) constructed as above with different
random γi using HC.jl and Padé.jl. We compute the average success rate for these
10 runs. Results are reported below. For each problem, the best average success rate
is highlighted in blue.

nc = 5

α Solver
CS 1 2 3 4 5

10 HC.jl 1.0 0.740 0.100 0.060 0.080
Padé.jl 1.0 0.990 0.993 0.995 0.988

100 HC.jl 1.0 1.0 0.627 0.985 0.980
Padé.jl 1.0 1.0 1.0 0.985 0.996

1000 HC.jl 1.0 1.0 1.0 1.0 1.0
Padé.jl 1.0 1.0 0.987 1.0 1.0

nc = 10

α Solver
CS 1 2 3 4 5

10 HC.jl 1.0 0.095 0.083 0.078 0.504
Padé.jl 1.0 0.995 1.0 1.0 0.990

100 HC.jl 1.0 0.530 0.673 0.982 1.0
Padé.jl 1.0 1.0 0.997 0.988 1.0

1000 HC.jl 1.0 0.995 0.990 1.0 0.310
Padé.jl 1.0 0.995 0.997 1.0 0.992

4

Experiment 6.5.5 (Benchmark Problems). Parallel computations were applied for
the problems in this section. For two families of structured polynomial systems, our
experiments show that no path failures and no path jumps occur, even when the
number of solution paths goes past one million.

The program for this experiment is available in the MPI folder of PHCpack, available
in its source code distribution on github, under the current name mpi2padcon. The
code was executed on two 22-core 2.2 GHz Intel Xeon E5-2699 processors in a CentOS
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Linux workstation with 256 GB RAM. The number of processes for each run equals 44.
The root node manages the distribution of the start solutions and the collection of the
end paths. In a static work load assignment, the other 43 processes each track the
same number of paths.

The katsura family of systems is named after the problem posed by Katsura [Kat94],
see [Kat90] for a description of its relevance to applications. The katsura-n problem
consists of n quadratic equations and one linear equation. The number of solutions
equals 2n, which is the Bézout number. Table 6.4 summarizes the characteristics and
wall clock times on katsura-n, for n ranging from 12 to 20. While the times with
HOM4PS-2.0para [LT09] are much faster than in Table 6.4, Table 3 of [LT09] reports
2 and 4 path jumpings respectively for katsura-19 and katsura-20. In the runs with
the MPI version for our code, no path failures and no path jumping happened. The
good results we obtained required the use of homogeneous coordinates. When tracking
the paths first in affine coordinates, we observed large values for the coordinates, which
forced too small step sizes, which then resulted in path failures. Although the defining
equations are nice quadrics, the condition numbers of the solutions gradually increase
as n grows. For example, for n = 20, the largest condition number of the Jacobian
matrix was of the order 107, observed for 66 solutions. Table 6.4 reports the number
of real solutions in the column with header #real and the number of solutions with
nonzero imaginary part under the header #imag.

n #sols #real #imag wall clock time (seconds)
12 4,096 582 3,514 7.925E+01 1m 19s
13 8,192 900 7,292 2.081E+02 3m 28s
14 16,384 1,606 14,778 5.065E+02 8m 27s
15 32,768 2,542 30,226 1.456E+03 24m 16s
16 65,536 4,440 61,096 4.156E+03 1h 9m 16s
17 131,072 7,116 123,956 1.001E+04 2h 46m 50s
18 262,144 12,458 249,686 2.308E+04 6h 24m 15s
19 524,288 20,210 504,078 5.696E+04 15h 49m 20s
20 1,048,576 35,206 1,013,370 1.317E+05 36h 34m 11s

Table 6.4: Wall clock time on 44 processes on the katsura problem, in a static
workload balancing schedule with one manager node and 43 worker nodes. Only the
workers track solution paths.

Another interesting class of polynomial systems [Noo89] was introduced to the computer
algebra community by [Gat90]. The n-dimensional system consists of n cubic equations
and originated from a model of a neural network. The Bézout bound on the number
of solutions is attained. Although the permutation symmetry could be exploited with
a symmetric homotopy, using the algorithms in [VC94], this was not done for the
computations summarized in Table 6.5. We used homogeneous coordinates in the runs.
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The formulation of the polynomials in [Noo89] depends on one parameter c, which
was set to 1.1. The number of real solutions is reported in Table 6.5 in the column
with header #real and the number of solutions with nonzero imaginary part is under
the header #imag. Because every new equation is of degree three and the number of

n #sols #real #imag wall clock time (seconds)
10 59,029 21 59,008 3.478E+03 57m 58s
11 177,125 23 177,102 1.594E+04 4h 25m 37s
12 531,417 25 531,392 7.202E+04 20h 0m 17s
13 1,594,297 27 1,594,270 3.030E+05 84h 9m 58s

Table 6.5: Wall clock time on 44 processes, in a static workload balancing schedule
with one manager node and 43 worker nodes. Only the worker nodes track solution
paths.

paths triples, the wall clock time increases more than in the previous benchmark. As
before, no path failures and no path jumping happened. 4



Chapter 7

Conclusion and future work

In this thesis we have addressed the problem of solving systems of polynomial equations
with finitely many solutions using several different approaches.
A first class of methods, referred to as algebraic methods in Subsection 1.3.1, is based
on eigenvalue-eigenvector theorems relating the eigenstructure of a commuting family
of matrices to the set of solutions. These matrices represent multiplication with some
function in the quotient algebra associated to the system. Such methods require the
computation of rewriting rules modulo the ideal. We have shown that, in a numerical
context, it is crucial to use a representation of the algebra for which the problem
of computing these rewriting rules is a well-conditioned problem. This gives rise to
truncated normal forms (TNFs) in a natural way. TNFs provide a general framework
for normal forms, leading to a class of algorithms containing both Gröbner and border
basis methods. Unlike the monomial representations that are used in the literature,
which are usually restricted to be induced by a monomial ordering or to be connected
(to 1), our methods use more general, possibly non-monomial bases for the quotient
algebra leading to significantly more robust numerical algorithms. We have presented
explicit constructions for solving ‘generic’ square polynomial systems inspired by the
theory of projective and toric resultants. The homogeneous counterpart of the TNF
framework provides a variant of the algorithms for finding zero-dimensional solution
sets on Pn or another compact toric variety X. For this we use a global description of
the solutions by homogeneous ideals in the Cox ring S of X. Homogeneous normal
forms (HNFs) provide rewriting rules for a graded piece of S modulo the corresponding
graded piece of the ideal. We developed the necessary theory for generalizing the
standard eigenvalue-eigenvector theorem to the toric setting. The approach gives rise
to some questions regarding the multigraded regularity of such ideals, some of which
were answered in this thesis.
Next to these methods based on algebraic techniques, we have also considered homotopy
continuation methods (see Subsection 1.3.2). These methods are very important and
popular. One of the reasons is that their complexity scales relatively well with the

257
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dimension of the solution space. However, homotopy continuation algorithms depend
on some choices of heuristics and thresholds which should be chosen carefully in order
for the methods to be reliable. In particular, bad choices may lead to the occurrence
of path jumping, which may be fatal if one’s objective is to find all solutions of a
system. We have revisited the core steps of the standard predictor-corrector scheme
for continuation algorithms and proposed a new method for a priori adaptive step size
control which proves to be reliable and significantly less prone to path jumping than
state of the art implementations.

7.1 Contributions

In this section we highlight the contributions of the different chapters to the field of
solving systems of polynomial equations.

CHAPTER 3

While the results of Chapter 3 are well known, some of the material is presented in a
slightly non-standard way in order to emphasize the analogy with some of the new
results in later chapters. We hope that this may be a valuable resource for further
development and improvement of the techniques presented in Chapters 4 and 5.

CHAPTER 4

The results of Chapter 4 are published in [TVB18, TMVB18, MTVB19].

• In Section 4.2 we define the natural concept of a truncated normal form (TNF)
and prove complete characterizations in terms of properties that are relatively
easy to check or prove in practice. The main results are Theorems 4.2.1 and
4.2.2.

• In Subsection 4.3.1 we prove that for square, dense systems a TNF can be
computed as the cokernel of a resultant map (Proposition 4.3.2).

• In Subsection 4.3.2 we present an algorithm for solving generic dense systems
with an automated choice of basis for the quotient algebra (Algorithm 4.1).

• Subsection 4.3.3 contains many numerical experiments, showcasing the strengths
of Algorithm 4.1 in comparison to state of the art software.

• In Section 4.4 we illustrate the flexibility of the TNF framework by proposing
the use of different representations of the quotient algebra and some options for
efficient computation of TNFs. In particular, we illustrate the use of the SVD
for basis selection and TNFs in a product Chebyshev basis.

• Section 4.5 introduces and characterizes homogeneous normal forms (HNFs) in
the projective setting and presents an explicit construction (Algorithm 4.2) for
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zero-dimensional, square homogeneous systems. Proposition 4.5.2 is the main
result.

CHAPTER 5

Most results of Chapter 5 are published in [TMVB18, Tel20]. Some of the results can
be found in [BT20a].

• Section 5.3 generalizes Theorem 4.2.2 to the toric case and presents a TNF
algorithm for solving systems which are generic members of a square polyhedral
family. We prove an explicit TNF construction from the cokernel of a resultant
map based on a toric resultant matrix construction from Canny and Emiris
(Corollary 5.3.1), which leads to Algorithm 5.3.

• In Subsection 5.5.2 we define a notion of multigraded regularity of homogeneous
ideals in the Cox ring of a toric variety X defining finitely many points on
X with multiplicity 1 (VX(I) is a reduced, zero-dimensional subscheme). We
also define homogeneous Lagrange polynomials and prove several connections
between these polynomials and the regularity (Propositions 5.5.1 and 5.5.2) and
some properties of the ideal I (Lemma 5.5.2 and Proposition 5.5.3).

• We prove a toric version of the eigenvalue-eigenvector theorem in Subsection
5.5.3. The main result is Theorem 5.5.3. In addition, we prove conditions
under which the eigenvalues of homogeneous multiplication matrices can be used
directly to obtain points on the solution orbits (Theorems 5.5.4 and 5.5.5).

• In Subsection 5.5.4 we generalize HNFs to the toric setting. The main result is
Proposition 5.5.5, which is used to design algorithms 5.5 and 5.6. Algorithm
5.6 is tested in several experiments which show that it can deal with degenerate
systems of equations in a robust way.

• In Subsection 5.5.5 we generalize the toric eigenvalue-eigenvector theorem to
the non-reduced case: we allow multiplicities. The result is Theorem 5.5.6. In
addition we prove several properties of the regularity of a homogeneous zero-
dimensional ideal in the Cox ring. The main results are Theorem 5.5.7 and
Corollary 5.5.5, which both imply weaker versions of a conjecture in [Tel20].

CHAPTER 6

The results of this chapter are submitted for publication [TVBV19].

• In Subsection 6.2.2 we highlight some of the properties of Padé approximants in
the context of homotopy continuation and illustrate with examples that they
can be used as ‘radars’ for finding singularities along the solution paths.

• In Section 6.4 we propose a new algorithm (Algorithm 6.9) that uses these
insights.
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• The experiments in Section 6.5 show that with this algorithm we accomplished
our goal of designing a path tracker that is significantly more robust with respect
to path jumping than the state of the art implementations.

7.2 Future directions

We conclude by listing some open challenges for future research. Throughout the text,
for each solution space X and in each different context, we have assumed that the
given equations define finitely many points in X. In the case where there are positive
dimensional solution components, the isolated solutions can still be recovered via the
regular eigenvalues of a singular hidden variable resultant pencil. Because of recent
advances such as [HMP19], solving such singular eigenvalue problems is now tractable
and these connections could be exploited to develop eigenvalue methods for computing
a numerical irreducible decomposition.
An important scenario is when there are finitely many solutions in (C∗)n, but
positive dimensional components are sitting in the boundary of the torus in the
toric compactification X. If we know in which torus invariant prime divisor such a
component is located, we can get rid of it by performing a numerical saturation with
respect to one of the variables in the Cox ring.
In this text, the constructions we proposed for solving square (Laurent) polynomial
systems were based on resultant matrix constructions. This has the important drawback
that even for moderate dimensions of the solution space (i.e. n = 4, 5, . . .), the size of
these matrices gets much bigger than the number of solutions to the system. This
establishes the need for TNF constructions which operate on smaller vector spaces V
but with the same good numerical properties.
Toric varieties arise naturally as the solution space of Laurent polynomial systems
when the equations are presented in a monomial basis. In applications, the equations
may arise as approximations of functions on a bounded real interval or they may come
from previous numerical computations with real data. In these cases, it is well-known
that it is better to work with, for instance, Chebyshev or Legendre bases instead of
monomials [Tre19]. A natural question to ask is what are the properties of varieties
parametrized by Chebyshev polynomials and of families of polynomial systems with
generic coefficients in a (tensor product) Chebyshev basis?
The insight that the problem of diverging paths in homotopy continuation methods
can be circumvented by tracking the paths in (multi-)projective space has led to great
advances, see for instance [Wam93]. It can often prevent a lot of ‘wasted’ computation
time and it can sometimes help us understand the affine solution count for a family
of systems. The idea is to track a set of homogeneous coordinates of each solution
by slicing the corresponding orbits in the total coordinate space with a generic linear
space. We could ask to what extent this approach can be generalized to arbitrary toric
varieties: can we track paths in a complete toric variety X by tracking a representative
in its total coordinate space?



Appendix A

Commutative algebra

In this appendix we summarize some results and definitions from commutative algebra
to support the material in this thesis. All of this information and much more can be
found in the books [AM69, Rei95, Eis13, Rot10].

A.1 Rings and ideals

A.1.1 Elementary definitions

We will limit ourselves to a special type of rings, namely those for which multiplication
is commutative and has a neutral element.

Definition A.1.1 (Commutative ring with identity). A commutative ring with identity
is a set R together with two binary operations ‘+’ and ‘·’, called addition and
multiplication, such that R is closed under ‘+’ and ‘·’ and for all f, g, h ∈ R

1. (R,+) is an abelian group: (f + g) + h = f + (g + h), f + g = g + f , there is
0 ∈ R such that f + 0 = f, ∀f ∈ R and for each f ∈ R there is −f ∈ R such
that f + (−f) = 0,

2. (fg)h = f(gh),

3. f(g + h) = fg + fh,

4. fg = gf ,

5. there is 1 ∈ R such that 1f = f , ∀f ∈ R,

where f · g is denoted by fg.

261
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From now on, R is a commutative ring with identity.
Example A.1.1 (Fields). A field is a commutative ring K with identity such that
for each f ∈ K \ {0} there exists f−1 ∈ K satisfying ff−1 = f−1f = 1. The simplest
examples are Q,R,C, finite fields Fq and the field of p-adic numbers Qp. 4
Example A.1.2 (Polynomial rings). A very important example in the context of
this thesis is the ring of polynomials in n variables x1, . . . , xn over a ring A. We will
mostly consider the case where A = C. This ring is denoted by R = C[x1, . . . , xn] and
its elements are of the form

f =
∑
a∈Nn

cax
a

with ca ∈ C, xa = xa1
1 · · ·xan

n for a = (a1, . . . , an) ∈ Nn and finitely many ca are
nonzero. Elements of the form xa for some a ∈ Nn are called monomials of R. 4
Definition A.1.2 (Ring homomorphism). Let R,R′ be commutative rings with
identity. A ring homomorphism is a map φ : R→ R′ such that for any f, g ∈ R,

1. φ(f + g) = φ(f) + φ(g),

2. φ(fg) = φ(f)φ(g),

3. φ(1) = 1.

The last condition of Definition A.1.2 is dropped when R does not have an identity
element for ‘·’.
Definition A.1.3 (A-algebra). Let R and A be commutative rings with identity. R is
an A-algebra if there is a ring homomorphism φ : A→ R. If R and R′ are A-algebras
with homomorphisms φ : A → R and φ′ : A → R′, then a ring homomorphism
ψ : R→ R′ is called an A-algebra homomorphism if it satisfies ψ ◦ φ = φ′.

Note that if R and R′ are A-algebras with homomorphisms φ : A→ R and φ′ : A→ R′,
for an A-algebra homomorphism ψ : R → R′ we have ψ(φ(a)f) = φ′(a)ψ(f) for all
a ∈ A and all f ∈ R.
Example A.1.3 (C-algebras). The most important for us is the case where A = C
and φ : C → R is the inclusion. An example is the polynomial ring C[x1, . . . , xn].
If R,R′ are C-algebras with respect to the inclusion of C in R,R′, then C-algebra
homomorphisms ψ : R → R′ are ring homomorphisms which are constant on C:
ψ(cf) = ψ(c)ψ(f) = cψ(f), ∀c ∈ C, f ∈ R. If R is a C-vector space which is also a
ring, then R is a C-algebra if scalar multiplication C × R → R is the restriction of
multiplication R×R→ R to C×R. 4

For an A-algebra R with homomorphism φ : A→ R and f1, . . . , fs ∈ R, we define

A[f1, . . . , fs] = { finite sums
∑
a∈Na

φ(ca)fa | ca ∈ A} ⊂ R,

where fa = fa1
1 · · · fas

s for a = (a1, . . . , as) ∈ Ns.
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Definition A.1.4 (Finite generation). An A-algebra R with homomorphism φ : A→
R is finitely generated (over A) if there is a finite set {f1, . . . , fs} ⊂ R such that
R = A[f1, . . . , fs]. In this case, the set {x1, . . . , xs} is called a set of A-generators of
R.

Example A.1.4. The polynomial ring R = C[x1, . . . , xn] is finitely generated as a
C-algebra: it is generated by the coordinate functions {x1, . . . , xn}. 4

Definition A.1.5 (Ideal). A subset I ⊂ R is called an ideal if

1. 0 ∈ I,

2. for all f, g ∈ I, f + g ∈ I,

3. for all g ∈ R and f ∈ I, gf ∈ I.

For any subset P ⊂ R, we denote 〈P 〉 for the smallest ideal containing P .

Example A.1.5 (Sums, products, intersections, quotients of ideals). If I, J ⊂ R are
ideals, then so are

1. I + J = {f + g | f ∈ I, g ∈ J},

2. IJ = 〈fg | f ∈ I, g ∈ J〉,

3. I ∩ J ,

4. (I : J) = {f ∈ R | gf ∈ I for all g ∈ J}.

4

Definition A.1.6 (Finitely generated ideals). An ideal I ⊂ R is called finitely
generated if there are f1, . . . , fs ∈ R such that

I = {g1f1 + · · ·+ gsfs | g1, . . . , gs ∈ R}.

In this case {f1, . . . , fs} is called a set of generators or a basis for the ideal I and we
denote I = 〈f1, . . . , fs〉.

Definition A.1.7 (Noetherian rings). A ring R is called Noetherian if all its ideals
I ⊂ R are finitely generated.

Theorem A.1.1 (Hilbert’s basis theorem). If a ring R is Noetherian, then so is the
polynomial ring R[x].

Proof. See [AM69, Theorem 7.5].

Corollary A.1.1. The polynomial ring R = C[x1, . . . , xn] is Noetherian.
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Proof. The only ideals in C are {0} and C. These are generated by 0 and 1 respectively.
The corollary follows by induction on n.

Definition A.1.8 (Prime, maximal and radical ideals). An ideal I ⊂ R is called
prime if I ( R and fg ∈ I implies that f ∈ I or g ∈ I. It is called maximal if I ( R
and, when for another ideal J ⊂ R we have I ( J , then J = R. An ideal I ⊂ R is
called radical if

I =
√
I = {f ∈ R | fm ∈ I for some m ∈ N}.

The subset
√
I ⊂ R is itself a radical ideal (

√√
I =
√
I) called the radical of I.

Another special type of ideals in R, called primary ideals, can be used to decompose
ideals in a way similar to the decomposition of an integer as the product of powers of
prime numbers.

Definition A.1.9. An ideal I ⊂ R is called primary if for all f, g ∈ R, fg ∈ I implies
that either f ∈ I or gm ∈ I for some m ∈ N.

Theorem A.1.2 (Primary decomposition). Let R be Noetherian. For every ideal
I ⊂ R there exist primary ideals Q1, . . . , Qs such that

I = Q1 ∩ · · · ∩Qs.

Proof. See [AM69, Theorem 7.13] for the general statement or [CLO13, Chapter 4,
§8, Theorem 4] for the case where R is a polynomial ring.

The ideals of R are the subrings (in general, without identity) which play the role of
normal subgroups in a group: they can be used to construct quotients.

A.1.2 Quotient rings

Definition A.1.10 (Quotient ring). Let I ⊂ R be an ideal. The quotient ring of R
by I is the set

{f + I | f ∈ R}/ ∼

modulo the equivalence relation f + I ∼ g + I ⇔ f − g ∈ I, with operations

(f + I) + (g + I) = (f + g) + I, (f + I)(g + I) = fg + I.

One can check that these operations are well defined and that the quotient ring R/I is
indeed a commutative ring with identity element 1 + I. Moreover, if I = R = 〈1〉 then
R/I = {0} and 1 = 0, if I = 〈0〉 then R/I = R. Here’s a definition for some special
elements in a commutative ring with identity.
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Definition A.1.11 (Units and nilpotents). An element f ∈ R is called a unit if there
exists g ∈ R such that fg = 1. It is called a nilpotent element or a nilpotent if fm = 0
for some m ∈ N.

Example A.1.6. If R = Z and I = 〈4〉 then R/I = Z/4Z is the ring of integers
modulo 4. In R/I, 2 + I is a nilpotent since (2 + I)2 = 0 and 3 + I is a unit since
(3 + I)2 = 1 + I = 1. 4

Example A.1.7. If R = C[x] and I = 〈x〉, then R/I ' C and f+I ∈ R/I corresponds
to f(0) ∈ C. All elements f + I, f 6= 0 are units in R/I and there are no nonzero
nilpotent elements. 4

A commutative ring R is called an integral domain if for f, g ∈ R, fg = 0 implies
f = 0 or g = 0 (in other words, R has no zero divisors). The ring R is called nilpotent
free if it has no nonzero nilpotent elements. Some special ideals give rise to some
special quotients.

Proposition A.1.1. Let I ⊂ R be a proper ideal. The quotient ring R/I is
1. nilpotent free if and only if I is radical,

2. an integral domain if and only if I is prime,

3. a field if and only if I is maximal.

Proof. The quotient R/I is nilpotent free if (f + I)m = 0 implies f + I = 0⇔ f ∈ I.
This proves

√
I ⊂ I and the reverse inclusion is obvious. The second statement follows

from the fact that R/I is an integral domain if and only if fg+ I = 0 implies f + I = 0
or g + I = 0 which is equivalent to fg ∈ I ⇒ f ∈ I or g ∈ I. The third statement is
Proposition 6.7 in [Rot10].

Corollary A.1.2. Every maximal ideal is prime, and every prime ideal is radical.

Proof. If I is maximal, then R/I is a field. In particular, it is an integral domain, so
I is prime by Proposition A.1.1. If I is prime, R/I is a domain, and hence fk ∈ I
implies f ∈ I or fk−1 ∈ I. If f /∈ I, then we must have fk−2 ∈ I, fk−3 ∈ I, . . . which
leads to a contradiction.

Two ideals I, J ⊂ R are called coprime if I + J = R (see Example A.1.5 for the
definition of a sum of ideals). The following important theorem allows us to decompose
a quotient ring R/I into ‘simpler’ quotient rings if I = I1 ∩ · · · ∩ Is where the ideals Ii
are pairwise coprime.

Theorem A.1.3 (Chinese remainder theorem). Let I1, . . . , Is be ideals of R that are
pairwise coprime and let I = I1 ∩ · · · ∩ Is. Then we have

R/I ' R/I1 × · · · ×R/Is

via the canonical ring homomorphism f + I 7→ (f + I1, . . . , f + Is).
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Proof. See [Lan02, Corollary 2.2, page 95].

A.1.3 Krull’s principal ideal theorem

Definition A.1.12 (Height of a prime ideal). The height of a prime ideal p ⊂ R,
denoted ht(p), is the supremum n of the lengths of all chains of prime ideals

p0 ( p1 ( · · · ( pn = p ( R.

Definition A.1.13 (Krull dimension). The Krull dimension of R, denoted dimR, is
the supremum of the heights of all prime ideals of R.

Theorem A.1.4. Let R be an integral domain which is a finitely generated C-algebra.
Then for any prime ideal p ⊂ R we have

ht(p) + dimR/p = dimR.

Proof. See [Har77, Chapter I, Theorem 1.8A].

Another special class of ideals are those which can be generated by only one element.
Such ideals are called principal.

Theorem A.1.5 (Krull’s principal ideal theorem). Let R = C[x1, . . . , xn] and let
f ∈ R be a non-constant polynomial. Then for every minimal prime ideal p containing
the principal ideal 〈f〉 we have ht(p) = 1.

Proof. See [AM69, Corollary 11.7].

A nonzero element f ∈ R is called irreducible if f is not a unit and f = f1 · · · fs implies
that for all i, fi is either a unit or f = ufi where u is a unit. A ring R is called a
unique factorization domain if for all f ∈ R \ {0} such that f is not a unit, f can be
written ‘essentially uniquely’ as a product of irreducibles. For a precise definition the
reader can consult [Rot10, Section 6.2]. The following is Proposition 1.12A in Chapter
1 of [Har77].

Proposition A.1.2. A Noetherian integral domain R is a unique factorization domain
if and only if every prime ideal p such that ht(p) = 1 is principal.

As an application of these results, we can show that affine hypersurfaces have the
special property that they can always be defined by only one equation. This uses some
notation from Section 2.1.

Theorem A.1.6. An affine variety Y ⊂ Cn is pure-dimensional of dimension n− 1
if and only if Y = V (f) for some f ∈ R \ {0}.
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Proof. Suppose Y = V (f). Let f = f1 · · · fs be a decomposition of f into non
constant irreducible polynomials. Then Y = V (f1) ∪ · · · ∪ V (fs) is a decomposition
of Y into irreducible components. Each of these components has codimension one,
since by Krull’s principal ideal theorem A.1.5, the ideal 〈fi〉 has height 1 and therefore
dimV (fi) = dimR/〈fi〉 = n − 1 (see Theorem A.1.4). Conversely, if Y is pure-
dimensional of dimension n− 1, then all its irreducible components Y1, . . . , Ys have
dimension n−1, and their vanishing ideals I(Yi) have height 1 by Theorem A.1.4. Since
R is a unique factorization domain, these vanishing ideals are principal by Proposition
A.1.2, so I(Yi) = 〈fi〉, where fi is irreducible. It follows that Y = V (f1 · · · fs).

A.1.4 Localization

The way in which the field of rational numbers Q is constructed from the integers Z
can be generalized straightforwardly to arbitrary integral domains.

Definition A.1.14 (Field of fractions). Let R be an integral domain with identity.
The field of fractions K(R) of R is

{f/g | f ∈ R, g ∈ R \ {0}}/ ∼

where f1/g1 ∼ f2/g2 ⇔ f1g2 − f2g1 = 0, with operations

f1/g1 + f2/g2 = (f1g2 + f2g1)/(g1g2), (f1/g1)(f2/g2) = (f1f2)/(g1g2).

One checks that K(R) is indeed a field with zero element 0 = 0/1 and identity element
1 = 1/1. Note that the operations are not well defined if R is not an integral domain,
because R \ {0} is not closed under multiplication. Also, to check that the relation ∼
in Definition A.1.14 is transitive, we need the property that R has no zero divisors.
However, the construction can be generalized to arbitrary commutative rings with
identity by slightly modifying the definition of the equivalence relation and the set of
possible ‘denominators’.

Definition A.1.15 (Localization). Let T ⊂ R be a multiplicatively closed subset of
R, that is, 1 ∈ T and T is closed under multiplication. The localization T−1R of R at
T is

{f/g | f ∈ R, g ∈ T}/ ∼

where f1/g1 ∼ f2/g2 ⇔ t(f1g2 − f2g1) = 0 for some t ∈ T , with operations

f1/g1 + f2/g2 = (f1g2 + f2g1)/(g1g2), (f1/g1)(f2/g2) = (f1f2)/(g1g2),

where f1, f2 ∈ R, g1, g2 ∈ T .

It is a standard exercise in commutative algebra to check that ∼ from Definition A.1.15
is indeed an equivalence relation and that the operations from the definition are well
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defined and give T−1R the structure of a commutative ring with identity. Note that
there is a natural homomorphism

R→ T−1R : f 7→ f/1,

which is injective when R is an integral domain. Here are some important examples of
localization.

Example A.1.8. Let R be an integral domain and T = R \ {0}, then T−1R = K(R)
is the field of fractions of R. 4

Example A.1.9. Let f ∈ R \ {0} and T = {f `}`∈N. Then T−1R is denoted by Rf :

Rf =
{
g

f `
| ` ∈ N, g ∈ R

}/
∼ .

The ring Rf is called the localization of R at f . 4

Example A.1.10. Let p ⊂ R be a prime ideal. The set T = R \ p is multiplicatively
closed. The localization T−1R is denoted by Rp:

Rp =
{
f

g
| g ∈ R \ p, f ∈ R

}/
∼ .

The unique maximal ideal of the ring Rp is the image of p under R→ Rp. The ring
Rp is called the localization of R at p. 4

Definition A.1.16 (Extension and contraction). The extension Ie ⊂ T−1R of an
ideal I ⊂ R in the localization T−1R of R at T is the ideal generated by the image of I
under R→ T−1R. The contraction Ic ⊂ R of an ideal I ⊂ T−1R is the preimage of I
under R→ T−1R. That is, Ic is the largest ideal of R whose image under R→ T−1R
is contained in I.

A.2 Modules over rings

Throughout this section, R is a commutative ring with identity. Some of the material
presented here is taken from [CLO06, Chapter 6], which contains a more complete
introduction to R-modules and related subjects from a computational perspective.

A.2.1 Elementary definitions

Definition A.2.1 (R-module). A module over R or R-module is a set M together
with a binary operation (addition) under which it is an abelian group and an operation
R×M →M , written (f,m) 7→ fm, f ∈ R,m ∈M , of R on M (scalar multiplication),
satisfying for all f, g ∈ R, m,m′ ∈M :
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1. f(m+m′) = fm+ gm′,
2. (f + g)m = fm+ gm,
3. (fg)m = f(gm),
4. 1m = m, with 1 the identity element of R.

Here are some examples.

Example A.2.1. Abelian groups are Z-modules. If K is a field, then K-modules
are the vector spaces over K. Modules are to a commutative ring with identity what
vector spaces are to a field. 4

Example A.2.2. Perhaps the simplest example of a module over R is the set of
s-vectors of elements in R with the usual addition and scalar multiplication. We
denote this set by Rs. In particular, R itself is an R-module (s = 1). It is also not
difficult to see that any finite subset {m1, . . . ,m`} ⊂ Rs gives an R-module

R{m1, . . . ,m`} = 〈m1, . . . ,m`〉 = {f1m1 + . . .+ f`m` ∈ Rs | f1, . . . f` ∈ R}.

If M = 〈m1, . . .m`〉, we say that M is generated by {m1, . . . ,m`}. 4

Example A.2.3. Let R = C[x1, . . . , xn], any polynomial ideal I ⊂ R is a module
over R. 4

Example A.2.4. Different algebraic structures lead to different notions of ‘generators’.
The ring R = C[x1, . . . , xn] is generated, as an R-module (and as an ideal), by {1}.
As a C-algebra, it is generated by {x1, . . . , xn}. As a C-module (i.e. as a C-vector
space), it is infinitely generated. 4

Example A.2.5. Let A be an m × n matrix with entries in R. It is easy to show
that the set

kerA = {m ∈ Rn : Am = 0}
is a module over R. Also, the set

imA = {Am′ : m′ ∈ Rn}

is a module, given by R〈m1, . . . ,mn〉 where mi is the i-th column of A. 4

Example A.2.6 (Direct sum of modules). The direct sum M ⊕N of two R-modules
M and N is the set of all ordered pairs (m,n), m ∈M and n ∈ N . Such a direct sum
M ⊕N is an R-module under component-wise sum and scalar multiplication. We can
think of Rm as the direct sum R⊕ . . .⊕R with m summands equal to R. 4

Example A.2.7 (Quotient module). If N ⊂M is a submodule, then the quotient

M/N = {m+N | m ∈M}/ ∼

where m+N ∼ m′ +N if m−m′ ∈ N is an R-module with R×M/N →M/N given
by (f,m+N) 7→ fm+N . 4
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Definition A.2.2 (R-linear independence). Let M be an R-module. A set
{m1, . . . ,m`} ⊂ M is called R-linearly independent if f1m1 + . . . + f`m` = 0,
f1, . . . , f` ∈ R implies f1 = . . . = f` = 0.

Unlike vector spaces, modules may have minimal generating sets that are not R-linearly
independent.
Example A.2.8. An easy example is the ideal 〈f, g〉 ⊂ C[x, y] where f does not
divide g and vice versa. Indeed, the R-linear combination gf − fg = 0 shows that the
set of generators is R-linearly dependent, yet f nor g can be left out without shrinking
the ideal. 4

In analogy with the theory of vector spaces, we use the following notion of a basis.
Definition A.2.3. A subset F ⊂M of an R-module M is called a module basis (or
simply basis) of M if F generates M and F is an R-linearly independent set.

A set of generators for an ideal is also referred to as a basis (see Definition A.1.6). In
the previous example, this means that {f, g} is a basis for I as an ideal of R, but not
as an R-module. The example showed that not every minimal set of generators is a
module basis. Sadly, even more is true. Many modules do not admit a module basis.
The ideal 〈f, g〉 from before is an example.
Definition A.2.4 (Free module). An R-module M that admits a module basis is
called a free module.
Example A.2.9. The module Rs is free for any s ≥ 1 and its standard basis is given
by {e1, . . . , es}, where ei ∈ Rs has the zero element in all but the i-th entry, which is
1. However, not every submodule of Rm is free. For instance, consider the module
〈(f, 0), (g, 0)〉 ⊂ C[x, y]2. 4

The following theorem implies, together with Hilbert’s basis theorem (Theorem A.1.1)
that if R = C[x1, . . . , xn], every submodule M ⊂ Rs, s ≥ 1 is finitely generated.
Theorem A.2.1. A commutative ring R is Noetherian if and only if every submodule
of a finitely generated R-module is finitely generated.

Proof. See [Rot10, Proposition 7.23].

Proposition A.2.1. For an R-module M , a set F ⊂M is a module basis if and only
if every m ∈M can be written in exactly one way as an R-linear combination of the
elements in F .

Proof. Let F = {m1, . . . ,m`} and suppose

m = f1m1 + · · ·+ f`m` = f ′
1m1 + · · ·+ f ′

`m`

for some fi, f ′
i ∈ R. Then (f1−f ′

1)m1+· · ·+(f`−f ′
`)m` = 0 implies fi = f ′

i , i = 1, . . . , `
since F is a basis.
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We now define structure preserving maps between R-modules.

Definition A.2.5 (R-module homomorphism). An R-module homomorphism between
two R-modules M and N is an R-linear map between M and N . This means that for
a homomorphism φ : M → N we have for all f ∈ R and for all m,m′ ∈M that

φ(fm+m′) = fφ(m) + φ(m′).

Example A.2.10 (Modules of homomorphisms). Let M,N be R-modules. The set
of all R-module homomorphisms M → N is denoted HomR(M,N). This is itself an
R-module: for φ, φ′ ∈ HomR(M,N), f ∈ R,

(fφ)(m) = fφ(m), (φ+ φ′)(m) = φ(m) + φ′(m), , ∀m ∈M.

Here are some examples.

• HomR(Rn, R) ' Rn where φ : Rn → R corresponds to (φ(e1), . . . , φ(en)) ∈ Rn.

• HomZ(Zn,C∗) ' (C∗)n where C∗ = C \ {0} is thought of as a multiplicative
abelian group. Here φ : Zn → C∗ corresponds to (φ(e1), . . . , φ(en)).

• HomZ(Z/nZ,C∗) ' {exp( 2π
√

−1k
n )}k=0,...,n−1.

4

Example A.2.11 (Tensor product of modules). Let M,M ′, N be R-modules. A
mapping ψ : M ×M ′ → N is called bilinear if for each m ∈ M , m′ 7→ ψ(m,m′)
is an R-module homomorphism and for each m′ ∈ M ′, m 7→ ψ(m,m′) is an R-
module homomorphism. There exists a module M ⊗RM ′, called the tensor product
of M and M ′, and a bilinear mapping ⊗ : M × M ′ → M ⊗R M ′, unique up to
isomorphism, satisfying the following universal property. For each R-module N and
each bilinear mapping ψ : M ×M ′ → N there is a unique R-module homomorphism
θ : M ⊗RM ′ → N which makes the following diagram commute.

M ×M ′ M ⊗RM ′

N

⊗

ψ
θ

The moduleM⊗RM ′ is generated as anR-module by elementsm⊗m′ = ⊗(m,m′),m ∈
M,m′ ∈M ′. These elements are called the elementary tensors of M ⊗RM ′. Here are
some examples.

• C[x]⊗C C[y] ' C[x, y] with ⊗(f(x), g(y)) = f(x)g(y) and θ(x`ym) = ψ(x`, ym).

• C[x]⊗C[x] C[x] ' C[x].
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• R ⊗RM ' M for every R-module M with ⊗ the map defining the R-module
structure and θ(m) = ψ(1,m) for all m ∈M .

• Zn ⊗Z C∗ = (C∗)n where C∗ = C \ {0} is thought of as a multiplicative abelian
group, with a⊗c = (a1, . . . , an)⊗c = (ca1 , . . . , can) and θ(c1, . . . , cn) = ψ(e1, c1)+
· · ·+ ψ(en, cn).

• Zn ⊗Z R = Rn where R is thought of as an abelian group under element-wise
addition, with a ⊗ r = (a1, . . . , an) ⊗ r = (ra1, . . . , ran) and θ(r1, . . . , rn) =
ψ(e1, r1) + · · ·+ ψ(en, rn).

4

If M is free, any R-module homomorphism φ : M → N is specified completely by the
image of the basis elements. This follows directly from Proposition A.2.1. If also N
is free, the image can be represented in a unique way as an R-linear combination of
basis elements. The following proposition follows easily.

Proposition A.2.2. Let φ : Rn → Rm be any R-module homomorphism. There exists
an m × n matrix A with entries in R such that φ(m) = Am,∀m ∈ Rn. Conversely,
any such matrix defines an R-module homomorphism φ : Rn → Rm.

For any R-module homomorphism φ : M → N the kernel kerφ and the image imφ
are defined in the usual way and φ is called an isomorphism if it is both one-to-one
and onto. It is easy to check that both kerφ and imφ are R-modules.

Proposition A.2.3. Consider an ordered s-tuple (m1, . . . ,ms) of elements mi ∈M
of an R-module M . The set of all (f1, . . . , fs) ∈ Rs such that f1m1 + . . . fsms = 0 is
an R-submodule of Rs. This module is called the first syzygy module of (m1, . . . ,ms)
and it is denoted by Syz(m1, . . . ,ms).

Proof. This follows from Syz(f1, . . . , fs) = ker(φ : Rs → R) with φ(f1, . . . , fs) =
f1m1 + . . . fsms.

A.2.2 Exact sequences

Definition A.2.6 (Exact sequence). A sequence of R-modules and homomorphisms

· · · −→Mi+1
φi+1−→ Mi

φi−→Mi−1 −→ · · ·

is called exact at Mi if imφi+1 = kerφi. The entire sequence is an exact sequence if it
is exact at each Mi which is not at the beginning nor at the end of the sequence.
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Let M and N be two R-modules. It follows directly from the definition of exactness
that a homomorphism φ : M → N is onto if and only if the sequence

M
φ−→ N −→ 0

is exact. Analogously, φ : M → N is one-to-one if and only if

0 −→M
φ−→ N

is exact and φ is an isomorphism if and only if

0 −→M
φ−→ N −→ 0

is exact. A frequently encountered type of exact sequence involves only three nonzero
modules.

Definition A.2.7 (Short exact sequence). A short exact sequence of R-modules is an
exact sequence of the form

0 −→M ′ φ−→M
ψ−→M ′′ −→ 0.

The following theorem, together with the discussion above, shows that exact sequences
provide a very compact way of writing down properties of modules and homomorphisms
between them.

Theorem A.2.2 (First isomorphism theorem). Let M,N be R-modules and let φ :
M → N be an R-module homomorphism. Then M/ kerφ→ imφ given by m+kerφ 7→
φ(m) is an R-module isomorphism.

Example A.2.12. If I ⊂ R is an ideal of R and

0 −→ I
i−→ R

φ−→M −→ 0

is a short exact sequence of R-modules where i : I → R is inclusion, thenM ' R/I. 4

The following theorem is frequently used in this thesis.

Theorem A.2.3. Let Vi, 0 ≤ i ≤ ` be finite dimensional vector spaces over a field K
and let

0 −→ V`
φ`−→ V`−1

φ`−1−→ · · · φ2−→ V1
φ1−→ V0 −→ 0

be an exact sequence of K-vector spaces. The alternating sum of the dimensions of
the Vi satisfies: ∑̀

i=0
(−1)i dimK(Vi) = 0,

where dimK(·) denotes the dimension as a K-vector space.
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Proof. To prove this, we only need that for a linear map φ : V → W between finite
dimensional vector spaces it holds that

dimK(V ) = dimK(kerφ) + dimK(imφ).

Applying this to an exact sequence of vector spaces, using kerφi = imφi+1 the theorem
follows.

A.2.3 Free resolutions

If an R-module M is finitely generated and given by 〈m1, . . . ,ms〉, we have an onto
map φ0 : Rs →M given by (f1, . . . , fs) 7→ f1m1 + . . . fsms and a corresponding exact
sequence

Rs
φ0−→M −→ 0.

SupposeR is Noetherian, e.g.R = C[x1, . . . , xn]. Since Syz(m1, . . . ,ms) is a submodule
of Rs, it is finitely generated (Theorem A.2.1). It follows that Syz(m1, . . . ,ms) can
be generated by {m′

1, . . . ,m
′
s′}. This gives φ1 : Rs′ → Rs with φ1(f1, . . . , fs′) =

f1m
′
1 + · · · + fs′m′

s′ . The image is given by imφ1 = Syz(m1, . . . ,ms). Our exact
sequence extends to

Rs
′ φ1−→ Rs

φ0−→M −→ 0.
Next, we can consider the syzygy module Syz(m′

1, . . . ,m
′
s′). This is called the second

syzygy module, and it will again by finitely generated. One can imagine that this
process can be continued. It gives rise to a free resolution of the module M .

Definition A.2.8 (Free resolution). Let M be an R-module. An exact sequence of
the form

· · · −→ F2
φ2−→ F1

φ1−→ F0
φ0−→M

0−→
where Fi ' Rsi , i = 0, 1, . . . are free R-modules is called a free resolution of M . A free
resolution for which F`+1 = F`+2 = . . . = 0 for some ` ≥ 0 is called finite of length `.
In that case we write it down as

0 −→ F`
φ`−→ · · · −→ F2

φ2−→ F1
φ1−→ F0

φ0−→M −→ 0

Note that in this notation, kerφ0 is the first syzygy module for some choice of generators
for M , kerφ1 is the syzygy module of the first syzygy module, . . . . We say that kerφi
is the (i + 1)-st syzygy module of M . It turns out that in the case that is most
interesting to us, a finite free resolution always exists. The following result is due to
Hilbert.

Theorem A.2.4 (Hilbert Syzygy Theorem). Let R = K[x1, . . . , xn] where K is a
field. Every finitely generated R-module has a finite free resolution of length at most n.

Proof. A proof based on Groebner bases for modules is given in [CLO06, Chapter 6,
§2].
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A.2.4 Graded rings, modules and resolutions

The polynomial rings in this thesis often come with a grading. The definition of the
grading is important for the geometric context: different gradings on the same ring
associate the ring to completely different geometric objects. In this section, S is a
C-algebra with respect to the inclusion C ⊂ S.

Definition A.2.9 (Graded C-algebras). Let E be an abelian group. An E-graded
C-algebra is a C-algebra S with direct sum decomposition

S =
⊕
α∈E

Sα

into C-vector spaces Sα ⊂ S such that Sα · Sα′ ⊂ Sα+α′ (meaning that for any
f ∈ Sα, g ∈ Sα′ , fg ∈ Sα+α′). The C-vector spaces Sα are called the graded or
homogeneous parts of S. An element f ∈ Sα is called homogeneous of degree α. We
denote deg(f) = α.

Note that Definition A.2.9 also makes sense in the case where E is just a monoid.
When we work over a graded ring we will switch notation from R to S to emphasize
this.

Remark A.2.1. Since S is a commutative ring with identity element 1 ∈ C ⊂ S and
1 · f = f, ∀f ∈ S, we must have deg(1) = 0 ∈ E. Moreover, since the Sα are C-vector
spaces we have C ⊂ S0. Also, S0 is a commutative ring with identity and each of the
Sα is an S0-module. 4

Example A.2.13. Let S = C[x0, x1, x2, x3]. We make S into a Z-graded ring
by setting deg(x0) = deg(x1) = deg(x2) = deg(x3) = 1. This is the standard
grading where, for instance, the polynomial f = x2

0x
2
2 − x0x1x2x3 has degree 4. Here

S0 = C. Note that Sα = 0 for α < 0. The submonoid {α ∈ E | Sα 6= 0} is
called the weight monoid of S. Another way to make S into a Z graded ring is to
set deg(x0) = deg(x1) = deg(x2) = 1, deg(x3) = 2. With respect to this grading,
f = x2

0x
2
2 − x0x1x2x3 is not homogeneous and g = x0x3 − x0x1x2 is homogeneous of

degree 3. We now make S into a Z2-graded ring by setting deg(x0) = deg(x1) = (1, 0)
and deg(x2) = deg(x3) = (0, 1). In this grading, f is homogeneous with degree
deg(f) = (2, 2). 4

Definition A.2.10 (Homogeneous ideal). Let S be an E-graded C-algebra. A
homogeneous ideal of S is an ideal I that can be generated by homogeneous elements.
That is, I = 〈f1, . . . , fs〉 with fi ∈ Sαi for some αi ∈ E.

Definition A.2.11 (Graded S-modules). Let E be an abelian group and let S be an
E-graded C-algebra. An S-module M is called graded if it has a decomposition

M =
⊕
α∈E

Mα
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into C-vector spaces Mα ⊂ M such that Sα ·Mα′ ⊂ Mα+α′ (meaning that for any
f ∈ Sα,m ∈ Mα′ , fm ∈ Mα+α′). The C-vector spaces Mα are called the graded or
homogeneous parts of M . An element m ∈Mα is called homogeneous of degree α. We
denote deg(m) = α.

Note that the group E is not explicitly mentioned when we say that an S-module is
graded. The reason is that it is implicit from the grading on S. We will sometimes say
that S is graded, rather than E-graded, when the group E is clear from the context or
not important.

Example A.2.14. The ring S is a graded S-module. Every homogeneous ideal I ⊂ S
is a graded S-module with Iα = I ∩ Sα. A free S-module is a graded S-module with
(Ss)α = (Sα)s. For a homogeneous ideal I ⊂ S, the quotient ring S/I is a graded
S-module with (S/I)α = Sα/Iα as a quotient of C-vector spaces. 4

Example A.2.15 (Twisted modules). Let M be a graded S-module. For α′ ∈ E,
consider the module

M(α′) =
⊕
α∈E

M(α′)α =
⊕
α∈E

Mα+α′ .

This is a graded S-module, which is said to be the module M with grading twisted by
α′. 4

Example A.2.16. Let M and M ′ be graded S-modules. The direct sum M ⊕M ′ is
a graded S-module with (M ⊕M ′)α = Mα ⊕Mα as a direct sum of C-vector spaces.
If M ′ ⊂ M is a submodule, then the quotient module M/M ′ is a graded S-module
with (M/M ′)α = Mα/M

′
α as a quotient of vector spaces. 4

Definition A.2.12 (Twisted free graded S-modules). A twisted free graded S-module
is an S-module of the form

S(α1)⊕ · · · ⊕ S(αs), αi ∈ E,

where S(αi) is S with grading twisted by αi ∈ E.

Definition A.2.13 (Graded homomorphism). Let M,M ′ be graded S-modules and
let φ : M →M ′ be a module homomorphism. The homomorphism φ is called graded
of degree α if φ(Mα′) ⊂M ′

α+α′ for all α′ ∈ E.

Example A.2.17. The degree of a graded morphism φ : M →M ′ can be ‘changed’
by twisting the degree of, say, M . For instance, the homomorphism φ : S → S
given by g 7→ fg for some f ∈ Sα, f 6= 0 is graded of degree α. The homomorphism
φ′ : S(−α)→ S given by g 7→ fg for some f ∈ Sα has degree zero. 4

We will mainly be interested in graded homomorphisms of degree 0. The reason is
the following. Suppose F0, . . . , F` are graded S-modules such that for each α ∈ E,
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dimC(Fi)α is easy to compute for i = 0, . . . , `. Moreover, suppose that M is some
other graded S-module for which we want to compute dimCMα. If

0 −→ F`
φ`−→ · · · −→ F2

φ2−→ F1
φ1−→ F0

φ0−→M −→ 0 (A.2.1)

is an exact sequence and the φi are homomorphisms of degree 0, we can restrict the
sequence to the degree α part to obtain an exact sequence of vector spaces

0 −→ (F`)α
φ`−→ · · · −→ (F2)α

φ2−→ (F1)α
φ1−→ (F0)α

φ0−→Mα −→ 0.

Theorem A.2.3 now allows us to compute dimCMα. This raises the question which
graded S-modules F are such that Fα is easy to compute. In our context, these will
be exactly the twisted free graded S-modules from Definition A.2.12. Motivated by
this, we will give exact sequences of the form (A.2.1) where the Fi are twisted free
graded S-modules a name.

Definition A.2.14 (Graded resolution). Let M be a graded S-module. A graded
resolution of M is an exact sequence of the form

· · · −→ F1
φ1−→ F0

φ0−→M −→ 0,

where each Fi is a twisted free graded S-module and each of the φi is a graded
homomorphism of degree 0. If F`+1 = F`+2 = · · · = 0 for some ` ≥ 0 the resolution is
called finite of length `.

Again, in the cases which are of interest to us, a finite graded resolution always exists.
Here is a graded version of Theorem A.2.4.

Theorem A.2.5 (Graded Hilbert Syzygy Theorem). Let S = K[x1, . . . , xn] be a
Z-graded K-algebra where K is a field. Every finitely generated S-module has a finite
graded resolution of length at most n.

Proof. See [CLO06, Chapter 6, §3].

The graded resolutions in this text all arise from a so-called Koszul complex. This
example is important enough to dedicate a separate subsection to it.

A.2.5 The Koszul complex

Definition A.2.15 (Complex of R-modules). A sequence K of R-modules and
homomorphisms

K : · · · −→Mi+1
φi+1−→ Mi

φi−→Mi−1 −→ · · ·

is called a complex or chain complex of R-modules if φi ◦ φi+1 = 0,∀i.
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Note that an exact sequence of R-modules is always a complex, but the converse
statement is not true.

Example A.2.18. Let I = 〈f1, f2〉 ⊂ R for some f1, f2 6= 0. The map d1 : R2 → R
defined by d1(g1, g2) = g1f1 + g2f2 has image I. An obvious element in ker d1 is
(−f2, f1). Consider the map d2 : R → R2 given by g 7→ (−gf2, gf1). This gives the
complex

0 −→ R
d2−→ R2 d1−→ R −→ 0.

In fact, this is our first example of a so-called Koszul complex (we will give a definition
below). The maps of this complex can be represented by matrices with entries in R:

d1 =
[
f1 f2

]
, d2 =

[
−f2
f1

]
and d1 ◦ d2 = 0.

It is easy to see that if I 6= R, the complex is not an exact sequence: d1 is not onto.
However, this can be remedied by extending the complex to

0 −→ R
d2−→ R2 d1−→ R −→ R/I −→ 0 (A.2.2)

where R→ R/I is the canonical map f 7→ f + I. If R is an integral domain, exactness
at every module of the complex but R2 is clear:

• ker d2 = 0 since R is an integral domain,

• im d1 = I = ker(R→ R/I),

• im(R→ R/I) = R/I.

Exactness at R2 may fail: if there is a non-unit g ∈ R\{0} such that f1 = gf ′
1, f2 = gf ′

2,
then (−f ′

2, f
′
1) ∈ ker d1 \ im d2. We will soon describe a sufficient condition on f1, f2

such that (A.2.2) is exact. Note that when this happens, (A.2.2) is a free resolution of
R/I which was very easy to construct. In particular, in this case im d2 = Syz(f1, f2)
is generated by (−f2, f1). We say that Syz(f1, f2) consists only of trivial syzygies. 4

It is instructive to repeat the same construction for an ideal generated by three
elements.

Example A.2.19. Let I = 〈f1, f2, f3〉 ⊂ R with f1, f2, f3 ∈ R \ {0}. Starting
from the map d1 : R3 → R given by the matrix [f1 f2 f3] we will construct a
‘candidate complex’ for a free resolution of the R-module R/I. Some trivial elements
of ker d1 = Syz(f1, f2, f3) are (−f2, f1, 0), (−f3, 0, f1) and (0,−f3, f2). We define
d2 : R3 → R3 by

(g1, g2, g3) 7→ g1(−f2, f1, 0) + g2(−f3, 0, f1) + g3(0,−f3, f2).



MODULES OVER RINGS 279

By construction d1 ◦ d2 = 0, which can also be seen from the matrix representation

[
f1 f2 f2

] −f2 −f3 0
f1 0 −f3
0 f1 f2

 = 0.

Taking a closer look at the definition of d2, we find again at least one trivial element
in its kernel: (f3,−f2, f1) ∈ ker d2. This gives us the next map in our chain complex:
d3 : R→ R3 is given by d3(g) = g(f3,−f2, f1). This results in the complex

0 −→ R
d3−→ R3 d2−→ R3 d1−→ R −→ 0. (A.2.3)

We will see that under certain assumptions, the augmented complex

0 −→ R
d3−→ R3 d2−→ R3 d1−→ R −→ R/I −→ 0. (A.2.4)

gives a free resolution of R/I. 4

We will now introduce some notation which allows to extend the constructions in
Examples A.2.18 and A.2.19 for s elements f1, . . . , fs of our ring R. That is, we will
define a complex

K(f1, . . . , fs) : 0 −→ Ks
ds−→ Ks−1

ds−1−→ · · · d2−→ K1
d1−→ R −→ 0 (A.2.5)

where K1, . . . ,Ks are free R-modules and im d1 = I = 〈f1, . . . , fs〉. To this end, let
e1, . . . , es be symbols and let K1 be the free module

K1 =
s⊕
i=1

R · ei

of rank s generated by the ei ({e1, . . . , es} is an R-module basis for K1). It is clear
what the definition of d1 : K1 → R should be:

d1(g1e1 + . . .+ gses) = g1f1 + · · ·+ gsfs.

This map is completely defined by the image of the basis elements d1(ei) = fi by
extending R-linearly. For bases of the remaining modules K`, we use the symbols
ei1 ∧ · · · ∧ ei` where 1 ≤ i1 ≤ · · · ≤ i` ≤ s. We set

K` =
⊕

1≤i1≤···≤i`≤s

R · ei1 ∧ · · · ∧ ei` .

For the reader who is familiar with exterior products, we will discuss the intuition
behind this notation in Remark A.2.2. The important thing is that this notation
allows for an elegant definition of the maps d` : K` → K`−1, generalizing d1, d2, d3
from Examples A.2.18 and A.2.19. We set

d`(ei1 ∧ · · · ∧ ei`) =
∑̀
j=1

(−1)j−1fijei1 ∧ · · · ∧ êij ∧ · · · ∧ ei` , (A.2.6)
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where the hat on êij indicates that the symbol eij is omitted. To check that these
definitions make (A.2.5) into a complex, we need to show that d`−1 ◦ d` = 0. This
follows from

(d`−1 ◦ d`)(ei1 ∧ · · · ∧ ei`) =
∑̀
j=1

(−1)j−1fijd`−1(ei1 ∧ · · · ∧ êij ∧ · · · ∧ ei`)

which is equal to

∑̀
j=1

(−1)j−1fij
( j−1∑
k=1

(−1)k−1fikei1 ∧ · · · ∧ êik ∧ · · · ∧ êij ∧ · · · ∧ ei`

+
∑̀
k=j+1

(−1)k−2fikei1 ∧ · · · ∧ êij ∧ · · · ∧ êik ∧ · · · ∧ ei`
)

which is indeed zero because the term corresponding to the ordered tuple (j, k),
1 ≤ j, k ≤ `, k 6= j and the term corresponding to (k, j) have opposite sign. The
complex (A.2.5) is called the Koszul complex of the ordered tuple (f1, . . . , fs).
Example A.2.20. For s = 2, The Koszul complex K(f1, f2) is

K(f1, f2) : 0 −→ K2
d2−→ K1

d1−→ R −→ 0

with K1 = R · e1 ⊕R · e2 ' R2, K2 = R · e1 ∧ e2 ' R and

d2(e1 ∧ e2) = f1e2 − f2e1,

d1(e1) = f1, d1(e2) = f2.

4

Example A.2.21. For s = 3, The Koszul complex K(f1, f2, f3) is

K(f1, f2, f3) : 0 −→ K3
d3−→ K2

d2−→ K1
d1−→ R −→ 0

with

K1 = R · e1 ⊕R · e2 ⊕R · e3 ' R3,

K2 = R · e1 ∧ e2 ⊕R · e1 ∧ e3 ⊕R · e2 ∧ e3 ' R3,

K3 = R · e1 ∧ e2 ∧ e3 ' R

and

d3(e1 ∧ e2 ∧ e3) = f1e2 ∧ e3 − f2e1 ∧ e3 + f3e1 ∧ e2,

d2(e1 ∧ e2) = f1e2 − f2e1,

d2(e1 ∧ e3) = f1e3 − f3e1,

d2(e2 ∧ e3) = f2e3 − f3e2,

d1(ei) = fi, i = 1, 2, 3.

4
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Remark A.2.2. Another way to define the Koszul complex is via the so-called dual
complex

K∨(f1, . . . , fs) : 0 −→ R∨ d∨
1−→ K∨

1
d∨

2−→ · · ·
d∨

s−1−→ K∨
s−1

d∨
s−→ K∨

s −→ 0,

where R∨ = HomR(R,R) ' R, K∨
` = HomR(K`, R) ' K` and the map d∨

` sends
(φ : K`−1 → R) ∈ K∨

`−1 to φ ◦ d` ∈ K∨
` where d` is as defined above. If vi : K1 → R

is the map that sends ei to 1 and ej to 0 for j 6= i, then K∨
1 has basis v1, . . . , vs and

K∨
` has basis

{vi1 ∧ · · · ∧ vi`}1≤i1···≤i`≤s

where vi1 ∧ · · · ∧ vi` ∈ K∨
` is the map that sends ei1 ∧ · · · ∧ ei` to 1 and all other basis

elements to 0. Then the maps d∨
` are defined simply by d∨

1 (1) = f1v1 + . . .+ fsvs and

d∨
`+1(vi1 ∧ · · · ∧ vi`) =

s∑
j=1

fjvj ∧ vi1 ∧ · · · ∧ vi` ,

where the wedge product vi ∧ vj has the usual algebraic properties of being alternating
(vi ∧ vi = 0) and anti-commutative (vi ∧ vj = −vj ∧ vi). As an example, consider the
case s = 3. We have d∨

1 (1) = f1v1 + f2v2 + f3v3 and

d∨
2 (v1) = f1v1 ∧ v1 + f2v2 ∧ v1 + f3v3 ∧ v1 = −f2v1 ∧ v2 − f3v1 ∧ v3,

d∨
2 (v2) = f1v1 ∧ v2 + f2v2 ∧ v2 + f3v3 ∧ v2 = f1v1 ∧ v2 − f3v2 ∧ v3,

d∨
2 (v3) = f1v1 ∧ v3 + f2v2 ∧ v3 + f3v3 ∧ v3 = f1v1 ∧ v3 + f2v2 ∧ v3,

d∨
3 (v1 ∧ v2) = f1v1 ∧ v1 ∧ v2 + f2v2 ∧ v1 ∧ v2 + f3v3 ∧ v1 ∧ v2 = f3v1 ∧ v2 ∧ v3,

d∨
3 (v1 ∧ v3) = f1v1 ∧ v1 ∧ v3 + f2v2 ∧ v1 ∧ v3 + f3v3 ∧ v1 ∧ v3 = −f2v1 ∧ v2 ∧ v3,

d∨
3 (v2 ∧ v3) = f1v1 ∧ v2 ∧ v3 + f2v2 ∧ v2 ∧ v3 + f3v3 ∧ v2 ∧ v3 = f1v1 ∧ v2 ∧ v3,

which shows that the matrices of (di)∨ from the dual Koszul complex are exactly the
transposes of the matrices representing di in K(f1, . . . , fs). 4

If I = 〈f1, . . . , fs〉 6= R, there is no hope for K(f1, . . . , fs) to be exact. We will often
consider the so-called augmented Koszul complex given by

K̂(f1, . . . , fs) : 0 −→ Ks
ds−→ Ks−1

ds−1−→ · · · d2−→ K1
d1−→ R −→ R/I −→ 0. (A.2.7)

It turns out that this complex is an exact sequence under some easy-to-describe
conditions on the fi. Recall that an element f ∈ R is called a zero divisor in R if
there is some g 6= 0 such that fg = 0.

Definition A.2.16 (Regular sequence). Let R be a commutative ring with identity.
A sequence f1, . . . , fs ∈ R is called a regular sequence if 〈f1, . . . , fs〉 6= R, f1 is not
a zero divisor in R and fi + 〈f1, . . . , fi−1〉 is not a zero divisor in the quotient ring
R/〈f1, . . . , fi−1〉, for i = 2, . . . , s.
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Theorem A.2.6. Let R be a commutative ring with identity and let f1, . . . , fs ∈ R
be a regular sequence. Then the augmented Koszul complex K̂(f1, . . . , fs) is a free
resolution of R/I.

Proof. See [Lan02, Chapter XXI, Theorem 4.6].

Remark A.2.3. The property of regularity may depend on the order of the elements
f1, . . . , fs, but the exactness of the Koszul complex does not. Here’s an example taken
from [Ben19, page 41]. Let R = C[x, y, z] and consider the polynomials f = z, g =
x(z + 1), h = y(z + 1). One can check that f, g, h is a regular sequence, but g, h, f is
not. 4

When we are working in a graded setting, we will twist the gradings of the free
modules K` such that all homomorphisms d` have degree zero. In this way we hope
to obtain graded resolutions via the Koszul complex. If S is an E-graded C-algebra
and I = 〈f1, . . . , fs〉 is a homogeneous ideal generated by homogeneous elements fi of
degree deg(fi) = αi, then the Koszul complex K(f1, . . . , fs) is defined as

K(f1, . . . , fs) : 0 −→ Ks
ds−→ Ks−1

ds−1−→ · · · d2−→ K1
d1−→ S −→ 0, (A.2.8)

where
K` =

⊕
1≤i1≤···≤i`≤s

S(−αi1 − · · · − αi`) · ei1 ∧ · · · ∧ ei` .

and d` : K` → K`−1 are defined as in (A.2.6). The augmented Koszul complex
K̂(f1, . . . , fs) is defined as in (A.2.7), with R replaced by S.

Example A.2.22. Let S be an E-graded C-algebra and let f1, f2 ∈ S be homogeneous
of degree α1, α2 respectively. The Koszul complex K(f1, f2) is

0 −→ S(−α1 − α2) d2−→
S(−α1)
⊕

S(−α2)
d1−→ S −→ 0.

Note that an element (g1, g2) ∈ (S(−α1)⊕S(−α2))α is sent to g1f1 + g2f2 ∈ Sα under
d1, so d1 is indeed of degree 0. The same can be checked for d2. 4

A.2.6 Localization of modules

The definition of localization (see Definition A.1.15) can be generalized to R-modules.

Definition A.2.17 (Localization of R-modules). Let T ⊂ R be a multiplicatively
closed subset of R, that is, 1 ∈ T and T is closed under multiplication. The localization
T−1M of an R-module M at T is the T−1R-module

{m/g | m ∈M, g ∈ T}/ ∼
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where m1/g1 ∼ m2/g2 ⇔ t(g2m1 − g1m2) = 0 in M for some t ∈ T , with operations

m1/g1 +m2/g2 = (g1m1 + g2m2)/(g1g2) and (f/g1)(m/g2) = (fm)/(g1g2),

where m1,m2,m ∈M , g1, g2 ∈ T , f ∈ R.

An R-module homomorphism φ : M →M ′ can be ‘localized’ to obtain a T−1R-module
homomorphism T−1φ : T−1M → T−1M ′ by setting

T−1φ(m/g) = φ(m)/g.

Note that this construction behaves nicely with respect to composition: T−1(φ ◦ ψ) =
T−1φ ◦ T−1ψ. The operation of localizing R-modules and homomorphisms between
them has the special property of preserving exactness. The following is Proposition
3.3 in [AM69].

Proposition A.2.4. Let M ′′ ψ−→M
φ−→M ′ be an exact sequence of R-modules and

let T ⊂ R be a multiplicatively closed subset, then

T−1M ′′ T
−1ψ−→ T−1M

T−1φ−→ T−1M ′

is an exact sequence of T−1R-modules.

Example A.2.23. Let I ( R be an ideal and let A = R/I be the corresponding
quotient ring. For f ∈ R\I, the localization Af of A at f as an R-module is isomorphic
to the localization Af+I of A at f + I as an (R/I)-module via

g + I

f `
7→ g + I

f ` + I
.

It follows from this observation, 0 → I → R → A → 0 and Proposition A.2.4 that
Af+I ' Rf/If , where If is the image of I under R→ Rf . 4

The localization T−1R has the obvious structure of an R-module. The tensor product
of R-modules T−1R⊗RM can be given the structure of a T−1R-module by setting

(f/g) · (f ′/g′ ⊗m) = (ff ′)/(gg′)⊗m.

This allows to describe the localization as a tensor product of R-modules. This is
Proposition 3.5 in [AM69].

Proposition A.2.5. Let T ⊂ R be a multiplicatively closed subset and let M be an
R-module. The homomorphism

T−1R⊗RM → T−1M

given by f/g ⊗m 7→ (fm)/g is an isomorphism of T−1R-modules.





Appendix B

Numerical linear algebra

In this appendix we give a brief introduction to the methods and concepts of numerical
linear algebra that are used in this thesis. We discuss some of the most important
matrix factorizations and their use for solving linear systems of equations and for
computing eigenvalues. Numerical linear algebra algorithms are at the heart of
countless methods for solving problems in applied mathematics. While further
improving and specializing these algorithms is still an active area of research today, the
state of the art implementations (e.g. the LAPACK library [ABB+99]) are able to solve
linear systems and eigenvalue problems in a backward stable way. This makes the tools
very powerful, and it is a great motivation for trying to reformulate any computational
problem as a problem of numerical linear algebra. We limit ourselves to conceptual
descriptions and give full references for algorithmic details. The book of Trefethen and
Bau [TBI97] contains a great first introduction to some of the fundamental concepts.
A more complete, encyclopedic treatment can be found in the book by Golub and Van
Loan [GVL12].

We work with finite dimensional vector spaces over C. A matrix A ⊂ Cm×n is a
2-dimensional array, whose entries are denoted by

A =


A11 A12 · · · A1n
A21 A22 · · · A2n

... . . . ...
Am1 Am2 · · · Amn

 = (Aij)1≤i≤m,1≤j≤n.

The Euclidean 2-norm of v = (v1, . . . , vm) ∈ Cm is

‖v‖2 =
√
v1v1 + · · ·+ vmvm,

where · denotes complex conjugation. For an n-dimensional C-vector space V , an
m-dimensional C-vector space W and any norms ‖·‖V , ‖·‖W on V and W respectively,
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the induced operator norm of a C-linear map A : V → W (which we think of as a
matrix) is

‖A‖V,W = sup
x∈V \{0}

‖Ax‖W
‖x‖V

.

If ‖·‖V and ‖·‖W are the Euclidean 2-norms on V and W respectively, we denote ‖·‖2
for the induced operator norm. To keep the notation unambiguous, we will use bold
characters for the matrices in standard factorizations. For instance, since Q,R, S, U, V
are reserved for polynomial rings, primary ideals, vector spaces, open subsets of a
variety, . . . we will use Q,R,S,U,V in the QR factorization and the SVD.

B.1 Conditioning and stability

We know from our first course in linear algebra that if A ∈ Cm×m is a square,
nonsingular matrix and b ∈ Cm is any column vector, then Ax = b has exactly one
solution. This solution is given by x = A−1b. We could view x as the image of
a function f(A, b) = x, which takes an invertible matrix A ∈ Cm×m and a vector
b ∈ Cm and returns the solution of Ax = b. In exact arithmetic, this is where the
story ends. When we want to ‘compute’ the solution of Ax = b in floating point
arithmetic1, the intermediate results of the computations are replaced by nearby
machine numbers, causing rounding errors in the computed solution x̃. Moreover, if
A and b cannot be represented exactly on the computer, their entries are replaced
by machine numbers before the computations even start. Abstractly, we can think
of our numerical algorithm which computes the approximation x̃ as an operator f̂
such that f̂(A, b) = x̃, where f̂ ‘approximates’ f . Hopefully, we will still have the
‘approximate equalities’ Ax̃ ≈ b and, more ambitiously, x̃ ≈ x. To establish whether
the numerical algorithm f̂ did a good job, we need a way of measuring the ‘magnitude’
of the errors Ax̃− b and x̃− x, and a way of deciding whether the obtained errors are
satisfactory. A good criterion for deciding this takes into account that the computer
treats our original problem as a slightly perturbed version of the problem, and the
solution x may be very sensitive to such perturbations. All of this is captured by
the fundamental concepts of forward error, backward error, condition and stability in
numerical analysis.

In general, we may think of a problem as a function f : V → W between normed
vector spaces. We use the notation ‖v‖, ‖w‖ for the norms of v ∈ V , w ∈ W . The
vector space V is the space of data and W is the space of solutions. ‘Solving’ the
problem with data v ∈ V corresponds to computing f(v). Suppose f(v) = w and
consider a perturbation δv ∈ V , which should be thought of as a vector with small
norm. The sensitivity of f at v can be measured by

‖f(v)− f(v + δv)‖
‖δv‖

. (B.1.1)

1We assume familiarity with the floating point number system. Introductions can be found, for
instance, in [Hig02, Chapter 2] or [TBI97, Lecture 13].
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This number clearly depends on δv, so the actual measure for the local sensitivity
should be the supremum of (B.1.1) over all small perturbations δv. In the context of
floating point arithmetic, it is natural to measure the distances between f(v), f(v+ δv)
and v, v + δv relatively with respect to the norms ‖f(v)‖ and ‖v‖. Motivated by these
considerations, as a measure for the sensitivity of f to perturbations on v, we define
the relative condition number

κf (v) = lim
ε→0

sup
‖δv‖≤ε

(
‖f(v + δv)− f(v)‖

‖f(v)‖

/
‖δv‖
‖v‖

)
.

The condition number κf (v) may depend strongly on v, meaning that some instances of
the problem f may be much more sensitive to perturbations than others. We say that
the problem f is well-conditioned at v if κf (v) is small, and that it is ill-conditioned at
v if κf (v) is large. What ‘small’ and ‘large’ mean may depend on the specific problem
and on the accuracy with which one wants to compute. Note that conditioning is a
property of the problem, not of an algorithm for solving the problem (approximately).
Example B.1.1 (Matrix-vector product). Fix a matrix A ⊂ Cm×m and let f : Cm →
Cm be given by f(x) = Ax. For any norm ‖·‖ on Cm we find that

κf (x) = lim
ε→0

sup
‖δx‖≤ε

(
‖Aδx‖
‖Ax‖

/
‖δx‖
‖x‖

)
= ‖A‖ ‖x‖

‖Ax‖
,

where ‖A‖ is the operator norm induced by ‖·‖ on Cm. The same formula holds for
non-square matrices. If A is invertible this gives a global bound for the condition
number by using ‖x‖/‖Ax‖ ≤ ‖A−1‖:

κf (x) ≤ ‖A‖‖A−1‖, for all x ∈ Cm. (B.1.2)

The number κ(A) = ‖A‖‖A−1‖ is a very important constant, called the condition
number of A. We will characterize the vectors x for which the bound (B.1.2) is
attained, i.e. for which ‖x‖/‖Ax‖ = ‖A−1‖ in Section B.2. 4

Example B.1.2 (Solving linear systems). Fix an invertible matrix A ⊂ Cm×m and
let fA : Cm → Cm be the function sending b ∈ Cm to the solution of Ax = b, that
is fA(b) = A−1b. By the results of Example B.1.1 we find that κfA

(b) ≤ κ(A) and
the bound is attained where ‖b‖/‖A−1b‖ = ‖A‖. We conclude that the sensitivity
of the problem of solving a system of linear equations to perturbations on the right
hand side b is measured by the condition number of A. Let us now fix b ∈ Cm and
consider the function fb : Cm×m → Cm such that fb(A) = A−1b. Denoting fb(A) = x
and fb(A+ δA) = x+ δx, we have that

(A+ δA)(x+ δx) = b.

Since in the definition of the condition number we take the limit lim‖δA‖→0, we can
drop the doubly infinitesimal term (δA)(δx) to find that δAx + Aδx = 0. Hence
‖δx‖ ≤ ‖A−1‖‖δA‖‖x‖, which gives(

‖δx‖
‖x‖

/
‖δA‖
‖A‖

)
≤ κ(A).
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There are perturbations δA for which this bound is attained [TBI97, Exercise 3.6], so
we get κfb

(A) = κ(A). This shows that also the sensitivity of the problem of solving a
linear system Ax = b with respect to perturbations in A is governed by the condition
number of A. We conclude that if the data (A, b) of the linear system Ax = b is
perturbed by a relative error of size u, where u is the unit round-off (for instance,
u = 2−52 ≈ 10−16 in double precision arithmetic), then the order of magnitude of the
perturbation on the exact solution x of Ax = b is at most the order of magnitude
of κ(A)u. In fact, the relative size of the perturbation on x is of the same order of
magnitude as κ(A)u, except in some very special situations. These observations are
the motivation for the general rule of thumb in numerical linear algebra that when one
wants to compute A−1b in floating point arithmetic, one generally loses log10(κ(A))
decimal digits of accuracy, that is

‖δx‖
‖x‖

≈ κ(A)u.

The condition number κ(A) of a matrix plays a very important role in this thesis.
In what follows, we will always consider κ(A) with respect to the Euclidean 2-norm
‖·‖2. 4

Example B.1.3. Consider the linear systems Ax = b and A(x+ δx) = b+ δb where

A =
[
1 1
1 1 + ε

]
, b =

[
2
2

]
, δb =

[
0
ε

]
.

The solutions are
x =

[
2
0

]
, x+ δx =

[
1
1

]
.

As ε→ 0, the condition number of A with respect to ‖·‖2 behaves like ε−1, whereas
‖δb‖2 = ε. 4

The condition number relates the relative size of perturbations on the input to the
relative size of the resulting perturbations on the output of a problem f : V → W .
Related to these two types of perturbations there are two ways of measuring the error
of a point x̃ ∈W as an approximation for f(v) ∈W . In what follows, we fix a norm
‖·‖, which is usually taken to be the Euclidean 2-norm ‖·‖2.

Definition B.1.1 (Relative forward error). For a problem f : V → W and a point
v ∈ V , the relative forward error of a point x̃ ∈ W as an approximation for f(v) =
x ∈W is

‖x− x̃‖
‖x‖

.

Definition B.1.2 (Relative backward error). For a problem f : V → W and a
point v ∈ V , the relative backward error of a point x̃ ∈ W as an approximation for
f(v) = x ∈W is the smallest ε ∈ R≥0 such that there exists ṽ ∈ V with

‖v − ṽ‖
‖v‖

≤ ε and f(ṽ) = x̃.
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The relative forward error of x̃ is small if the approximate solution is close to the
actual solution (in a relative sense). The relative backward error of x̃ is small if the
approximate solution is the exact solution of a slightly perturbed problem instance.
For the example of solving Ax = b, x̃ has a small relative backward error if there is a
slightly perturbed vector b̃ ∈ Cm close to b such that Ax̃ = b̃. The relative backward
error for this example can be measured by

‖b̃− b‖
‖b‖

= ‖Ax̃− b‖
‖b‖

.

In the following definition, we use the notation f̂ : V →W for a numerical algorithm
that ‘approximates’ a problem f : V →W . That is, given a point v ∈ V , f̂(v) is an
approximation for f(v). We say that a positive real number a is of size O(ε) if a has
‘order of magnitude’ ε. In practice, this means that a is bounded by C−1ε ≤ a ≤ Cε,
for a ‘not too large’ constant C (e.g. C = 100).

Definition B.1.3 (Forward stability). An algorithm f̂ : V → W is called forward
stable if for any v ∈ V , f̂(v) has a relative forward error of size O(u).

Remark B.1.1. Different authors use different definitions for various notions of
stability. For instance, in [TBI97, Lecture 14], a forward stable algorithm in the sense
of Definition B.1.3 is called accurate and the definition of forward stability in [Hig02,
§1.6] takes the condition number into account. In the spirit of [Bul06, Chapter 2,
Subsection 7.3], Definition B.1.3 emphasizes that forward stability is measured by the
forward error. 4

The sensitivity of the problem f to perturbations may depend strongly on the input v.
Since we are working in floating point arithmetic, there is not much we can do about
this: after a single floating point operation it is as if we were dealing with a slightly
perturbed problem. Therefore, it seems too strict to ask of our numerical algorithms
to be forward stable. It makes more sense to impose a small backward error.

Definition B.1.4 (Backward stability). An algorithm f̂ : V →W is called backward
stable if for any v ∈ V , f̂(v) has a relative backward error of size O(u).

A backward stable algorithm finds the exact solution to a slightly perturbed version
of the problem that one wants to solve. If the problem instance we are interested
in is ill-conditioned, then the forward error might still be large. The factor between
backward and forward error depends on the conditioning of f at v ∈ V . One has the
rule of thumb

relative forward error = O(κf (v) · relative backward error).

Note the similarity with the definition of κf (v). This means that for a backward stable
algorithm the forward error satisfies

relative forward error = O(κf (v) · u).
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Backward stability is the type of stability one usually aims for in numerical linear
algebra, and there are backward stable algorithms for the fundamental problems
of solving a linear system of equations Ax = b and solving an eigenvalue problem
Ax = λx.

Unlike conditioning, stability is a property of a method or algorithm, not that of a
problem. Usually, the condition of a problem is out of our hands, but (backward)
stability is what we aim for in designing our algorithms. Somewhat confusingly,
often algorithms are unstable because they reformulate the problem to one that is
mathematically equivalent, but much more ill-conditioned. A typical example is that
of solving a linear least squares problem via the normal equations [TBI97, Lecture 19],
and we will encounter some examples related to the problem of polynomial system
solving in this thesis as well.

B.2 Singular value decomposition

An important class of problems in numerical linear algebra is that of computing matrix
factorizations. In general, this means that for a matrix A ∈ Cm×n we compute a set of
matrices A1, . . . , Ak such that A = A1A2 · · ·Ak and this decomposition or factorization
of A either helps us do further computations with A or it reveals some properties of A
that are of interest to us. Perhaps the most powerful of all such factorizations is the
singular value decomposition.

For a matrix A ∈ Cm×n, let AH ∈ Cn×m be its Hermitian transpose. That is,

A = (Aij)1≤i≤m,1≤j≤n, AH = ((AH)ij)1≤i≤n,1≤j≤m with (AH)ij = Aji

and a+ b
√
−1 = a− b

√
−1, a, b ∈ R denotes complex conjugation. We think of row

and column vectors as matrices of size 1×m and m× 1 respectively, and the pairing
Cm×Cm → C given by (v, w) 7→ vHw is the scalar product that induces the Euclidean
2-norm ‖v‖2 =

√
vHv on Cm. We recall the following definition

Definition B.2.1 (Unitary matrix). A matrix A ∈ Cm×m is called unitary if AHA =
idm, where idm is the identity matrix of size m ×m. Equivalently, A is unitary if
A−1 = AH .

Definition B.2.2 (Singular value decomposition (SVD)). For a matrix A ∈ Cm×n, a
decomposition A = USVH is called a singular value decomposition (SVD) of A if

1. U ∈ Cm×m and V ∈ Cn×n are unitary,

2. S ∈ Rm×n is diagonal with nonnegative entries σi = Sii ∈ R≥0 on its diagonal
such that σ1 ≥ σ2 ≥ · · · ≥ σmin(m,n) ≥ 0.

The numbers σ1, . . . , σmin(m,n) are called singular values of A.
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Theorem B.2.1 (Existence and uniqueness of the SVD). Any matrix A ∈ Cm×n

has a singular value decomposition. Moreover, the singular values σi are uniquely
determined. If m = n and σi 6= σj for i 6= j, then the columns of U and V in the
SVD A = USVH are unique up to complex sign.

Proof. See [TBI97, Theorem 4.1] or the analogous proof for real matrices in [GVL12,
Section 2.5].

By ‘unique up to complex sign’ in Theorem B.2.1 we mean up to multiplication with a
complex number e

√
−1θ of modulus 1. It is convenient to have the notation σ1 = σmax

and σmin(m,n) = σmin for the largest and smallest singular value of the matrix A. We
write ui = U:,i for the i-th column of U and likewise for the columns vi of V. Let r
be the largest index such that σr 6= 0. The SVD A = USVH can be written as

A =
[
U1 U2

] [ S1 0r,n−r
0m−r,r 0m−r,n−r

] [
VH

1
VH

2

]
= U1S1VH

1 , (B.2.1)

with 0k,` the zero matrix of size k × `, U1 = [u1 · · · ur],U2 = [ur+1 · · · um],V1 =
[v1 · · · vr],V2 = [vr+1 · · · vn], S1 = diag(σ1, . . . , σr). To distinguish the factorizations

A = USVH and A = U1S1VH
1

they are sometimes called the full SVD and the thin or reduced SVD of A. In this
text, when we talk about the SVD we always have the full SVD in mind. If we know
the SVD of A, we have an orthonormal basis for all fundamental subspaces of A and
we know its rank: from (B.2.1) we see that

1. the rank of A is the number of nonzero singular values, r,

2. kerA = spanC(vr+1, . . . , vn) = im V2, the columns of V2 are an orthonormal
basis for the kernel or (right) nullspace of A,

3. imA = spanC(u1, . . . , ur) = im U1, the columns of U1 are an orthonormal basis
for the image, range or column space of A,

4. cokerA = spanC(ur+1, . . . , um) = im U2, i.e. ker UH
2 = imA, the columns of U2

are an orthonormal basis for the cokernel or left nullspace of A,

5. coim A = spanC(v1, . . . , vr) = im V1, the columns of V1 are an orthonormal
basis for the coimage, corange or row space of A.

The SVD also allows to write A as a sum of r rank one matrices

A = σ1u1v
H
1 + · · ·+ σrurv

H
r

and the famous Eckart-Young theorem [EY36] guarantees that for r′ ≤ r,

Ar′ = σ1u1v
H
1 + · · ·+ σr′ur′vHr′
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is the best rank r′ approximation of A. By this we mean that it minimizes ‖A−Ar′‖
over the rank r′ matrices Ar′ where the norm can be, for instance, the operator 2-norm
or the Frobenius norm.

A SVD of the matrix A = USVH gives immediately an SVD for its inverse (if m = n
and r = m) and its Hermitian transpose:

A−1 = VS−1UH , AH = VS>UH .

The SVD also reveals some important norms of A. It is not difficult to show that
‖A‖2 = σmax and ‖A‖F =

√
σ2

1 + · · ·+ σ2
r , where ‖·‖F denotes the Frobenius norm.

An important direct consequence is that the condition number κ(A) relative to the
Euclidean 2-norm ‖·‖2 is given by ‖A‖2‖A−1‖2 = σmax/σmin.

The SVD can be computed in a backward stable way [TBI97, Lecture 31], in the sense
that for the computed matrices Ũ, S̃, Ṽ we have

‖A− ŨS̃ṼH‖2

‖A‖2
= O(u).

The complexity of the algorithms is O(mn2). The Eckart-Young theorem implies that
if the computed singular values σ̃r+1, . . . σ̃min (using a backward stable algorithm) are
of size O(ε), then there is a matrix very close to A (at distance O(ε)) of rank r. The
SVD therefore provides us with a good method for deciding on the numerical rank.
What is usually done is the following. The numerical rank of A is set to be the largest
index r such that

σ̃r > tol · σ̃1,

where tol is some tolerance, typically 10-1000 times the unit round-off. This numerical
rank decision allows to partition the SVD as in (B.2.1), where the zero matrix 0m−r,n−r
now contains the ‘numerically zero’ singular values on its diagonal and the submatrices
are replaced by their numerical approximations Ũ1, Ũ2, S̃1, Ṽ1, Ṽ2. These matrices
contain numerical approximations for the fundamental subspaces of A. Suppose that
the gap γ = σ̃r− σ̃r+1 between the last ‘numerically nonzero’ and the first ‘numerically
zero’ singular value is small, such that σ̃r is larger than tolσ̃1 but not much. Then it
is clear that A is nearly as close to being rank r − 1 as it is to being rank r, and the
partitioning (B.2.1) is very sensitive to the value of tol. In this case, it is tricky to
decide the numerical rank. Also, since the dimension of the numerical approximations
for fundamental subspaces depends on the numerical rank, these spaces are harder
to compute. Intuitively, we see that the conditioning of computing the numerical
rank and the fundamental subspaces of A depends on the gap γ. This intuition can
be made precise [Ste91, Ste06], but we will not go into detail here. If one wants to
compute, for instance, the cokernel U2 of the matrix A and use it for further numerical
computations, one should make sure that the gap γ is large enough, such that not too
much accuracy is lost in the numerical computation of Ũ2.

Remark B.2.1. Once the SVD of an invertible square matrix A = USVH is
computed, it can be used to solve the linear system Ax = b via x = VS−1UHb.
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Note that the inversion of the diagonal matrix S is trivial. This leads to a backward
stable algorithm for solving linear systems, but it is not the most efficient one.
Cheaper alternatives use LU factorization with pivoting followed by forward- and back
substitution [TBI97, Lecture 21] or QR factorization followed by back substitution, as
explained in the next section. 4

Remark B.2.2. Note that a unitary matrix Q ‘is its own SVD’ in the sense that
U = Q, S = V = id. All of its singular values are 1 and it has a perfect condition
number κ(Q) = 1. Algorithms of numerical linear algebra make use of this fact all the
time: often they repeatedly apply unitary transformations to a given matrix A, which
is key to prove their backward stability. 4

B.3 QR factorization

Another important matrix factorization is the QR factorization. It can be used in
many important algorithms as an alternative for SVD, and it can be computed in a
backward stable way using roughly half as many floating point operations.

Definition B.3.1 (QR factorization). For a matrix A ∈ Cm×n, a decomposition
A = QR is called a QR factorization of A if

1. Q ∈ Cm×m is unitary,

2. R ∈ Cm×n is upper triangular, meaning that Rij = 0 for i > j.

Theorem B.3.1 (Existence of a QR factorization). Every matrix A ∈ Cm×n has a
QR factorization.

Proof. The proof follows almost immediately from the Gram-Schmidt orthogonalization
process. See [TBI97, Theorem 7.1].

If we assume that m ≥ n and A has rank n, then a QR decomposition of A can be
written as

A = QR =
[
Q1 Q2

] [ R1
0m−n,n

]
= A = Q1R1

and the diagonal entries of R can be chosen real and positive. With these constraints,
the factorization Q = Q1R1 is unique, and it is called the reduced QR factorization of
A [TBI97, Theorem 7.2]. As mentioned above, there are backward stable algorithms
for computing a QR decomposition in the sense that for the computed matrices Q̃, R̃
we have that

‖A− Q̃R̃‖2

‖A‖2
= O(u).

A good way to go is to use Householder reflectors and/or Givens rotations to
systematically ‘create zeros’ in the matrix A by applying orthogonal transformations
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until it becomes upper triangular, see for instance [TBI97, Lecture 10], [Hig02, Chapter
19] or [GVL12, Section 5.2].
Remark B.3.1. As noted in Remark B.2.1, the QR decomposition can be used to
solve linear systems of equations in a backward stable way [TBI97, Lecture 16]. If
A ∈ Cm×m is invertible, then the solution of Ax = b can be found via the equivalent
system Rx = QHb, which can be solved via back substitution. 4

If the rank of A is n, then the columns of the matrix Q1 form an orthonormal basis for
the image (or column space) of A. Unfortunately, the assumption on the rank cannot
be dropped, not even when we replace ‘the columns of Q1’ by ‘a subset of the columns
of Q1. This is shown by the following example, taken from [GVL12, Subsection 5.4.1].
Example B.3.1. Consider the matrix

A =

1 1 1
0 0 1
0 0 1

 with QR factorization A = QR =

1
1

1

1 1 1
0 0 1
0 0 1

 .
It is clear that no subset of the columns of Q is a basis for imA. 4

A solution for this is given by a generalization of the QR decomposition, in which it is
allowed to permute the columns of A [GVL12, Subsection 5.4.1].
Definition B.3.2 (QR factorization with column pivoting). For a matrix A ∈ Cm×n,
a decomposition AP = QR of AP is called a column pivoted QR factorization of A if

1. P is a column permutation matrix. That is, its columns are given by P:,i =
(idm):,π(i), for some permutation π in the symmetric group of order m,

2. Q ∈ Cm×m is unitary,

3. R ∈ Cm×n is upper triangular, meaning that Rij = 0 for i > j.
Definition B.3.3 (Rank-revealing QR decomposition). For a matrix A ∈ Cm×n

of rank r, a column pivoted QR decomposition AP = QR is a rank revealing QR
decomposition if

R =
[

R11 R12
0m−r,r 0m−r,n−r

]
∈ Cm×n,

where R11 ∈ Cr×r is upper triangular and invertible and R12 ∈ Cr×(n−r).

It can be shown [HP92] that a rank-revealing QR decomposition exists for any matrix
A ∈ Cm×n. A rank revealing QR decomposition has some of the nice properties of the
SVD: it reveals the rank r, it gives an orthonormal basis for imA (these are the first r
columns of Q), the rows of RP> form a basis of the row space of A and a basis for
kerA is given by the columns of the n× (n− r) matrix

P
[
−R−1

11 R12
idn−r

]
,
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which can be seen from

AP
[
−R−1

11 R12
idn−r

]
= Q

[
R11 R12

0m−r,r 0m−r,n−r

] [
−R−1

11 R12
idn−r

]
= 0. (B.3.1)

Example B.3.2. For the matrix in Example B.3.1, a rank-revealing QR decomposition
is given by

AP =

1 1 1
0 0 1
0 0 1

1 0 0
0 0 1
0 1 0

 =

1 0 0
0 1 1
0 1 −1

1 1 1
0 1 0
0 0 0

 = QR.

4

Rank revealing QR decompositions are used for solving rank deficient least squares
problems, matrix approximation problems and subset selection problems. See [CH92]
for an overview. A naive, brute force approach to the problem of computing a rank-
revealing QR decomposition is to try all possible permutations of the columns of A and
compute a standard QR decomposition of the permuted matrices. The complexity is,
of course, combinatorial. A lot of research has been conducted on finding a heuristic,
non-combinatorial algorithm for computing a rank revealing QR decomposition. A
first and in many cases effective heuristic for choosing the column permutation P
to yield a rank revealing QR permutation was proposed by Businger and Golub in
[BG65]. The columns are pivoted in such a way that, heuristically, the diagonal of R11
contains ‘large’ elements. This has the effect that the matrix R11 is heuristically well-
conditioned. This is important in case one plans, for instance, to use the factorization
for a kernel computation as in (B.3.1). Indeed, we have seen that the accuracy with
which R−1

11 R12 can be computed is governed by the condition number κ(R11). We
will call the factorization AP = QR computed using the column pivoting strategy of
[BG65] the QR decomposition with optimal column pivoting. Although this strategy
of pivoting works quite well in practice, it does not guarantee to find a rank-revealing
QR decomposition. A well known example by Kahan [Kah66, Example 3.1] shows
that it might fail. Other algorithms have been designed to circumvent these problems,
see for instance [CH92, HP92, CI94, GE96] and references therein.

B.4 Eigenvalue problems

Next to linear system solving, the eigenvalue problem is a fundamental problem in
numerical linear algebra. Recall that for C-vector space V and an endomorphism
A : V → V , a right eigenpair (or simply eigenpair) of A is a tuple

(λ, v) ∈ C× (V \ {0}) such that A(v) = λv.

Here, we will think of V as Cm and of A as a matrix in Cm×m, such that an eigenpair is
(λ, v) ∈ C×(Cm\{0}) satisfying Av = λv. With this notation, λ is called an eigenvalue
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of A, and v is a corresponding (right) eigenvector. The eigenvalues are precisely the
roots of the characteristic polynomial of A, which is χA(λ) = det(λidm − A). One
can easily check that χA(λ) is monic of degree m, so A has m eigenvalues λ1, . . . , λm
‘counting multiplicities’. The multiplicity of an eigenvalue λi as a root of χA(λ) is
called the algebraic multiplicity of the eigenvalue. For each eigenvalue λi, let vi be a
corresponding eigenvector. The equations Avi = λivi can be arranged into the matrix
equation

AV = V∆ where V =
[
v1 · · · vm

]
,∆ =

λ1
. . .

λm

 .
If the eigenvectors v1, . . . , vm are linearly independent, this gives the factorization
A = V∆V−1.

Definition B.4.1 (Eigenvalue decomposition). For a matrix A ∈ Cm×m and an
invertible matrix V ∈ Cm×m, a decomposition A = V∆V−1 is called an eigenvalue
decomposition of A if ∆ is a diagonal matrix.

It is well known that not every matrix A ∈ Cm×m has an eigenvalue decomposition.
Those that do are called nondefective or diagonalizable. These are exactly the matrices
for which the algebraic multiplicity of λi equals the geometric multiplicity of λi, which
is defined as

dimC ker(λiidm −A).
If A is nondefective, then the eigenvalue decomposition A = V∆V−1 shows that when
represented in the basis corresponding to the eigenvectors v1, . . . , vm, A behaves like a
diagonal matrix ∆.

Remark B.4.1. A left eigenpair of A is a tuple (w, λ) ∈ (Cm \ {0})× C such that
wHA = λwH . A vector w coming from such a left eigenpair is called a left eigenvector.
By definition, (λ,w) is a right eigenpair of AH if and only if (w, λ) is a left eigenpair of
A. Note that if A is nondefective, then A = V∆V−1 gives AH = V−H∆HV> where
V−H = (V−1)H = (VH)−1. This shows that the left eigenvectors of A are given by
the columns of V−H . 4

Definition B.4.2 (Similarity). A matrix A ∈ Cm×m is called similar to a matrix
B ∈ Cm×m if there is an invertible matrix V ∈ Cm×m such that A = VBV−1.

If A is similar to B, then A and B have the same eigenvalues. Moreover, they occur
with the same algebraic and geometric multiplicities [TBI97, Theorem 24.3]. This
amounts to saying that the eigenstructure of a linear map is independent of the basis
in which it is represented. A transformation A → V−1AV is called a similarity
transformation.

An important observation related to algorithms for computing the eigenvalues of a
general matrix Am×m is that any such algorithm must be of an iterative nature. By this
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we mean that the algorithm may iteratively compute better and better approximations
of the eigenvalues, but it can never, even in exact arithmetic, compute the eigenvalues
in finite time. This is prohibited by the famous Abel-Ruffini theorem which states that
there is no general expression in radicals for the roots of a (univariate) polynomial
of degree 5 or higher. By the fact that the univariate root finding problem can be
translated to an eigenvalue problem (see Example 3.1.1), the existence of a direct
algorithm for computing eigenvalues would contradict this theorem. The key idea of
many of the most successful eigenvalue solvers is to apply a sequence of similarity
transformations to the matrix A such that the result converges to a structured matrix
from which we can read off the eigenvalues. An example would be to choose invertible
matrices V1,V2, . . . in such a way that the sequence

A→ V−1
1 AV1 → V−1

2 V−1
1 AV1V2 → · · ·

converges to a diagonal matrix ∆. In every step of the sequence, the eigenstructure
is maintained, and after sufficiently many (say k) steps, numerical approximations
of the eigenvalues can be read off the diagonal of Vk · · ·V1AV−1

1 · · ·V
−1
k . Although

this illustrates the idea, this is not what is usually done in practice. There are two
problems with this approach. First of all, we have seen that not every matrix is
diagonalizable. Secondly, if some of the Vi along the way are ill-conditioned, the result
will be contaminated by rounding errors. This indicates that we need a different matrix
factorization which exists for all matrices A ∈ Cm×m, reveals the eigenstructure of A
and, preferably, is such that it can be computed (approximately) by applying unitary
similarity transformations of the form U−1AU. This is where the Schur factorization
comes into play.

Definition B.4.3 (Schur decomposition). For a matrix A ∈ Cm×m, a decomposition
A = UTUH is called a Schur decomposition if T is upper triangular and U is unitary.

It is clear that if A = UTUH = UTU−1 is a Schur decomposition, then A is similar
to T and T has the eigenvalues of A on its diagonal.

Theorem B.4.1. Every matrix A ∈ Cm×m has a Schur decomposition.

Proof. See [GVL12, Theorem 7.1.3] or [TBI97, Theorem 24.9].

Remark B.4.2. In the special case where A is normal (i.e. AHA = AAH), the Schur
decomposition coincides with the eigenvalue decomposition. That is, A = UTUH =
V∆V−1 where T is diagonal and V is unitary. For this reason, normal matrices
are especially nice for eigenvalue decompositions. They can be diagonalized by a
unitary similarity transformation or, equivalently, they have an orthogonal set of m
eigenvectors. 4

The columns of U in the Schur factorization A = UTUH are called the Schur vectors
of A. The matrix U can be chosen such that the eigenvalues appear on the diagonal
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of T in any order [GVL12, Theorem 7.1.3]. If they are ordered in such a way that

T =

R11 · · · R1k
. . . ...

Rkk


where Rii is an upper triangular matrix with only one distinct eigenvalue and the
eigenvalue of Rii is different from the eigenvalue of Rjj for all j 6= i, then there is a
similarity transformation V−1TV = ∆̃ such that

∆̃ =

R11
. . .

Rkk


is a block diagonal matrix with upper triangular blocks Rii ∈ Cµi×µi on its diagonal
[GVL12, Theorem 7.1.6]. If we write V1 for the submatrix of UV given by its first µ1
columns and V1 = im V1, we see that AV1 = V1R11, and thus for any v ∈ V1, Av ∈ V1.
For this reason, V1 is called an invariant subspace of A. We obtain k invariant subspaces
V1, . . . , Vk in this way, of dimensions µ1, . . . , µk respectively.

Most general purpose eigenvalue solvers proceed by approximating the Schur
decomposition of A by a sequence of unitary similarity transformations

A→ UH
1 AU1 → UH

2 UH
1 AU1U2 → · · ·

which converges to an upper triangular matrix T. In this process, usually A is first
brought into so-called upper-Hessenberg form A→ H, which takes only finitely many
similarity transformations, such that the remaining similarity transformations can
exploit this upper-Hessenberg structure. The step A → H has complexity O(m3).
One similarity transformation on H takes O(m2) floating point operations, and usualy
O(m) transformations are needed to reach convergence. In total, this makes the
complexity of the step H → T equal to O(m3). The overall complexity is thus O(m3)
as well. The method is backward stable, in the sense that with enough iterations, the
computed matrices Ũ, T̃ are such that

‖A− ŨT̃ŨH‖2

‖A‖2
= O(u).

For more details, the reader can consult [TBI97, Part V] or [GVL12, Chapter 7].

We should mention that a different type of techniques based on Krylov subspace
iteration is powerful for solving large, sparse eigenvalue problems [TBI97, Lectures 33,
34, 36]. Also, there are several variants of the eigenvalue problem which are important
in applications. Here are a few examples.

1. The generalized eigenvalue problem consists of computing (λ, v) ∈ C× (Cm \{0})
such that Av = λBv for A,B ∈ Cm×m. A backward stable algorithm is given
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by the famous QZ algorithm, which computes a generalization of the Schur
decomposition [GVL12, Section 7.7].

2. The nonlinear eigenvalue problem consists of computing (λ, v) ∈ Ω× (Cm \ {0})
with Ω ⊂ C some compact domain such that F (λ)v = 0 for a matrix valued
analytic function F : Ω→ Cm×m. An important subclass of problems is given
by the case where F = A0 + A1x + · · · + Adx

d is a polynomial with matrix
coefficients. These problems are commonly solved via linearization or contour
integration techniques, see [GT17] for a modern overview. This is the kind of
eigenvalue problem that is encountered when solving a polynomial system via
the hidden variable resultant method. See Subsection 3.4.2 for a brief discussion
and references.

3. The multi-parameter eigenvalue problem can be formulated as follows. Given
Aij ∈ Cmi×mi , 1 ≤ i ≤ n, 0 ≤ j ≤ n, find λ1, . . . , λn ∈ C and vi ∈ (Cmi\{0}), i =
1, . . . , n such that

(A10 +A11λ1 + · · ·+A1nλn)v1 = 0,
(A20 +A21λ1 + · · ·+A2nλn)v2 = 0,

...
(An0 +An1λ1 + · · ·+Annλn)vn = 0.

The classical method for solving such a problem is given by the Delta-method
[Atk72]. More recently, methods based on homotopy continuation have been
developed [DYY16, RLY18]. It turns out that the problem of solving polynomial
systems may be reformulated as a multi-parameter eigenvalue problem. This
observation was used in the bivariate setting in [PH16, BvDD+17].





Appendix C

Error measures

The goal of this appendix is to describe and motivate the way that the quality of an
approximate solution for a (Laurent) polynomial system is assessed in this thesis. Let
C[M ] = C[t±1

1 , . . . , t±1
n ] be the ring of Laurent polynomials in n variables and consider

s nonzero elements f̂1, . . . , f̂s ∈ C[M ]. We denote

f̂i =
∑
a∈Zn

ci,at
a.

Let z̃ ∈ (C∗)n be a numerical approximation for a solution of f̂1 = · · · = f̂s = 0. In
the context of the first four chapters of this thesis, where the f̂i are polynomials in
C[t1, . . . , tn] ⊂ C[M ], we will allow the coordinates of z̃ to be zero. We come back to
this later.

A first observation is that by ‘solving’ the system, in this thesis we usually mean
finding approximations of all solutions. As discussed in Section B.1, the best way to
assess the quality of the result of a numerical computation is by measuring the relative
backward error. This means that we should find a way to ‘measure’ the distance of
the (Laurent) polynomial system f̂1 = . . . = f̂s = 0 to a system f̃1 = · · · = f̃s = 0 for
which all our computed solutions are all exact solutions. Suppose {z̃1, . . . , z̃δ} is a set
of approximate solutions for f̂1 = . . . = f̂s = 0. We could think of (f̂1, . . . , f̂s) as a
generic member of some family F of systems, such that it has the generic number δ of
solutions of that family, and measure (according to some metric on F) the distance of
(f̂1, . . . , f̂s) to a different system (f̃1, . . . , f̃s) ∈ F for which f̃i(z̃j) = 0 for all i and j.
Here’s an example which shows that this is too ambitious.

Example C.0.1. Let (f̂1, f̂2) ∈ FR(3, 3) where R = C[t1, t2] ⊂ C[t±1
1 , t±1

2 ]. We
assume that (f̂1, f̂2) is generic in the sense of Bézout’s theorem (Theorem 3.1.2), which
means that there are 9 solutions VC2(f̂1, f̂2) = {z1, . . . , z9}. However, if we perturb
the points in VC2(f̂1, f̂2) just a little bit to obtain (possibly very good) approximations
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z̃1, . . . , z̃9 for the solutions, there is generically no member of FR(3, 3) whose solutions
are {z̃1, . . . , z̃9}. The reason is that the 9 intersection points of two general cubics
are special: they make all maximal minors of a 10× 9 bivariate Vandermonde matrix
vanish. It is highly unlikely that the numerical solutions computed by some numerical
algorithm land on this subvariety of (C2)9. 4

There are some special families for which the observation in Example C.0.1 does not
really pose a problem. An example is given by the families FC[t](d) of univariate
polynomials of degree at most d. Surprisingly enough, finding good measures for the
backward error of an approximate set of roots of a univariate polynomial is still a
topic of research today [MVD15, TVB20, TTVB20]. Another example is FC[t1,t2](2, 2),
the family of systems given by two quadratic equations in two variables. Almost all
configurations of four points in C2 are the variety of a member of FC[t1,t2](2, 2).

Because of this issue, instead of computing the relative backward error for a set
of solutions we will limit ourselves to computing it for each approximate solution z̃
individually. The idea is to compute (Laurent) polynomials ∆f̂i with ‘small’ coefficients
such that the perturbed functions f̃i = f̂i + ∆f̂i satisfy f̃i(z̃) = (f̂i + ∆f̂i)(z̃) = 0,
i = 1, . . . , s. The relative backward error will be a measure of the size of the coefficients
of ∆f̂i, relative to the size of the coefficients of f̂i. Let us now make this precise. We
look for polynomials of the form

∆f̂i =
∑
ci,a 6=0

∆ci,ata =
∑
ci,a 6=0

εi,aci,at
a,

where the sum ranges over all a such that ci,a 6= 0, such that the parameters εi,a have
small modulus and (f̂i + ∆f̂i)(z̃) = 0. Note that

|εi,a| =
|∆ci,a|
|ci,a|

is the relative size of the perturbation on the coefficient ci,a. A possible measure for
the relative backward error of z̃ is

r(z̃) = min
ε∈Cm

1
s
‖ε‖1 = 1

s

s∑
i=1

∑
ci,a 6=0

|εi,a|,

subject to f̂i(z̃) +
∑
ci,a 6=0

εi,aci,az̃
a = 0, i = 1, . . . , s,

(C.0.1)

Where m denotes the total number of parameters εi,a. The complex optimization
problem C.0.1 may seem hard to solve at first sight. Fortunately, it is not. For
i = 1, . . . , s let bi be such that

|ci,bi z̃
bi | = max

ci,a 6=0
|ci,az̃a|.

Note that
εi,bi = −f̂i(z̃)

ci,bi z̃
bi
, εi,a = 0, a 6= bi, i = 1, . . . , s
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satisfies the constraint of (C.0.1) and gives

1
s
‖ε‖1 = 1

s

s∑
i=1

∣∣∣∣∣ f̂i(z̃)ci,bi z̃
bi

∣∣∣∣∣ = 1
s

s∑
i=1

|f̂i(z̃)|
maxci,a 6=0 |ci,az̃a|

.

This immediately leads to the upper bound

r(z̃) ≤ 1
s

s∑
i=1

|f̂i(z̃)|
maxci,a 6=0 |ci,az̃a|

.

We now prove that this is also a lower bound. Collecting the ci,az̃a in a vector v and
the εi,a in a subvector εi of ε, the constraint of (C.0.1) can be written as v>εi = −f̂i(z̃).
By submultiplicativity of the matrix 1-norm we get

‖v>‖1‖εi‖1 ≥ |f̂i(z̃)|.

Making use of the fact that the 1-norm of a matrix is its maximal absolute column
sum, we get that ‖v>‖1 = ‖v‖∞ = maxci,a 6=0 |ci,az̃a|. We conclude that

r(z̃) = 1
s

s∑
i=1

|f̂i(z̃)|
maxci,a 6=0 |ci,az̃a|

.

This confirms the intuition that the residual can be measured by evaluating the f̂i at
z̃ and checking ‘how zero’ the result actually is, relative to the size of the terms in the
sum. The following chain of inequalities now follows trivially:

1
s

s∑
i=1

|f̂i(z̃)|∑
ci,a 6=0 |ci,az̃a|

≤ r(z̃) ≤ 1
s

s∑
i=1

mi|f̂i(z̃)|∑
ci,a 6=0 |ci,az̃a|

, (C.0.2)

with mi the number of nonzero terms in f̂i. In practice, the lower- and upper bound
for r(z̃) in (C.0.2) are of the same order of magnitude. This means that they are as
good an indication of the relative backward error as r(z̃).

In the case where the f̂i are polynomials or have solutions in (C∗)n with coordinates
that are very close to zero, the terms of f̂i(z̃) may become very small such that taking
the relative error gives awkward results. Consider for instance the case where f̂1 = t1
and f̂2 = t2. For the approximate solution z̃ = (10−16, 10−16) of f̂1 = f̂2 = 0, the
lower bound in (C.0.2) evaluates to 1 (so does r(z̃) and the upper bound in (C.0.2)).
However, z̃ seems like a perfectly acceptable numerical approximation of the actual
solution (0, 0). To avoid this kind of situations, we use a slightly modified version of
the lower bound in (C.0.2) to compute the residual.

Definition C.0.1 (Residual). For f̂1, . . . , f̂s ∈ C[M ] and z̃ ∈ (C∗)n, we define the
residual of z̃ as a solution of f̂1 = · · · = f̂s = 0 as

1
s

s∑
i=1

|f̂i(z̃)|∑
ci,a 6=0 |ci,az̃a|+ 1 .
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The term ‘+1’ in the denominator of the residual in Definition C.0.1 makes the criterion
a mixed criterion: it depends on the magnitude of

∑
ci,a 6=0 |ci,az̃a| whether it behaves

like a relative or an absolute measure. We note that Definition C.0.1 is the measure
for the residual that was used in [TVB18, TMVB18, MTVB19, Tel20].



Appendix D

Polytopes, cones and fans

The algebraic and geometric properties of a normal toric variety are encoded in the
combinatorics of the associated fan. As a consequence, polyhedral geometry is an
important tool for studying certain families of polynomial systems. In this appendix,
we recall the basic properties of polytopes, cones and fans that are relevant in this
context. All of what is discussed here and more can be found in [CLS11, Sections 1.2,
2.2, 2.3, 3.1], where some results are stated without proof but their implications in toric
geometry are highlighted. See also [Ful93, Sections 1.2, 1.4, 1.5] and [Oda89, Appendix
A]. A nice introduction to convex (lattice) polytopes can be found in [CLO06, Chapter
7, §1] and its exercises. A standard reference for convex polytopes in a much more
general context is [Grü13].

D.1 Polytopes

Let M ' Zn be an n-dimensional lattice (by a lattice we mean a free abelian group
of finite rank) and let MR = M ⊗Z R ' Rn be the associated real vector space. The
dual lattice of M is N = HomZ(M,Z) ' Zn and the dual vector space of MR is
(MR)∨ = HomR(MR,R) = N ⊗Z R = NR ' Rn. We denote

〈·, ·〉 : NR ×MR → R, (u,m) 7→ 〈u,m〉

for the natural pairing between NR and MR and its restriction to the lattice N×M → Z.
This is the usual dot product on Rn and its restriction to Zn.

For a subset A ⊂ V of an R-vector space V , the convex hull of A , denoted by Conv(A ),
is the set of sums

∑
m∈A cmm where the coefficients cm ∈ R≥0 are nonnegative, finitely

many cm are nonzero and
∑
m∈A cm = 1.
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Definition D.1.1 (Polytope). A polytope P in MR is the convex hull of a finite set
of points A = {m1, . . . ,mk} in MR:

P = Conv(A ) =
{

k∑
i=1

cimi ∈MR | ci ∈ R,
k∑
i=1

ci = 1, ci ≥ 0
}
⊂MR.

If A ⊂M , P is called a lattice polytope.

Note that we define a polytope to be convex. The reason is that we will not encounter
non-convex polytopes in this text. The dimension dimP of a polytope P ⊂ MR
is defined as the dimension of the smallest affine subspace of MR containing P . A
polytope in MR is said to be full-dimensional if dimP = n.

A point u ∈ NR\{0} and a scalar a ∈ R give a hyperplane

Hu,a = {m ∈MR : 〈u,m〉+ a = 0}

and a closed half-space

H+
u,a = {m ∈MR : 〈u,m〉+ a ≥ 0}.

Definition D.1.2 (Faces of a polytope). Take u ∈ NR\{0}, a ∈ R and let P ⊂MR be
a convex polytope, the set Hu,a∩P is a face of P if P ⊂ H+

u,a and a = −minm∈P 〈u,m〉.
We say that P is a face of P by convention.

A face Q of a polytope is again a polytope, so what we mean by the dimension dimQ
of Q should be clear. The codimension of a face Q ⊂ P is dimP − dimQ. A face
of codimension 1 in P is called a facet, a face of dimension 1 is an edge and a face
of dimension 0 is a vertex. A hyperplane Hu,a for which Hu,a ∩ P is a face of P is
called a supporting hyperplane. Any polytope can be expressed as the intersection of
finitely many closed half-spaces H+

u,a associated to supporting hyperplanes. That is,
any polytope P ⊂MR can be written as

P = H+
u1,a1

∩ · · · ∩H+
uk,ak

= {m ∈MR | 〈ui,m〉+ ai ≥ 0, i = 1, . . . , k} (D.1.1)

for some u1, . . . , uk ∈ NR, a1, . . . , ak ∈ R. We collect the vectors u1, . . . , uk in a matrix
F = [u1 · · · uk] ∈ Rn×k (we identify NR with Rn) and the numbers a1, . . . , ak in a
vector a ∈ Rk to use the short notation

P = {m ∈MR | 〈ui,m〉+ ai ≥ 0, i = 1, . . . , k} = {m ∈MR | F>m+ a ≥ 0}. (D.1.2)

The representation in equations (D.1.1), (D.1.2) is called a half-space representation
or H-representation1 of the polytope P . There exist infinitely many different H-
representations for any polytope. However, if P is full-dimensional, there exists an

1A different representation of a polytope using finitely many data is given by a list of its vertices.
This is called a vertex representation or V-representation. This is important for computational
purposes, but H-representations are more important in the context of this thesis.
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u1u2

u3
Hu2,a2

H+
u2,a2

Figure D.1: Illustration of a lattice polytope of dimension 2 and its primitive inward
pointing facet normals.

essentially unique, minimal H-representation of P , in the sense that it consists of
a minimal number k of inequalities where the inequalities are uniquely defined up
to multiplication with a nonzero scalar. Suppose that P is full-dimensional. For a
supporting hyperplane Hu,a corresponding to a facet Q of P , the vector u is uniquely
determined up to a nonzero scalar factor. For every facet Q, let uQ, aQ be such that
P ⊂ H+

uQ,aQ
,HuQ,aQ

∩ P = Q. The minimal H-representation of P is given by

P =
⋂

Q facet of P
H+
uQ,aQ

.

If P is a full-dimensional lattice polytope, then for any facet Q ⊂ P , uQ can be chosen
in a unique way as the generator of the sublattice

{u ∈ N | 〈u,m〉 = 0 for all m ∈ Q}

for which P ∈ H+
uQ,aQ

. This is called the primitive, inward pointing facet normal of
Q. Geometrically, it is the inward pointing integer vector perpendicular to Q of the
smallest length. In the following, by ‘the facet normal’ associated to Q we mean the
primitive, inward pointing facet normal.

Example D.1.1. Figure D.1 shows a full-dimensional polytope in R2 (a 2-dimensional
polytope is also called a polygon) together with its interior lattice points and primitive
inward pointing facet normals. The matrix F corresponding to the minimal H-
representation for this example is given by

F =
[
−2 1 1
−1 2 −1

]
= [u1 u2 u3].

The supporting hyperplane Hu2,a2 is also shown in Figure D.1, and its corresponding
half-space H+

u2,a2
(shaded in green) contains the polytope. We note that, strictly

speaking, the orange arrows do not belong in the same picture: they live in the dual
plane (R2)∨. However, the figure may give some geometric intuition. 4
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We will need to define a few operations on polytopes. For any polytope P ⊂ MR
and any λ ∈ R, λ ≥ 0, we define the polytope λP as λP = {λp : p ∈ P}. This is
called a dilation of the polytope P and all dilations are obtained by restricting scalar
multiplication in MR to P . Somewhat less familiar is the binary operation of ‘adding
polytopes’ together.

Definition D.1.3 (Minkowski sum). Let P andQ be polytopes inMR. The Minkowski
sum of P and Q is

P +Q = {p+ q : p ∈ P, q ∈ Q} ⊂MR.

Definition D.1.4. The n-dimensional volume of a polytope P ⊂ Rn with coordinates
x1, . . . , xn on Rn is defined as

Voln(P ) =
∫
· · ·
∫
P

1 dx1 · · · dxn.

Theorem D.1.1. Given the collection P1, . . . , P` of polytopes in Rn, the function

f(λ1, . . . , λ`) = Voln(
∑̀
i=1

λiPi)

is a homogeneous polynomial of degree n in the λi.

Proof. See [CLO06, Chapter 7, §4, Proposition 4.9].

In the case where ` = n, one coefficient of the homogeneous polynomial of Theorem
D.1.1 is of special interest to us, for reasons that are given in Section 5.1.

Definition D.1.5 (Mixed volume). The n-dimensional mixed volume of a collection
of n polytopes P1, . . . , Pn in Rn, denoted MV(P1, . . . , Pn), is the coefficient of the
monomial λ1λ2 · · ·λn in Voln(

∑n
i=1 λiPi).

There are several different formulas for the mixed volume MV(P1, . . . , Pn), although
not all of them are useful for computational purposes. State of the art implementations
use the characterization of the mixed volume as the sum of the volumes of the mixed
cells in a mixed subdivision of P1 + · · ·+ Pn [HS95, EC95]. An interesting formula for
the case n = 2 is given by

MV(P1, P2) = Vol2(P1 + P2)−Vol2(P1)−Vol2(P2). (D.1.3)

D.2 Polyhedral cones

For a subset A ⊂ V of an R-vector space V , the cone over V , denoted by Cone(A ),
is the set of finite sums

∑
u∈A λuu with λu ∈ R≥0.
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Definition D.2.1 (Convex polyhedral cone). A convex polyhedral cone (CPC) in a
finite dimensional R-vector space V is a subset of the form

σ = Cone(A ) =
{∑
u∈A

λuu : λu ∈ R≥0

}
⊂ V,

where A ⊂ V is finite. We say that σ is generated by A . By definition, Cone(∅) = {0}.

The dimension of a CPC is the dimension of the smallest affine subspace containing it.
Convex polyhedral cones are the only type of cones we work with in this thesis, which
is why sometimes we refer to them simply as cones. Our cones will live in the vector
spaces NR and MR related to the lattices N and M as defined in Section D.1. For any
CPC σ ⊂ NR, its dual cone σ∨ ⊂MR is defined as

σ∨ = {m ∈MR | 〈u,m〉 ≥ 0,∀u ∈ σ}.

One can check that the dual cone is indeed a cone and (σ∨)∨ = σ. As suggested by
this notation, ‘dual cones’ (who are themselves cones) live in MR, i.e. in the context of
cones we think of MR as the dual space. Note that for polytopes, this was the other
way around. This convention is motivated by toric geometry (see Appendix E).

Hyperplanes and half-spaces in NR are defined just like in MR. A point m ∈MR\{0}
and a scalar a ∈ R give a hyperplane

Hm,a = {u ∈ NR : 〈u,m〉+ a = 0}

and a closed half-space

H+
m,a = {u ∈ NR : 〈u,m〉+ a ≥ 0}.

Just like a polytope, a cone is a finite intersection of finitely many closed half-spaces.

Definition D.2.2 (Faces of a cone). Take m ∈ MR\{0} and let σ ⊂ V be a CPC,
the set τ = Hm,0 ∩ σ is a face of σ if σ ⊂ H+

m,0. By convention, the cone σ is regarded
as a face of itself.

One shows that for a CPC σ, every face of σ is a CPC, an intersection of faces is again
a face and a face of a face is a face. Rays and facets of σ are faces of dimension 1 and
codimension 1 in σ respectively.

Definition D.2.3 (Strong convexity). A CPC σ is called strongly convex or pointed
if σ ∩ (−σ) = {0}.

The fact that we are working with cones in NR and MR suggests that we will be mainly
interested in cones that interact nicely with the lattices N ⊂ NR and M ⊂MR. This
is indeed the case. Rational polyhedral cones are to CPCs what lattice polytopes are
to convex polytopes.
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e2

e1

e3

e2

e1

e3

Figure D.2: Left: a rational polyhedral cone σ in R3. Right: its dual cone σ∨.

Definition D.2.4. A set σ ⊂ NR is a rational polyhedral cone if σ = Cone(A ) for a
finite set A ⊂ N .

A rational polyhedral cone σ∨ ∈MR gives the subset Sσ = σ∨ ∩M ⊂M . The set Sσ
inherits some algebraic structure from the lattice: it is closed under the (associative
and commutative) binary operation ‘+’ and it contains its identity element 0. In
other words, Sσ is a commutative monoid. For any finite subset A ⊂M we get the
submonoid

NA = {
∑
m∈A

cmm | cm ∈ N} ⊂M.

A subset S ⊂M is called an affine semigroup if it arises in this way, i.e., if S = NA
for some finite subset A ⊂M .

Lemma D.2.1 (Gordan’s Lemma). If σ ⊂ NR is a rational polyhedral cone, then
Sσ = σ∨ ∩M ⊂M is an affine semigroup.

Proof. See [CLS11, Proposition 1.2.17].

Example D.2.1. In Figure D.2 a rational polyhedral cone σ and its dual are depicted.
The cone σ is generated by {(1, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 1)}. The dual cone is
generated by {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1,−1)}. Each element of these finite sets
generates a ray. 4

Example D.2.2. A full-dimensional polytope P ⊂ MR gives rise to some full
dimensional cones in the following way. For each vertex vi ∈ P , we translate P by
adding the point −vi to obtain the polytope Pi− vi. We denote σ∨

i = Cone(Pi− vi) ⊂
MR. If P is a lattice polytope, then all the cones σ∨

i obtained in this way are rational
polyhedral cones. An example for the polygon from Example D.1.1 is shown in Figure
D.3 with v1 = Hu1,a1 ∩Hu3,a3 , v2 = Hu1,a1 ∩Hu2,a2 , v3 = Hu2,a2 ∩Hu3,a3 . 4
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P

σ∨
1

σ∨
2

σ∨
3

Figure D.3: A translated version of the polytope P from Example D.1.1 and the cones
associated to the vertices.

D.3 Fans

Definition D.3.1 (Fan). A fan in NR ' Rn is a finite collection Σ of strongly convex
rational polyhedral cones σ ⊂ NR satisfying

1. for all σ ∈ Σ, every face τ ⊂ σ is in Σ.

2. the intersection σ ∩ σ′ for any σ, σ′ ∈ Σ is a face of both σ and σ′.

The support |Σ| of Σ is defined as |Σ| =
⋃
σ∈Σ σ ⊂ NR and by Σ(d) ⊂ Σ we denote

the set of d-dimensional cones of Σ.

The set Σ(1) is the set of rays of Σ. The primitive ray generator of a ray ρ ∈ Σ(1)
is the generator of the monoid ρ ∩N (i.e. it is the ‘smallest’ nonzero integer vector
contained in the ray). The most important fans for our purpose are those arising as
the normal fan of a lattice polytope. Consider a minimal H-representation

P = {m ∈MR | 〈ui,m〉+ ai ≥ 0, i = 1, . . . , k}
of a full-dimensional lattice polytope P ⊂ MR, where ui is the primitive, inward
pointing facet normal of the facet Qi (see Section D.1 for a definition). We have seen
a way of obtaining cones from P in Example D.2.2. For a vertex v ∈ P , we define
σ∨
v = Cone(P −v) = Cone({m−v | m ∈ P}) ⊂MR and σv = (σ∨

v )∨. Every face of σ∨
v

corresponds to a face of P containing v, and in particular all facets of σ∨
v correspond

to facets of P containing v. Hence
σ∨
v = {m ∈MR | 〈ui,m〉 ≥ 0, for all i such that 〈ui, v〉+ ai = 0}.

This is exactly the definition of the dual cone of a cone generated by the {ui | 〈ui, v〉+
ai = 0}, so

σv = Cone({ui | 〈ui, v〉+ ai = 0}) = Cone({ui | v ∈ Qi}).
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P

σ1

σ2

σ3

Figure D.4: The normal fan ΣP of P from Example D.1.1. The primitive ray generators
are drawn in orange, the color of the dimension 2 cones of ΣP corresponds to the color
of their duals in Figure D.3.

We generalize this construction for higher dimensional faces Q ⊂ P by setting

σQ = Cone({ui | Q ⊂ Qi}).

The set of cones that we obtain in this way has some nice properties. For example, for
any face Q ⊂ P we have dimQ+ dim σQ = n. This means that for a vertex v, σv is
an n-dimensional cone. Also, one can prove that the cones σv corresponding to the
vertices of P cover the whole vector space:

NR =
⋃

v vertex of P
σv =

⋃
Q face of P

σQ.

See for instance [CLS11, Proposition 2.3.8].

Theorem D.3.1. Let P ⊂ MR be a full dimensional lattice polytope. Then
{σQ | Q is a face of P} is a fan.

Proof. See [CLS11, Theorem 2.3.2].

The collection ΣP = {σQ | Q face of P} is called the normal fan of P . The support
of ΣP is |ΣP | = NR. Fans in NR whose support is NR are called complete.

Example D.3.1. An illustration of a normal fan for the polytope from Example
D.1.1 can be found in Figure D.4. Note that in Figure D.4 the cones are drawn in
NR ' R2, whereas in Figure D.3, the picture is in the dual space MR ' R2. The
primitive ray generators of ΣP (1) are exactly the inward pointing facet normals from
Example D.1.1 and ΣP is complete. 4



Appendix E

Toric geometry

This appendix summarizes some basic results from toric geometry to support the
material presented in Chapter 5. Our motivation for studying toric varieties is the
fact that they are natural solution spaces for systems of polynomial equations coming
from polyhedral families. The toric varieties we are mostly interested in are complete,
normal toric varieties. The structure of such a variety X is completely encoded by a
complete fan Σ. The cones in Σ correspond to the affine toric varieties which form
an open cover of X. In Section E.1 we discuss affine toric varieties, which are the
fundamental building blocks of abstract toric varieties. Section E.2 discusses projective
toric varieties and their connection with polytopes and their normal fans. For more
details, a great first introduction and a modern treatment of toric geometry, the reader
is referred to [CLS11]. Alternatively, the books [OM78, Ful93] are standard, more
classical references. These notes are strongly based on an exam paper the author
wrote for a course on algebraic geometry at KU Leuven taught by Nero Budur.

E.1 Affine toric varieties

Perhaps the most basic example of an affine toric variety is the algebraic torus
(C∗)n. This variety has the extra structure of an abelian group under element-wise
multiplication:

(t1, . . . , tn) · (u1, . . . , un) = (t1u1, . . . , tnun).

By a torus T we mean an affine variety isomorphic to (C∗)n, where the isomorphism
respects this group structure: it is an isomorphism of varieties which is also an
isomorphism of groups. A character of a torus T is a group homomorphism χ : T → C∗.
A tuple of integers m = (m1, . . . ,mn) ∈ Zn gives a character χm : (C∗)n → C∗ defined
by χm(t1, . . . , tn) = tm1

1 · · · tmn
n . One shows that all possible characters of (C∗)n arise

in this way [Hum12, Section 16.2, Lemma A-B], so the characters of (C∗)n form a

313
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group isomorphic to Zn. For any torus T , the characters form a free abelian group of
finite rank

M = HomZ(T,C∗).
Such a group is called a lattice, which is why M is sometimes referred to as the
character lattice. Every m ∈M gives a character χm. The rank of M is equal to the
dimension of T as a variety.

Example E.1.1. For T = (C∗)n, the group of characters M ' Zn can be thought
of as the Laurent monomials in n variables. An element m ∈M corresponds to the
character of evaluating the Laurent monomial tm. Therefore, for an arbitrary torus T
the isomorphism T ' (C∗)n induces an isomorphism M ' Zn that turns characters
into Laurent monomials. 4

Another important group associated to a torus T is the Z-dual N of M :

N = HomZ(M,Z) = HomZ(C∗, T ).

This is the group of one-parameter subgroups or cocharacters of T . By definition, a
one-parameter subgroup or cocharacter is a group homomorphism λ : C∗ → T . An
integer tuple u = (u1, . . . , un) ∈ Zn, gives a cocharacter λu : C∗ → (C∗)n with

λu(t) = (tu1 , . . . , tun).

All cocharacters of (C∗)n arise in this way, which establishes N ' Zn. As for any
torus T we have T ' (C∗)n for some n, the (co-)character lattices M and N can be
thought of as two (dual) copies of Zn.

Definition E.1.1 (Affine toric variety). An affine toric variety is an irreducible affine
variety Y containing a torus T ' (C∗)n as a Zariski open subset such that the action
of T on itself extends to an action T × Y → Y of T on Y , given by a morphism.

Example E.1.2. The torus (C∗)n itself is obviously an affine toric variety. The same
holds for Cn. Indeed, Cn is irreducible, (C∗)n = Cn\VCn(x1 · · ·xn) and the action of
(C∗)n on itself extends to an action (C∗)n × Cn −→ Cn on Cn by

(t1, . . . , tn)× (x1, . . . , xn) −→ (t1x1, . . . , tnxn).

4

Example E.1.3. This is Example 1.1.5 in [CLS11]. Consider the variety Y =
{xy − zw = 0} ⊂ C4. This is an affine toric variety with torus

Y ∩ (C∗)4 = {(t1, t2, t3, t1t2t−1
3 ) : ti ∈ C∗} ' (C∗)3. (E.1.1)

The torus action extends to an action on Y by

(t1, t2, t3)× (x, y, z, w) −→ (t1x, t2y, t3z, t1t2t−1
3 w).

4
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We introduce three ways of constructing affine toric varieties: from a set of lattice
points, from a toric ideal or from affine semigroups (and cones).
Let A = {m1, . . . ,ms} ⊂ M be a finite subset of the character lattice M ' Zn of
(C∗)n. Consider the map

φA : (C∗)n −→ Cs given by φA (t) = (χm1(t), . . . , χms(t)).

We define YA = imφA , where · is the Zariski closure in Cs.

Proposition E.1.1. Given the finite subset A ⊂ M . Let ZA be the sublattice
generated by A . Then YA is an affine toric variety whose torus has character lattice
ZA = {

∑
m∈A cmm | cm ∈ Z for all m ∈ A }.

Proof. See [CLS11, Proposition 1.1.8].

Example E.1.4. Consider again the affine variety Y of Example E.1.3 with torus
T = (C∗)3. This is the toric variety YA defined by

A = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1,−1)} ⊂ Z3.

Indeed, φA gives the isomorphism of tori in (E.1.1). 4

Note that in particular, Proposition E.1.1 implies dim(YA ) = rank(ZA ), so it is equal
to n if and only if the elements of A form an R-basis for MR = Rn. Equivalently, if we
stack the elements of A into an n× s matrix A =

[
m1 · · · ms

]
, then dim(YA ) =

rank(A). Let φ̂A : Zs −→M be the Z-map represented by the matrix A and define
L = ker φ̂A . Let e1, . . . , es be the standard basis of Zs. For ` = (`1, . . . , `s) ∈ L, define

`+ =
∑
`i>0

`iei, `− = −
∑
`i<0

`iei.

The binomial x`+ − x`− ∈ C[x1, . . . , xs] vanishes on YA ⊂ Cs by construction (see
below). Doing this for all ` ∈ L gives an ideal IA .

Proposition E.1.2. The vanishing ideal I(YA ) of the affine toric variety YA is

IA = 〈x`+ − x`− : ` ∈ L〉.

Proof. For ` ∈ L, let f` = x`+ − x`− . For any t ∈ (C∗)n,

f`(φA (t)) = t

∑
`i>0

`imi − t−
∑

`i<0
`imi = 0,

since
∑
`i>0 `imi = −

∑
`i<0 `imi by ` ∈ L. Hence every element of IA vanishes on

imφA and the inclusion IA ⊂ I(YA ) follows immediately. The opposite inclusion is
proved by contradiction, see [CLS11, Proposition 1.1.9].
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Example E.1.5. Consider once more the affine toric variety Y from Example E.1.3.
From Example E.1.4 we know that the matrix A defining φ̂A is

A =

1 0 0 1
0 1 0 1
0 0 1 −1


and L is spanned by

[
1 1 −1 −1

]>. Taking coordinates x, y, z, w on C4, this gives
IA = 〈xy − zw〉. The generator is exactly the defining equation given in Example
E.1.3. 4

An ideal of the form 〈x`+ − x`− : ` ∈ L〉 for any sublattice L ⊂ Zs is called a lattice
ideal. A prime lattice ideal is a toric ideal. It can be shown [CLS11, Proposition
1.1.11] that the set of toric ideals is the set of prime ideals generated by binomials
(note that only one inclusion is obvious). It turns out that all affine toric varieties are
the zero locus of a toric ideal, hence every affine toric variety is cut out by binomial
equations.

We have looked at affine toric varieties as the closure of the image of a Laurent monomial
map and as the zero locus of a toric ideal. Our third construction will exploit the
connection between the coordinate rings of affine toric varieties and semigroup algebras.
We have encountered affine semigroups before in Section D.2. We recall the definition.

Definition E.1.2 (Affine semigroup). An affine semigroup is a set S with an
associative binary operation ‘+’ and identity element 0 such that:

1. ‘+’ is commutative,
2. S is finitely generated: there is a finite set A such that NA = {

∑
m∈A amm | am ∈

N} ⊂ S,
3. the semigroup can be embedded in a lattice M .

For our purpose, S is embedded into the character lattice M of some torus, so S ⊂M
and S is generated by a finite set A of characters.

Definition E.1.3 (Semigroup algebra). Given an affine semigroup S ⊂ M , the
semigroup algebra C[S] over S is the C-vector space with basis S and multiplication
induced by the semigroup structure of S. That is,

C[S] =
{∑
m∈S

cmχ
m : cm ∈ C, cm 6= 0 for finitely many m

}

and multiplication is defined by χm · χm′ = χm+m′ .

Note that if A = {m1, . . . ,ms} generates S, then C[S] = C[χm1 , . . . , χms ]. The reader
can think of M as Zn and of the χm as Laurent monomials.
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Proposition E.1.3. Let S ⊂ M be an affine semigroup generated by A =
{m1, . . . ,ms}. Then

1. C[S] is an integral domain and finitely generated as a C-algebra.
2. C[S] ' C[YA ] where C[YA ] is the coordinate ring of YA , hence YA =

MaxSpec(C[S]).
3. The character lattice of the torus TYA of YA is ZS.

Proof. Since S ⊂ M we have C[S] ⊂ C[M ] and C[M ] is the coordinate ring of
the torus (C∗)n with character lattice M . Since (C∗)n is irreducible, C[M ] is an
integral domain and so is C[S]. The algebra C[S] is finitely generated because C[S] =
C[χm1 , . . . , χms ]. For the second statement, consider the C-algebra homomorphism
(φA )∗ : C[x1, . . . , xs] → C[M ] defined by xi 7→ χmi ∈ C[M ] (note that this is the
pullback of the Laurent monomial map φA ). We have ker(φA )∗ = IA and the image
im(φA )∗ is C[χm1 , . . . , χms ] = C[S]. Therefore

C[YA ] = C[x1, . . . , xs]/IA
= C[x1, . . . , xs]/ ker(φA )∗ ' im(φA )∗ = C[S].

The third statement follows from ZS = Z(NA ) = ZA and Proposition E.1.1.

A nice fact is that all affine toric varieties arise from the three equivalent constructions
introduced above. The following is Theorem 1.1.17 in [CLS11].

Theorem E.1.1. Let Y be an affine variety. The following are equivalent:

1. Y is an affine toric variety,
2. Y = YA for a finite set A in a lattice,
3. Y is the variety of a toric ideal,
4. Y = MaxSpec(C[S]) for an affine semigroup S.

The interpretation of YA as MaxSpec(C[S]) for an affine semigroup S leads to an
interesting relation with rational polyhedral cones (see Section D.2).

Proposition E.1.4. Let σ ⊂ NR ' Rn be a rational polyhedral cone and let Sσ =
σ∨ ∩M . Then Uσ = MaxSpec(C[Sσ]) is an affine toric variety.

Proof. The theorem follows immediately from Lemma D.2.1 and Proposition E.1.3.

One can show that dim(Uσ) = n if and only if σ is strongly convex [CLS11, Proposition
1.2.18]. The reason why the affine toric variety Uσ is defined by the affine semigroup
σ∨ ∩M rather than σ ∩ N will become clear later. A nice property of affine toric
varieties of the form Uσ where σ is strongly convex is that they are normal. The reason
that this is a desirable property for a variety is that it allows to develop a nice theory
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of divisors. The definition of normality is quite technical, but we will include it for
completeness. We will see shortly that ‘normality’ is easy to describe for affine toric
varieties. An integral domain R is called integrally closed if it is integrally closed in its
field of fractions. This means that for any monic polynomial f ∈ R[x] and x∗ ∈ K(R),
f(x∗) = 0 implies x∗ ∈ R ⊂ K(R).

Definition E.1.4 (Normal varieties). An irreducible affine variety Y is normal if its
coordinate ring C[Y ] is integrally closed.

For semigroup algebras the property of being integrally closed corresponds to the more
geometric notion of the semigroup being saturated. Intuitively speaking, this means
that the semigroup has ‘no holes’ in its ambient lattice.

Definition E.1.5 (Saturated semigroup). An affine semigroup S ⊂M is said to be
saturated in M if for all k ∈ N\{0} and m ∈M , km ∈ S implies m ∈ S.

Theorem E.1.2. Let Y be an affine toric variety with torus T . Let M and N be the
character and cocharacter lattice of T . The following are equivalent:

1. Y is normal,
2. Y = MaxSpec(C[S]) where S ⊂M is a saturated affine semigroup,
3. V = Uσ where σ ⊂ NR is a strongly convex rational polyhedral cone.

Proof. This is Theorem 1.3.5 in [CLS11].

Example E.1.6. Let S = N{2, 3} ⊂ Z, such that C[S] = C[t2, t3]. The associated
toric variety is Y = Y{2,3} = VC2(x3 − y2). This variety is not normal, since S =
{0, 2, 3, 4, . . .} is not saturated in the character lattice M = Z{2, 3} of Y . Its coordinate
ring C[S] is not integrally closed, since t ∈ K(C[S]) \ C[S] is a root of the monic
polynomial x2 − t2 ∈ C[S][x]. 4

Example E.1.7. Let S = N{2} ⊂ Z, such that C[S] = C[t2] ' C[t], and Y =
MaxSpec(C[S]) ' C is normal. This does not contradict Theorem E.1.2, since the
torus T of Y has character lattice ZS = 2Z ⊂ Z, in which S is saturated. 4

Example E.1.8. The variety Y from Example E.1.3 is the variety YA as shown in
Example E.1.4 and it is the variety Uσ for the convex polyhedral cone σ from Example
D.2.1. Therefore Y = MaxSpec(C[Sσ]) with Sσ the affine semigroup generated by A .
The affine semigroup Sσ is saturated, hence Y is a normal affine variety. 4

E.2 Projective toric varieties and polytopes

Like in the affine case, our first description of projective toric variety will be based on
monomial maps. Next, we show how such a projective toric variety is covered by open
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subsets isomorphic to affine toric varieties. Finally, we define the toric variety of a
polytope through its normal fan.

The inclusion (C∗)n → Pn given by

(t1, . . . , tn) 7→ (1 : t1 : · · · : tn)

shows that (C∗)n is a dense open subset of Pn. We will denote the (isomorphic) image
of (C∗)n by TPn ⊂ Pn. Moreover, the action of (C∗)n on itself extends to an action
of (C∗)n on Pn, which is given by a morphism. These will be the requirements we
impose on a projective variety for it to be toric, generalizing Definition E.1.1.

Definition E.2.1 (Projective toric variety). A projective toric variety is an irreducible
projective variety X containing a torus T ' (C∗)n as a Zariski open subset such that
the action of T on itself extends to an action T × X → X of T on X, given by a
morphism.

Let M be the character lattice of (C∗)n and consider a finite set A = {m0, . . . ,ms} ⊂
M . We consider the map

π : (C∗)s+1 → Ps given by (t0, . . . , ts) 7→ (t0 : · · · : ts).

The set A ⊂ M gives an affine toric variety YA = imφA ⊂ Cs+1 as before, and
imφA ⊂ (C∗)s+1. Composing the map φA with π, we get a map

(C∗)n φA−→ (C∗)s+1 π−→ Ps.

We define XA = im(π ◦ φA ) ⊂ Ps.

Theorem E.2.1. The projective variety XA is a projective toric variety whose
dimension is equal to the dimension of the smallest affine subspace of MR containing
A . Its torus has character lattice

Z′A =
{

s∑
i=0

aimi | ai ∈ Z,
s∑
i=1

ai = 0
}
.

Proof. See Propositions 2.1.2 and 2.1.6 in [CLS11].

Example E.2.1 (Segre embedding). Let M = Z2 and

A = {(0, 0), (1, 0), (0, 1), (1, 1)} ⊂M.

Let x, y be coordinates on (C∗)2 and let u, s, v, t be homogeneous coordinates on P3.
The map π ◦ φA : (C∗)2 → P3 is given by

(x, y)→ (1 : x : y : xy).

The closure of the image in P3 can be shown to be XA = {ut− sv = 0} ⊂ P3. The
projective variety XA is the image of the Segre embedding of P1 × P1 in P3 and hence
XA ' P1 × P1. 4
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Theorem E.2.1 shows that the dimension of the projective toric variety is not determined
by the dimension of the linear R-span of the lattice points in M , but rather by the
affine R-span. This is illustrated by our standard example.

Example E.2.2. For the variety Y from Example E.1.3, we have that Y = YA =
VC4(xy − zw) with A = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1,−1)}. Note that YA is closed
under the action C∗ × C4 → C4 of ‘scalar multiplication’ by C∗. The map π is the
projection (x, y, z, w) 7→ (x : y : z : w) along the orbits of this action. The projective
toric variety XA ⊂ P3 is given by the equation xy − zw = 0, which was already
homogeneous. In this example, YA is of one dimension higher than XA (π maps lines
in imφA to points in XA , so it takes away one dimension) and it is the affine cone
over XA . 4

Example E.2.2 is an illustration of the following result, which is Proposition 2.1.4 in
[CLS11]. It uses the notation Hu,a for a hyperplane in MR defined by u ∈ NR and
a ∈ R (see Section D.1).

Proposition E.2.1. Let YA , XA , IA be the affine toric variety, projective toric
variety and toric ideal defined by the finite subset A = {m0, . . . ,ms} ⊂M . Let IL be
as in Proposition E.1.2 and let S = C[x0, . . . , xs] be the homogeneous coordinate ring
of Ps. The following are equivalent:

1. YA is the affine cone over XA ,
2. IL = IS(XA ),
3. IL is homogeneous,
4. A ⊂ Hu,a ⊂MR for some u ∈ N and a ∈ N>0.

Proposition E.2.1 can be used to obtain the ideal IS(XA ) even if A is not contained in
a hyperplane in MR. The trick is to replace A by A × {1} = {(m0, 1), . . . , (ms, 1)} ⊂
M × Z. Observe that XA = XA ×{1} and A × {1} ⊂ Hu,1 with u = (0, . . . , 0, 1).

Let x0, . . . , xs be homogeneous coordinates on Ps and define Ui = Ps\V (xi), i =
0, . . . , s as the usual affine charts of Ps. It is clear that TPs ⊂ Ui for all i. Let TXA

denote the torus of XA . We have

TXA = XA ∩ TPs ⊂ XA ∩ Ui.

Since XA is the Zariski closure of TXA in Ps, XA ∩ Ui is the Zariski closure of
TXA ∩ Ui = TXA in Ui ' Cs and hence XA ∩ Ui is an affine toric variety.

Proposition E.2.2. Let XA ⊂ Ps be defined as above by A = {m0, . . . ,ms} ⊂ M .
The affine piece XA ∩Ui is isomorphic to the affine toric variety YAi

= MaxSpec(C[Si])
with Ai = A −mi = {m0−mi, . . . ,mi−1−mi,mi+1−mi, . . . ,ms−mi} and Si = NAi.

Proof. The isomorphism Ui ' Cs is given by

(a0 : · · · : as)
φi−→
(
a0

ai
, . . . ,

ai−1

ai
,
ai+1

ai
, . . . ,

as
ai

)
,
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see Subsection 2.2.5. Now, we can apply φi to XA ∩Ui. Combining this with the map
π ◦ φA we obtain that XA ∩ Ui is isomorphic to the closure of the image of the map
(C∗)n −→ Cs given by

t 7→ (χm0−mi(t), . . . , χmi−1−mi(t), χmi+1−mi(t), . . . χms−mi(t)),

which is by definition equal to the affine toric variety YAi . The equality YAi =
MaxSpec(C[Si]) follows from Proposition E.1.3.

Since the isomorphism XA ∩ Ui ' YAi
= MaxSpec(C[Si]) induces an isomorphism of

coordinate rings C[Si] → C[XA ∩ Ui] which sends χmj−mi to xj

xi
+ IAi

, we get that
XA ∩ Ui ∩ Uj = XA ∩ Uj ∩ Ui is isomorphic to

(YAi
)χmj −mi = MaxSpec(C[Si]χmj −mi ) ' MaxSpec(C[Sj ]χmi−mj ) = (YAj

)χmi−mj .

Since Ps =
⋃s
i=0 Ui we have XA =

⋃s
i=0 X ∩ Ui. It turns out that some of the affine

pieces in this decomposition may be redundant.

Proposition E.2.3. Given A = {m0, . . . ,ms} ⊂ M , let P = Conv(A ) ⊂ MR and
define T = {j ∈ {0, . . . , s} : mj is a vertex of P}. Then

XA =
⋃
j∈T

XA ∩ Uj .

Proof. We give a sketch of the proof, more details can be found in [CLS11, Proposition
2.1.9]. The key observation is that when mi is not a vertex of P , then there is
mj , j ∈ T such that both mi −mj ∈ Si and mj −mi ∈ Si. This means that χmj−mi

is invertible in C[Si] and thus C[Si]χmj −mi = C[Si]. It follows that XA ∩ Ui ∩ Uj '
YAi
∩ YAj

= MaxSpec(C[Si]χmj −mi ) = MaxSpec(C[Si]) = YAi
' XA ∩ Ui. This

implies XA ∩ Ui ⊂ Uj .

Proposition E.2.3 illustrates how polytopes pop up naturally in describing projective
toric varieties. Given a full-dimensional lattice polytope P ⊂MR ' Rn where M = Zn,
we can associate a projective toric variety to it by constructing XP∩M via the monomial
map φP∩M . In some cases, however, when the polytope P contains ‘too few’ lattice
points, this construction leads to a toric variety which is not normal, which is a
property we need our toric variety to have for some of the purposes in this thesis.

Definition E.2.2. A variety X with affine open cover X = ∪i∈T Ui is normal if each
of the affine varieties Ui is normal.

From this definition we see that if the affine semigroup generated by P ∩M −mi for
some vertex mi ∈ P has ‘holes’ in M , the variety X is not normal. We will avoid
this by enlarging the polytope P until it has ‘enough’ lattice points. Let us make this
precise.
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Definition E.2.3. A lattice polytope P ⊂MR is called very ample if for every vertex
m ∈ P , the semigroup SP,m = N(P ∩M −m) generated by the set P ∩M −m is
saturated in M .

Proposition E.2.4. If P ⊂ MR ' Rn is a full dimensional lattice polytope, then if
n ≥ 2, `P is very ample for all ` ≥ n− 1.

Proof. See [EW91].

An immediate corollary of Proposition E.2.4 is that every lattice polygon in R2 is very
ample in Z2. We are now ready to define the toric variety of a polytope.

Definition E.2.4. Let P ⊂ MR ' Rn be a full dimensional lattice polytope. The
toric variety of P is XP = X(`P )∩M where ` is a positive integer such that `P is very
ample.

By Proposition E.2.4 we know that such an ` for which `P is normal always exists.
For Definition E.2.4 to make sense, if there are two integers ` and `′ such that `P
and `′P are very ample, X(`P )∩M and X(`′P )∩M must be the same variety. We will
show that they are. They are just embedded in a different projective space. With
this definition, the affine pieces of the projective toric variety XP of a polytope P
correspond to strongly convex rational polyhedral cones in Rn.

Theorem E.2.2. Let XP be the toric variety of a full-dimensional polytope P ⊂
MR ' Rn. For each vertex mi ∈ P ∩M , let Ai = (`P ) ∩M − `mi for any ` ∈ N such
that `P is very ample. Then

XP∩M ∩ Ui = Uσi
= MaxSpec(C[σ∨

i ∩M ]) ' YAi

where σi is the strongly convex rational polyhedral cone dual to Cone(P∩M−mi) ⊂MR.
The dimension of σi is n.

Proof. The theorem follows from the previous discussion and the fact that the
semigroup NA is saturated in the lattice M if and only if NA = Cone(A ) ∩M .
For details we refer to [CLS11, §2.3].

Using Proposition E.1.3 one shows that for P very ample, the character lattice
of the affine piece Uσi

is ZSi = Z(σ∨
i ∩ M) = M , so its torus is (C∗)n. Then

(C∗)n ⊂ Uσi
= XP∩M ∩ Ui ⊂ XP shows that (C∗)n is the torus of XP .

The affine varieties YAi from Theorem E.2.2 are thought of as toric subvarieties of
some affine space. That is, we think of them as embedded affine toric varieties via
some monomial map. They are isomorphic to the affine varieties {Uσi

}i∈T in the
affine open covering

XP =
⋃
i∈T

Uσi
.
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The cones σi, i ∈ T are exactly the maximal cones in the normal fan ΣP of P (see
Section D.3). We will now show how the normal fan ΣP encodes the gluing data that
is used to glue XP from the affine varieties {YAi

}i∈T .

Let us take a closer look at the smaller open subsets Uσi
∩Uσj

⊂ XP , i, j ∈ T . These
are again affine and their algebras are C[Si]χmj −mi . This is again a normal semigroup
algebra C[Sij ], but τ∨

ij = Cone(Sij) is no longer pointed: (mj −mi) ∈ Sij ∩ (−Sij).
However, τ∨

ij has dimension n, since it contains σ∨
i and σ∨

j , which means that the dual
τij is pointed and of dimension < n [CLS11, Proposition 1.2.12]. The fact that τ∨

ij

contains σ∨
i and σ∨

j also implies that τij is contained in the intersection σi ∩ σj . In
fact, the other inclusion also holds.

Proposition E.2.5. Let mi,mj be vertices of a full dimensional lattice polytope P
and let Uσi

, Uσj
be the corresponding affine open subsets of XP . We have that

Uσi ∩ Uσj = MaxSpec(C[τ∨
ij ∩M ]) = Uτij

where τij = σi∩σj is the cone in the normal fan ΣP of P corresponding to the smallest
face of P containing both mi and mj.

Example E.2.3. To illustrate Proposition E.2.5, consider the polytope shown in
Figure E.1 and its two vertices mi and mj . The associated semigroups are represented
at the bottom of the figure by blue dots. Localizing the semigroup algebras C[Si]
and C[Sj ] at χmj−mi and χmi−mj respectively, we obtain the algebras over the
semigroups formed by the union of the blue and the orange dots. The figure shows
that C[Si]χmj −mi = C[Sj ]χmi−mj . The resulting semigroup is the intersection of the
closed halfspace τ∨

ij with the lattice, where τij = σi ∩ σj , see Figure E.2. 4

To describe the gluing in the notation of Section 2.3, for i, j ∈ T we set

Yi = YAi , and Yij = (YAi)χmj −mi

and φij : Yij → Yji is given by C[Si]χmj −mi = C[Sj ]χmi−mj . One can check that this
data satisfies conditions 1-3 from Section 2.3. We obtain the abstract variety

XP =
⊔
i∈T

Yi

/
∼

which is isomorphic to X`P∩M for each ` ∈ N such that `P is very ample. We illustrate
this construction with some examples.

Example E.2.4 (The gluing of P1 revisited). Consider the polytope [0, 1] ⊂ R. Its
normal fan is supported on the real line R with cones (−∞, 0], {0}, [0,∞). The
maximal cones are σ1 = (−∞, 0] and σ0 = [0,∞) and they correspond to the vertices
m1 = 1 and m0 = 0 respectively. These cones are self-dual, and their algebras are
C[S1] = C[σ∨

1 ∩ Z] = C[−N] = C[u] and C[S0] = C[N] = C[t]. We see that the
affine varieties corresponding to the vertices of P are two copies of C. By setting
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mi

mj

mj − mi

mi − mj

Si

Sj

Figure E.1: Polytope and semigroups from Example E.2.3.

σi

σj

τij

Figure E.2: Normal fan of the polytope in Figure E.1 with relevant cones highlighted.

C[−N] = C[u], we identify the variable u with the character χ−1 = χ0−1 = χm0−m1 .
Hence C[S1]χm0−m1 = C[u]u and analogously we find C[S0]χm1−m0 = C[t]t. The
isomorphism C[u]u → C[t]t is given by u/1 7→ 1/t, and therefore φ01 : C∗ → C∗ is
given by φ01(t) = t−1. We conclude that the two copies of C are glued together in
a way identical to Example 2.3.1, and thus X[0,1] = P1. More generally, the toric
variety of the n-dimensional elementary simplex ∆n is X∆n

= Pn. This makes sense
because ∆n is very ample and the image of φ∆n∩Zn : (C∗)n → Pn is dense in Pn. For
a dilation `∆n of the elementary simplex, the closure of the image of φ`∆n∩Zn is the
`-th Veronese embedding of Pn, which shows that we obtain the same abstract variety,
embedded in a different projective space. 4

Example E.2.5 (P1×P1). For the polytope P = [0, 1]2 ⊂ R2, we know that XP = XA
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from Example E.2.1 and we saw that XP = P1 × P1. In particular, XA from Example
E.2.1 is a Segre embedding of P1 × P1. To see from the gluing construction above that
XP ' P1 × P1, denote the vertices of P by

m1 = (0, 0), m2 = (1, 0), m3 = (1, 1), m4 = (0, 1).

These vertices give 4 affine toric varieties Y1, . . . , Y4 where Yi corresponds to mi, each
of which is a copy of C2. We use the identification

Y1 = MaxSpec(C[χ(1,0), χ(0,1)]), Y2 = MaxSpec(C[χ(−1,0), χ(0,1)]),
Y3 = MaxSpec(C[χ(−1,0), χ(0,−1)]), Y4 = MaxSpec(C[χ(1,0), χ(0,−1)]).

The isomorphisms φij for i = 1 are given by

φ11(t1, t2) = (t1, t2), φ12(t1, t2) = (t−1
1 , t2),

φ13(t1, t2) = (t−1
1 , t−1

2 ), φ14(t1, t2) = (t1, t−1
2 ).

Note that the overlap of Uσ1 ' Y1 and Uσ3 is (C∗)2 (the cones intersect in a single
point, the origin, whose toric variety is (C∗)2), so the map φ13 : (C∗)2 → (C∗)2 is
well-defined on this overlap. The intersection of σ1 with the cones σ2 and σ4 are rays,
which can be seen from the polytope by the fact that m1 and m2/m4 are connected
by an edge. Now let (x0 : x1, y0 : y1) be homogeneous coordinates on P1 × P1 and for
0 ≤ i, j ≤ 1 let

Uij = {(x0 : x1, y0 : y1) ∈ P1 × P1 | xi 6= 0 and yj 6= 0}.

The open subsets U1 = U00, U2 = U10, U3 = U11, U4 = U01 cover P1 × P1. We identify
these open subsets with Y1, . . . Y4 by

h1 : U1 → Y1 where (x0 : x1, y0 : y1) 7→ (x1/x0, y1/y0),
h2 : U2 → Y2 where (x0 : x1, y0 : y1) 7→ (x0/x1, y1/y0),
h3 : U3 → Y3 where (x0 : x1, y0 : y1) 7→ (x0/x1, y0/y1),
h4 : U4 → Y4 where (x0 : x1, y0 : y1) 7→ (x1/x0, y0/y1).

This gives an isomorphism P1 × P1 →
⊔4
i=1 Yi

/
∼ given by

p 7→ [(hi(p), Yi)] for any i such that p ∈ Ui,

where [·] denotes the equivalence class in XP =
⊔4
i=1 Yi

/
∼. 4

The statement that the construction presented here does not depend on which very
ample dilate `P of P we consider can be generalized. In fact, the construction only
depends on the fan ΣP . Different polytopes P may have the same normal fan, and
for that they do not have to be dilated versions of each other (consider for instance a
square and a rectangle in R2). For this reason, the variety XP is sometimes denoted
XΣP

. In fact, any fan Σ ∈ NR gives a normal toric variety XΣ. We will not discuss
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this in full generality. The fans we will encounter are complete and they come from a
polytope.

Since the toric variety XP always contains the torus (C∗)n as a dense open subset
(this is the intersection of all the open subsets Uσi

, i ∈ T corresponding to the cone
{0} in ΣP ), we can think of XP as ‘(C∗)n plus its boundary’. The way this boundary
looks like is completely encoded by the polytope P , and by its normal fan ΣP . The
dense torus (C∗)n ⊂ XP is an orbit of the action of (C∗)n on XP . The following nice
result shows that XP can be decomposed as a disjoint union of torus orbits, each of
which corresponds to a face of P or, equivalently, to a cone in ΣP .

Theorem E.2.3 (The orbit-(cone/face) correspondence). Let XP = XΣP
be the toric

variety of a full-dimensional polytope P ⊂MR ' Rn. The following statements hold.

1. There is a one-to-one correspondence between faces Q ⊂ P , cones σ ∈ ΣP and
(C∗)n-orbits in XP . For a cone σ ∈ ΣP , we denote the corresponding (C∗)n-orbit
by O(σ) ⊂ XP .

2. For each σ ∈ ΣP , dimO(σ) = n− dim σ.
3. For each σ ∈ ΣP , the affine open subset Uσ ⊂ XP can be written as

Uσ =
⋃

τ face of σ
O(τ)

and the closure O(σ) in XP with respect to both the classical and the Zariski
topology is

O(σ) =
⋃

σ face of τ
O(τ).

Proof. This is Theorem 3.2.6 in [CLS11].



Bibliography

[ABB+99] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen. LAPACK Users’ Guide. Society for Industrial and Applied
Mathematics, Philadelphia, PA, third edition, 1999.

[AG12] E. L. Allgower and K. Georg. Numerical continuation methods: an
introduction, volume 13. Springer Science & Business Media, 2012.

[AGH+17] B. Assarf, E. Gawrilow, K. Herr, M. Joswig, B. Lorenz, A. Paffenholz,
and T. Rehn. Computing convex hulls and counting integer points with
polymake. Math. Program. Comput., 9(1):1–38, 2017.

[AL94] W. W. Adams and P. Loustaunau. An introduction to Gröbner bases.
Number 3. American Mathematical Soc., 1994.

[AL11] M. F. Anjos and J. B. Lasserre. Handbook on semidefinite, conic and
polynomial optimization, volume 166. Springer Science & Business Media,
2011.

[AM69] M. F. Atiyah and I. G. Macdonald. Introduction to commutative algebra,
1969.

[AMVW15] J. L. Aurentz, T. Mach, R. Vandebril, and D. S. Watkins. Fast and
backward stable computation of roots of polynomials. SIAM Journal on
Matrix Analysis and Applications, 36(3):942–973, 2015.

[AS88] W. Auzinger and H. J. Stetter. An elimination algorithm for the
computation of all zeros of a system of multivariate polynomial equations.
In Numerical Mathematics Singapore 1988, pages 11–30. Springer, 1988.

[Atk72] F. V. Atkinson. Multiparameter eigenvalue problems. Academic Press
New York, 1972.

[Aud12] M. Audin. The topology of torus actions on symplectic manifolds,
volume 93. Birkhäuser, 2012.

327



328 BIBLIOGRAPHY

[Bat13] K. Batselier. A numerical linear algebra framework for solving problems
with multivariate polynomials. PhD thesis, KU Leuven, 2013.

[BBV19] C. Beltrán, P. Breiding, and N. Vannieuwenhoven. Pencil-based
algorithms for tensor rank decomposition are not stable. SIAM Journal
on Matrix Analysis and Applications, 40(2):739–773, 2019.

[BC94] V. V. Batyrev and D. A. Cox. On the Hodge structure of projective
hypersurfaces in toric varieties. Duke Math. J., 75(2):293–338, 08 1994.

[BC13] P. Bürgisser and F. Cucker. Condition: The geometry of numerical
algorithms, volume 349. Springer Science & Business Media, 2013.

[BCDM+06] L. Bos, M. Caliari, S. De Marchi, M. Vianello, and Y. Xu. Bivariate
Lagrange interpolation at the Padua points: the generating curve
approach. Journal of Approximation Theory, 143(1):15–25, 2006.

[BCMT10] J. Brachat, P. Comon, B. Mourrain, and E. Tsigaridas. Symmetric
tensor decomposition. Linear Algebra and its Applications, 433(11-
12):1851–1872, 2010.

[BCR13] J. Bochnak, M. Coste, and M.-F. Roy. Real algebraic geometry, volume 36.
Springer Science & Business Media, 2013.

[BCSS12] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and real
computation. Springer Science & Business Media, 2012.

[BDDM14] K. Batselier, P. Dreesen, and B. De Moor. A fast recursive
orthogonalization scheme for the Macaulay matrix. Journal of
Computational and Applied Mathematics, 267:20–32, 2014.

[Bea68] A. F. Beardon. On the location of poles of Padé approximants. Journal
of Mathematical Analysis and Applications, 21(3):469–474, 1968.

[Ben19] M. R. Bender. Algorithms for sparse polynomial systems: Gröbner basis
and resultants. PhD thesis, Sorbonne Université, 2019.

[Ber75] D. N. Bernstein. The number of roots of a system of equations. Functional
Analysis and its applications, 9(3):183–185, 1975.

[Béz79] E. Bézout. Théorie générale des équations algébriques. Ph.-D. Pierres,
1779.

[BFT18] M. R. Bender, J.-C. Faugère, and E. Tsigaridas. Towards mixed Gröbner
basis algorithms: The multihomogeneous and sparse case. In Proceedings
of the 2018 ACM International Symposium on Symbolic and Algebraic
Computation, pages 71–78, 2018.



BIBLIOGRAPHY 329

[BFT19] M. R. Bender, J.-C. Faugère, and E. Tsigaridas. Gröbner basis over
semigroup algebras: Algorithms and applications for sparse polynomial
systems. In Proceedings of the 2019 on International Symposium on
Symbolic and Algebraic Computation, pages 42–49, 2019.

[BG65] P. Businger and G. H. Golub. Linear least squares solutions by
Householder transformations. Numerische Mathematik, 7(3):269–276,
1965.

[BHSW08] D. J. Bates, J. D. Hauenstein, A. J. Sommese, and C. W. Wampler.
Adaptive multiprecision path tracking. SIAM J. Numer. Anal.,
46(2):722–746, 2008.

[Bie55] L. Bieberbach. Analytische Fortsetzung, volume 3 of Ergebnisse der
Mathematik und Ihrer Grenzgebiete. Springer-Verlag, 1955.

[BJA07] M. Byröd, K. Josephson, and K. Aström. Improving numerical accuracy
of Gröbner basis polynomial equation solvers. In 2007 IEEE 11th
International Conference on Computer Vision, pages 1–8. IEEE, 2007.

[BJA08] M. Byröd, K. Josephson, and K. Aström. A column-pivoting based
strategy for monomial ordering in numerical Gröbner basis calculations.
In European Conference on Computer Vision, pages 130–143. Springer,
2008.

[BJGM96] G. A. Baker Jr and P. Graves-Morris. Padé Approximants, volume 59.
Cambridge University Press, 1996.

[BKM05] L. Busé, H. Khalil, and B. Mourrain. Resultant-based methods for plane
curves intersection problems. In International Workshop on Computer
Algebra in Scientific Computing, pages 75–92. Springer, 2005.

[BL13] C. Beltrán and A. Leykin. Robust certified numerical homotopy tracking.
Foundations of Computational Mathematics, 13(2):253–295, 2013.

[BM15] B. Beckermann and A. C. Matos. Algebraic properties of robust Padé
approximants. Journal of Approximation Theory, 190:91–115, 2015.

[Bre20] P. Breiding. An algebraic geometry perspective on topological data
analysis. arXiv preprint arXiv:2001.02098, 2020.

[BS87] D. Bayer and M. Stillman. A criterion for detecting m-regularity.
Inventiones mathematicae, 87(1):1–11, 1987.

[BSHW13] D. J. Bates, A. J. Sommese, J. D. Hauenstein, and C. W. Wampler.
Numerically solving polynomial systems with Bertini. SIAM, 2013.

[BST19] P. Breiding, B. Sturmfels, and S. Timme. 3264 conics in a second. Notices
of the American Mathematical Society, 2019.



330 BIBLIOGRAPHY

[BT18] P. Breiding and S. Timme. Homotopycontinuation. jl: A package
for homotopy continuation in Julia. In International Congress on
Mathematical Software, pages 458–465. Springer, 2018.

[BT20a] M. R. Bender and S. Telen. Toric eigenvalue methods for solving sparse
polynomial systems. arXiv preprint arXiv:2006.10654, 2020.

[BT20b] A. Bernardi and D. Taufer. Waring, tangential and cactus decompositions.
Journal de Mathématiques Pures et Appliquées, 2020.

[Buc70] B. Buchberger. Ein algorithmisches kriterium für die lösbarkeit
eines algebraischen gleichungssystems. Aequationes mathematicae,
4(3):374–383, 1970.

[Buc06] B. Buchberger. Bruno buchbergers PhD thesis 1965: An algorithm for
finding the basis elements of the residue class ring of a zero dimensional
polynomial ideal. Journal of symbolic computation, 41(3-4):475–511,
2006.

[Bul06] A. Bultheel. Inleiding tot de numerieke wiskunde. Acco, 2006.

[Bus01] L. Busé. Residual resultant over the projective plane and the
implicitization problem. In Proceedings of the 2001 international
symposium on Symbolic and algebraic computation, pages 48–55, 2001.

[BV18a] N. Bliss and J. Verschelde. The method of Gauss–Newton to compute
power series solutions of polynomial homotopies. Linear Algebra and its
Applications, 542:569–588, 2018.

[BV18b] P. Breiding and N. Vannieuwenhoven. The condition number of join
decompositions. SIAM Journal on Matrix Analysis and Applications,
39(1):287–309, 2018.

[BvDD+17] A. Boralevi, J. van Doornmalen, J. Draisma, M. E. Hochstenbach, and
B. Plestenjak. Uniform determinantal representations. SIAM journal on
applied algebra and geometry, 1(1):415–441, 2017.

[Cay64] A. Cayley. Nouvelles recherches sur l’élimination et la théorie des courbes.
Journal für die reine und angewandte Mathematik, 63:34–39, 1864.

[CCC+05] E. Cattani, D. A. Cox, G. Chèze, A. Dickenstein, M. Elkadi, I. Z. Emiris,
A. Galligo, A. Kehrein, M. Kreuzer, and B. Mourrain. Solving polynomial
equations: foundations, algorithms, and applications (algorithms and
computation in mathematics). Springer-Verlag, 2005.

[CDSS09] G. Craciun, A. Dickenstein, A. Shiu, and B. Sturmfels. Toric dynamical
systems. Journal of Symbolic Computation, 44(11):1551–1565, 2009.



BIBLIOGRAPHY 331

[CE93] J. Canny and I. Z. Emiris. An efficient algorithm for the sparse mixed
resultant. In International Symposium on Applied Algebra, Algebraic
Algorithms, and Error-Correcting Codes, pages 89–104. Springer, 1993.

[CGPS08] G. Craciun, L. D. García-Puente, and F. Sottile. Some geometrical
aspects of control points for toric patches. In International Conference on
Mathematical Methods for Curves and Surfaces, pages 111–135. Springer,
2008.

[CGT97] R. M. Corless, P. M. Gianni, and B. M. Trager. A reordered Schur
factorization method for zero-dimensional polynomial systems with
multiple roots. In Proceedings of the 1997 international symposium
on Symbolic and algebraic computation, pages 133–140, 1997.

[CH92] T. F. Chan and P. C. Hansen. Some applications of the rank revealing
QR factorization. SIAM Journal on Scientific and Statistical Computing,
13(3):727–741, 1992.

[CI94] S. Chandrasekaran and I. C. Ipsen. On rank-revealing factorisations.
SIAM Journal on Matrix Analysis and Applications, 15(2):592–622, 1994.

[CLO06] D. A. Cox, J. B. Little, and D. O’Shea. Using algebraic geometry, volume
185 of Graduate Texts in Mathematics. Springer Science & Business
Media, 2006.

[CLO13] D. A. Cox, J. B. Little, and D. O’Shea. Ideals, varieties, and algorithms:
an introduction to computational algebraic geometry and commutative
algebra. Springer Science & Business Media, 2013.

[CLS11] D. A. Cox, J. B. Little, and H. K. Schenck. Toric varieties. American
Mathematical Soc., 2011.

[CMDL+15] A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa,
and H. A. Phan. Tensor decompositions for signal processing applications:
From two-way to multiway component analysis. IEEE signal processing
magazine, 32(2):145–163, 2015.

[Com02] P. Comon. Tensor decompositions. Mathematics in Signal Processing V,
pages 1–24, 2002.

[Cox95] D. A. Cox. The homogeneous coordinate ring of a toric variety. Journal
of Algebraic Geometry, 4:17–50, 1995.

[Cox20a] D. A. Cox. Applications of Polynomial Systems. CBMS Regional
Conference Series in Mathematics. Conference Board of the Mathematical
Sciences, 2020.

[Cox20b] D. A. Cox. Stickelberger and the eigenvalue theorem. arXiv preprint
arXiv:2007.12573, 2020.



332 BIBLIOGRAPHY

[Cut18] S. D. Cutkosky. Introduction to Algebraic Geometry, volume 188.
American Mathematical Soc., 2018.

[D’A02] C. D’Andrea. Macaulay style formulas for sparse resultants. Transactions
of the Americal Mathematical Society, 354(7):2595–2619, 2002.

[DB04] C. De Boor. Ideal interpolation. Approximation Theory XI: Gatlinburg,
pages 59–91, 2004.

[DBDM12] P. Dreesen, K. Batselier, and B. De Moor. Back to the roots: Polynomial
system solving, linear algebra, systems theory. IFAC Proceedings Volumes,
45(16):1203–1208, 2012.

[DHJ+19] T. Duff, C. Hill, A. Jensen, K. Lee, A. Leykin, and J. Sommars. Solving
polynomial systems via homotopy continuation and monodromy. IMA
Journal of Numerical Analysis, 39(3):1421–1446, 2019.

[DHO+16] J. Draisma, E. Horobeţ, G. Ottaviani, B. Sturmfels, and R. R. Thomas.
The Euclidean distance degree of an algebraic variety. Foundations of
computational mathematics, 16(1):99–149, 2016.

[Dic16] A. Dickenstein. Biochemical reaction networks: An invitation for
algebraic geometers. In Mathematical Congress of the Americas, volume
656, pages 65–83. Contemp. Math, 2016.

[Die57] P. Dienes. The Taylor series: an introduction to the theory of functions
of a complex variable. Dover New York, 1957.

[DL06] L. De Lathauwer. A link between the canonical decomposition in
multilinear algebra and simultaneous matrix diagonalization. SIAM
journal on Matrix Analysis and Applications, 28(3):642–666, 2006.

[dM02] R. de Montessus. Sur les fractions continues algébriques. Bulletin de la
Société Mathématique de France, 30:28–36, 1902.

[Dre13] P. Dreesen. Back to the roots: polynomial system solving using linear
algebra. PhD thesis, KU Leuven, 2013.

[DS15] C. D’Andrea and M. Sombra. A Poisson formula for the sparse resultant.
Proceedings of the London Mathematical Society, 110(4):932–964, 2015.

[DSL08] V. De Silva and L.-H. Lim. Tensor rank and the ill-posedness of the best
low-rank approximation problem. SIAM Journal on Matrix Analysis and
Applications, 30(3):1084–1127, 2008.

[DYY16] B. Dong, B. Yu, and Y. Yu. A homotopy method for finding all solutions
of a multiparameter eigenvalue problem. SIAM Journal on Matrix
Analysis and Applications, 37(2):550–571, 2016.



BIBLIOGRAPHY 333

[DZ05] B. H Dayton and Z. Zeng. Computing the multiplicity structure in
solving polynomial systems. In Proceedings of the 2005 international
symposium on Symbolic and algebraic computation, pages 116–123, 2005.

[EC93] I. Z. E. and J. Canny. A practical method for the sparse resultant.
In Proceedings of the 1993 international symposium on Symbolic and
algebraic computation, pages 183–192, 1993.

[EC95] I. Z. Emiris and J. F. Canny. Efficient incremental algorithms for the
sparse resultant and the mixed volume. Journal of Symbolic Computation,
20(2):117–149, 1995.

[EdW19] A. A. Ergür and T. de Wolff. A polyhedral homotopy algorithm for real
zeros. arXiv preprint arXiv:1910.01957, 2019.

[EGSS01] D. Eisenbud, D. R. Grayson, M. Stillman, and B. Sturmfels.
Computations in algebraic geometry with Macaulay 2, volume 8. Springer
Science & Business Media, 2001.

[EH06] D. Eisenbud and J. Harris. The geometry of schemes, volume 197.
Springer Science & Business Media, 2006.

[EH16] D. Eisenbud and J. Harris. 3264 and all that: A second course in algebraic
geometry. Cambridge University Press, 2016.

[Eis13] D. Eisenbud. Commutative Algebra: with a view toward algebraic
geometry, volume 150. Springer Science & Business Media, 2013.

[EM99a] I. Z. Emiris and B. Mourrain. Computer algebra methods for studying
and computing molecular conformations. Algorithmica, 25(2-3):372–402,
1999.

[EM99b] I. Z. Emiris and B. Mourrain. Matrices in elimination theory. Journal of
Symbolic Computation, 28(1-2):3–44, 1999.

[EM07] M. Elkadi and B. Mourrain. Introduction à la résolution des systèmes
polynomiaux, volume 59. Springer, 2007.

[Emi96] I. Z. Emiris. On the complexity of sparse elimination. Journal of
Complexity, 12(2):134–166, 1996.

[EW91] G. Ewald and U. Wessels. On the ampleness of invertible sheaves
in complete projective toric varieties. Results in Mathematics, 19(3-
4):275–278, 1991.

[EY36] C. Eckart and G. Young. The approximation of one matrix by another
of lower rank. Psychometrika, 1(3):211–218, 1936.



334 BIBLIOGRAPHY

[Fab96] E. Fabry. Sur les points singuliers d’une fonction donnée par son
développement en série et l’impossibilité du prolongement analytique
dans des cas très généraux. In Annales scientifiques de l’École Normale
Supérieure, volume 13, pages 367–399, 1896.

[Fau99] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases
(F4). Journal of pure and applied algebra, 139(1-3):61–88, 1999.

[Fau02] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases
without reduction to zero (F5). In Proceedings of the 2002 international
symposium on Symbolic and algebraic computation, pages 75–83, 2002.

[Fau10] J.-C. Faugère. FGb: a library for computing Gröbner bases. In
International Congress on Mathematical Software, pages 84–87. Springer,
2010.

[Ful93] W. Fulton. Introduction to toric varieties. Number 131. Princeton
University Press, 1993.

[Gat90] K. Gatermann. Symbolic solution of polynomial equation systems with
symmetry. In Sh. Watanabe and M. Nagata, editors, Proceedings of
ISSAC-90 (Tokyo, Japan, August 20–24, 1990), pages 112–119. ACM,
1990.

[GE96] M. Gu and S. C. Eisenstat. Efficient algorithms for computing a strong
rank-revealing QR factorization. SIAM Journal on Scientific Computing,
17(4):848–869, 1996.

[GGT13] P. Gonnet, S. Güttel, and L. N. Trefethen. Robust Padé approximation
via SVD. SIAM review, 55(1):101–117, 2013.

[GKZ94] I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky. Discriminants,
Resultants, and Multidimensional Determinants. Mathematics
(Birkhäuser). Springer, 1994.

[Gon81] A. A. Gončar. Poles of rows of the Padé table and meromorphic
continuation of functions. Matematicheskii Sbornik, 157(4):590–613,
1981.

[Grü13] B. Grünbaum. Convex polytopes, volume 221. Springer Science & Business
Media, 2013.

[GS] D. R. Grayson and M. E. Stillman. Macaulay2, a software system for
research in algebraic geometry. Available at http://www.math.uiuc.
edu/Macaulay2/.

[GS04] J. J. Gervais and H. Sadiky. A continuation method based on a high order
predictor and an adaptive steplength control. ZAMM-Journal of Applied
Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und
Mechanik: Applied Mathematics and Mechanics, 84(8):551–563, 2004.

http://www.math.uiuc.edu/Macaulay2/
http://www.math.uiuc.edu/Macaulay2/


BIBLIOGRAPHY 335

[GT09] S. Graillat and P. Trébuchet. A new algorithm for computing certified
numerical approximations of the roots of a zero-dimensional system.
In Proceedings of the 2009 international symposium on Symbolic and
algebraic computation, pages 167–174, 2009.

[GT17] S. Güttel and F. Tisseur. The nonlinear eigenvalue problem. Acta
Numerica, 26:1–94, 2017.

[GV08] Y. Guan and J. Verschelde. PHClab: a MATLAB/Octave interface to
PHCpack. In Software for Algebraic Geometry, pages 15–32. Springer,
2008.

[GVL12] G. H. Golub and C. F. Van Loan. Matrix computations, volume 3. JHU
press, 2012.

[Har77] R. Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977.
Graduate Texts in Mathematics, No. 52.

[Har13] J. Harris. Algebraic geometry: a first course, volume 133. Springer
Science & Business Media, 2013.

[Hig02] N. J. Higham. Accuracy and stability of numerical algorithms, volume 80.
SIAM, 2002.

[HLJ16] J. D. Hauenstein and A. C. Liddell Jr. Certified predictor–corrector
tracking for newton homotopies. Journal of Symbolic Computation,
74:239–254, 2016.

[HMP19] M. E. Hochstenbach, C. Mehl, and B. Plestenjak. Solving singular
generalized eigenvalue problems by a rank-completing perturbation.
SIAM Journal on Matrix Analysis and Applications, 40(3):1022–1046,
2019.

[HOOS19] J. D. Hauenstein, L. Oeding, G. Ottaviani, and A. J. Sommese. Homotopy
techniques for tensor decomposition and perfect identifiability. Journal für
die reine und angewandte Mathematik (Crelles Journal), 2019(753):1–22,
2019.

[HP92] Y. P. Hong and C.-T. Pan. Rank-revealing QR factorizations and
the singular value decomposition. Mathematics of Computation,
58(197):213–232, 1992.

[HS95] B. Huber and B. Sturmfels. A polyhedral method for solving sparse
polynomial systems. Mathematics of computation, 64(212):1541–1555,
1995.

[HS97] B. Huber and B. Sturmfels. Bernstein’s theorem in affine space. Discrete
& Computational Geometry, 17(2):137–141, 1997.



336 BIBLIOGRAPHY

[HS12] J. D. Hauenstein and F. Sottile. Algorithm 921: alphacertified: certifying
solutions to polynomial systems. ACM Transactions on Mathematical
Software (TOMS), 38(4):1–20, 2012.

[HSS98] B. Huber, F. Sottile, and B. Sturmfels. Numerical schubert calculus.
Journal of Symbolic Computation, 26(6):767–788, 1998.

[Hum12] J. E. Humphreys. Linear algebraic groups, volume 21. Springer Science
& Business Media, 2012.

[HV98] B. Huber and J. Verschelde. Polyhedral end games for polynomial
continuation. Numerical Algorithms, 18(1):91–108, 1998.

[HZ03] R. Hartley and A. Zisserman. Multiple view geometry in computer vision.
Cambridge university press, 2003.

[IA13] O. L. Ibryaeva and V. M. Adukov. An algorithm for computing
a Padé approximant with minimal degree denominator. Journal of
Computational and Applied Mathematics, 237:529–541, 2013.

[IK99] A. Iarrobino and V. Kanev. Power sums, Gorenstein algebras, and
determinantal loci. Springer Science & Business Media, 1999.

[Jou91] J.-P. Jouanolou. Le formalisme du résultant. Advances in Mathematics,
90(2):117–263, 1991.

[JV05] G. Jónsson and S. Vavasis. Accurate solution of polynomial equations
using Macaulay resultant matrices. Mathematics of computation,
74(249):221–262, 2005.

[Kah66] W. Kahan. Numerical linear algebra. Canadian Mathematical Bulletin,
9(5):757–801, 1966.

[Kat90] S. Katsura. Spin glass problem by the method of integral equation of
the effective field. In M.D. Coutinho-Filho and S.M. Resende, editors,
New Trends in Magnetism, pages 110–121. World Scientific, 1990.

[Kat94] S. Katsura. Users posing problems to PoSSO. In the PoSSO Newsletter,
no. 2, edited by L. Gonzelez-Vega and T. Recio., 1994.

[KB09] T. G. Kolda and B. W. Bader. Tensor decompositions and applications.
SIAM review, 51(3):455–500, 2009.

[Kho77] A. G. Khovanskii. Newton polytopes and toric varieties. Functional Anal.
Appl, 11:289–298, 1977.

[Kho92] A. G. Khovanskii. Newton polyhedron, Hilbert polynomial, and sums
of finite sets. Functional Analysis and Its Applications, 26(4):276–281,
1992.



BIBLIOGRAPHY 337

[KK05] A. Kehrein and M. Kreuzer. Characterizations of border bases. Journal
of Pure and Applied Algebra, 196(2-3):251–270, 2005.

[KK06] A. Kehrein and M. Kreuzer. Computing border bases. Journal of Pure
and Applied Algebra, 205(2):279–295, 2006.

[KKR05] A. Kehrein, M. Kreuzer, and L. Robbiano. An algebraists view on border
bases. In Solving polynomial equations, pages 169–202. Springer, 2005.

[KL18] Y.-C. Kuo and T.-L. Lee. Computing the unique candecomp/parafac
decomposition of unbalanced tensors by homotopy method. Linear
Algebra and its Applications, 556:238–264, 2018.

[KLT20] M. Kaluba, B. Lorenz, and S. Timme. Polymake. jl: A new interface to
polymake. arXiv preprint arXiv:2003.11381, 2020.

[KP07] Z. Kukelova and T. Pajdla. A minimal solution to the autocalibration
of radial distortion. In 2007 IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–7. IEEE, 2007.

[Kuk13] Z. Kukelova. Algebraic methods in computer vision. 2013. Ph. D. thesis.

[Kul20] A. Kulkarni. Solving p-adic polynomial systems via iterative eigenvector
algorithms. Linear and Multilinear Algebra, pages 1–22, 2020.

[Kus76a] A. G. Kushnirenko. Newton polytopes and the Bézout theorem.
Functional analysis and its applications, 10(3):233–235, 1976.

[Kus76b] A. G. Kushnirenko. Polyèdres de Newton et nombres de Milnor.
Inventiones mathematicae, 32(1):1–31, 1976.

[KX94] R. B. Kearfott and Z. Xing. An interval step control for continuation
methods. SIAM Journal on Numerical Analysis, 31(3):892–914, 1994.

[Lan02] S. Lang. Algebra, volume 211. Springer-Verlag, 2002.

[Li97] T.-Y. Li. Numerical solution of multivariate polynomial systems by
homotopy continuation methods. Acta numerica, 6:399–436, 1997.

[Lip76] J. D. Lipson. Newton’s method: a great algebraic algorithm. In
Proceedings of the third ACM symposium on Symbolic and algebraic
computation, pages 260–270, 1976.

[Lju86] L. Ljung. System Identification: Theory for the User. Prentice-Hall, Inc.,
USA, 1986.

[LLM+13] J.-B. Lasserre, M. Laurent, B. Mourrain, P. Rostalski, and P. Trébuchet.
Moment matrices, border bases and real radical computation. Journal
of Symbolic Computation, 51:63–85, 2013.



338 BIBLIOGRAPHY

[LLT08] T.-L. Lee, T.-Y. Li, and C.-H. Tsai. HOM4PS-2.0: a software package
for solving polynomial systems by the polyhedral homotopy continuation
method. Computing, 83(2-3):109, 2008.

[LT09] T. Y. Li and C. H. Tsai. HOM4PS-2.0para: Parallelization of HOM4PS-
2.0 for solving polynomial systems. Parallel Computing, 35(4):226–238,
2009.

[Mac02] F. S. Macaulay. Some formulae in elimination. Proceedings of the London
Mathematical Society, 1(1):3–27, 1902.

[Mac94] F. S. Macaulay. The algebraic theory of modular systems, volume 19.
Cambridge University Press, 1994.

[Map18] Maplesoft. Maple, a division of waterloo maple inc. Waterloo, Ontario,
2018.

[Mas80] J. C. Mason. Near-best multivariate approximation by Fourier series,
Chebyshev series and Chebyshev interpolation. Journal of Approximation
Theory, 28(4):349–358, 1980.

[Mas16] C. Massri. Solving a sparse system using linear algebra. Journal of
Symbolic Computation, 73:157–174, 2016.

[MAT17] MATLAB. version 9.2.0.556344 (R2017a). The MathWorks Inc., Natick,
Massachusetts, 2017.

[Mau80] J. Maurer. Puiseux expansion for space curves. Manuscripta Mathematica,
32(1-2):91–100, 1980.

[MM12] William D. Mac M. A method for determining the solutions of a system of
analytic functions in the neighborhood of a branch point. Mathematische
Annalen, 72(2):180–202, 1912.

[MMM91] M. G. Marinari, M. Möller, and T. Mora. Gröbner bases of ideals given
by dual bases. In Proceedings of the 1991 international symposium on
Symbolic and algebraic computation, pages 55–63, 1991.

[MMM93] M. G. Marinari, M. Möller, and T. Mora. Gröbner bases of ideals defined
by functionals with an application to ideals of projective points. Applicable
Algebra in Engineering, Communication and Computing, 4(2):103–145,
1993.

[Möl93] M. Möller. Systems of algebraic equations solved by means of
endomorphisms. In International Symposium on Applied Algebra,
Algebraic Algorithms, and Error-Correcting Codes, pages 43–56. Springer,
1993.



BIBLIOGRAPHY 339

[Mor09] A. Morgan. Solving polynomial systems using continuation for engineering
and scientific problems, volume 57 of Classics in Applied Mathematics.
SIAM, 2009.

[Mou99] B. Mourrain. A new criterion for normal form algorithms. In
International Symposium on Applied Algebra, Algebraic Algorithms, and
Error-Correcting Codes, pages 430–442. Springer, 1999.

[Mou07] B. Mourrain. Pythagores dilemma, symbolic-numeric computation, and
the border basis method. In Symbolic-Numeric Computation, pages
223–243. Springer, 2007.

[MP09] B. Mourrain and J. P. Pavone. Subdivision methods for solving
polynomial equations. Journal of Symbolic Computation, 44(3):292–306,
2009.

[MS87] A. Morgan and A. J. Sommese. Computing all solutions to polynomial
systems using homotopy continuation. Applied Mathematics and
Computation, 24(2):115–138, 1987.

[MS95] M. Möller and H. J. Stetter. Multivariate polynomial equations with
multiple zeros solved by matrix eigenproblems. Numerische Mathematik,
70(3):311–329, 1995.

[MS00] M. Möller and T. Sauer. H-bases for polynomial interpolation and system
solving. Advances in Computational Mathematics, 12(4):335–362, 2000.

[MS03] D. Maclagan and G. Smith. Multigraded Castelnuovo-Mumford regularity.
Journal fur die Reine und Angewandte Mathematik, 05 2003.

[MSW90] A. P. Morgan, A. J. Sommese, and C. W. Wampler. Computing
singular solutions to nonlinear analytic systems. Numerische Mathematik,
58(1):669–684, 1990.

[MSW92a] A. P. Morgan, A. J. Sommese, and C. W. Wampler. Computing singular
solutions to polynomial systems. Advances in Applied Mathematics,
13(3):305–327, 1992.

[MSW92b] A. P. Morgan, A. J. Sommese, and C. W. Wampler. A power series
method for computing singular solutions to nonlinear analytic systems.
Numerische Mathematik, 63(1):391–409, 1992.

[MT00] B. Mourrain and P. Trébuchet. Solving projective complete intersection
faster. In Proceedings of the 2000 international symposium on Symbolic
and algebraic computation, pages 234–241, 2000.

[MT01] M. Möller and R. Tenberg. Multivariate polynomial system solving
using intersections of eigenspaces. Journal of symbolic computation,
32(5):513–531, 2001.



340 BIBLIOGRAPHY

[MT05] B. Mourrain and P. Trébuchet. Generalized normal forms and polynomial
system solving. In Proceedings of the 2005 international symposium on
Symbolic and algebraic computation, pages 253–260, 2005.

[MT08] B. Mourrain and P. Trébuchet. Stable normal forms for polynomial
system solving. Theoretical Computer Science, 409(2):229–240, 2008.

[MTVB19] B. Mourrain, S. Telen, and M. Van Barel. Truncated normal forms
for solving polynomial systems: Generalized and efficient algorithms.
Journal of Symbolic Computation, 2019.

[Mum96] D. Mumford. The red book of varieties and schemes. Lecture notes in
mathematics, 1358:14–01, 1996.

[MVD15] N. Mastronardi and P. Van Dooren. Revisiting the stability of computing
the roots of a quadratic polynomial. Electronic Transactions on
Numerical Analysis, 44:73–82, 2015.

[Nis04] D. Nistér. An efficient solution to the five-point relative pose
problem. IEEE transactions on pattern analysis and machine intelligence,
26(6):756–770, 2004.

[NNT15] Y. Nakatsukasa, V. Noferini, and A. Townsend. Computing the common
zeros of two bivariate functions via Bézout resultants. Numerische
Mathematik, 129(1):181–209, 2015.

[Noo89] V. W. Noonburg. A neural network modeled by an adaptive Lotka-
Volterra system. SIAM J. Appl. Math., 49(6):1779–1792, 1989.

[NST18] Y. Nakatsukasa, O. Sète, and L. N. Trefethen. The AAA algorithm
for rational approximation. SIAM Journal on Scientific Computing,
40(3):A1494–A1522, 2018.

[NT16] V. Noferini and A. Townsend. Numerical instability of resultant methods
for multidimensional rootfinding. SIAM Journal on Numerical Analysis,
54(2):719–743, 2016.

[Oda89] T. Oda. Convex bodies and algebraic geometry: an introduction to toric
varieties. Bull. Amer. Math. Soc, 21:360–364, 1989.

[OM78] T. Oda and K. Miyake. Lectures on torus embeddings and applications,
volume 58. Tata Institute of Fundamental Research, 1978.

[PH16] B. Plestenjak and M. E. Hochstenbach. Roots of bivariate polynomial
systems via determinantal representations. SIAM Journal on Scientific
Computing, 38(2):A765–A788, 2016.

[Poi02] S.-D. Poisson. Mémoire sur l’élimination dans les équations algébriques.
Journal de l’ecole polytechnique, 4(11):199, 1802.



BIBLIOGRAPHY 341

[PS93] P. Pedersen and B. Sturmfels. Product formulas for resultants and Chow
forms. Mathematische Zeitschrift, 214(1):377–396, 1993.

[PS96] P. Pedersen and B. Sturmfels. Mixed monomial bases. In Algorithms in
algebraic geometry and applications, pages 307–316. Springer, 1996.

[PSS19] M. Panizzut, E. C. Sertöz, and B. Sturmfels. An octanomial model for
cubic surfaces. arXiv preprint arXiv:1908.06106, 2019.

[PU99] F. Pauer and A. Unterkircher. Gröbner bases for ideals in Laurent
polynomial rings and their application to systems of difference equations.
Applicable Algebra in Engineering, Communication and Computing,
9(4):271–291, 1999.

[PV10] K. Piret and J. Verschelde. Sweeping algebraic curves for singular
solutions. Journal of computational and applied mathematics,
234(4):1228–1237, 2010.

[Rei95] M. Reid. Undergraduate commutative algebra, volume 29. Cambridge
University Press Cambridge, 1995.

[RLY18] J. I. Rodriguez, L.-H. Lim, and Y. You. Fiber product homotopy
method for multiparameter eigenvalue problems. arXiv preprint
arXiv:1806.10578, 2018.

[Roj99] J. M. Rojas. Toric intersection theory for affine root counting. Journal
of Pure and Applied algebra, 136(1):67–100, 1999.

[Rot10] J. J. Rotman. Advanced modern algebra, volume 114. American
Mathematical Soc., 2010.

[RW96] J. M. Rojas and X. Wang. Counting affine roots of polynomial systems
via pointed newton polytopes. Journal of Complexity, 12(2):116–133,
1996.

[SC87] H. Schwetlick and J. Cleve. Higher order predictors and adaptive
steplength control in path following algorithms. SIAM journal on
numerical analysis, 24(6):1382–1393, 1987.

[SDLF+17] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis,
and C. Faloutsos. Tensor decomposition for signal processing and machine
learning. IEEE Transactions on Signal Processing, 65(13):3551–3582,
2017.

[Ser55] J.-P. Serre. Faisceaux algébriques cohérents. Annals of Mathematics,
pages 197–278, 1955.

[SKKT04] K. Smith, L. Kahanpää, P. Kekääinen, and W. Traves. An invitation to
algebraic geometry. Springer Science & Business Media, 2004.



342 BIBLIOGRAPHY

[Sop05] I. Soprunov. Toric residue and combinatorial degree. Transactions of
the American Mathematical Society, 357(5):1963–1975, 2005.

[Sot03] F. Sottile. Enumerative real algebraic geometry. In Algorithmic and
quantitative real algebraic geometry, volume 60, pages 139–180. AMS,
2003.

[Sot11] F. Sottile. Real solutions to equations from geometry, volume 57.
American Mathematical Soc., 2011.

[Sot17] F. Sottile. Ibadan lectures on toric varieties. arXiv preprint
arXiv:1708.01842, 2017.

[SR94] I. R. Shafarevich and M. Reid. Basic algebraic geometry, volume 2.
Springer, 1994.

[SR17] W. R. F. Santos and A. Rittatore. Actions and invariants of algebraic
groups. CRC press, 2017.

[ŞS16] M. Şahin and I. Soprunov. Multigraded Hilbert functions and toric
complete intersection codes. Journal of Algebra, 459:446–467, 2016.

[Sta97] H. Stahl. The convergence of Padé approximants to functions with
branch points. Journal of Approximation Theory, 91(2):139–204, 1997.

[Ste91] G. W. Stewart. Perturbation theory for the singular value decomposition.
SVD and Signal Processing, II: Algorithms, Analysis and Applications,
pages 99–109, 1991.

[Ste97] H. J. Stetter. Stabilization of polynomial systems solving with Gröbner
bases. In Proceedings of the 1997 international symposium on Symbolic
and algebraic computation, pages 117–124, 1997.

[Ste04] H. J. Stetter. Numerical polynomial algebra, volume 85. SIAM, 2004.

[Ste06] M. Stewart. Perturbation of the SVD in the presence of small singular
values. Linear algebra and its applications, 419(1):53–77, 2006.

[Stu94] B. Sturmfels. On the Newton polytope of the resultant. Journal of
Algebraic Combinatorics, 3(2):207–236, 1994.

[Stu96] B. Sturmfels. Gröbner bases and convex polytopes, volume 8. American
Mathematical Soc., 1996.

[Stu02] B. Sturmfels. Solving systems of polynomial equations. Number 97.
American Mathematical Soc., 2002.

[Sue85] S. P. Suetin. On an inverse problem for the m-th row of the Padé table.
Mathematics of the USSR-Sbornik, 52(1):231, 1985.



BIBLIOGRAPHY 343

[Sue02] S. P. Suetin. Padé approximants and efficient analytic continuation of a
power series. Russian Mathematical Surveys, pages 43–141, 2002.

[Sul18] S. Sullivant. Algebraic Statistics, volume 194. American Mathematical
Soc., 2018.

[SVBDL14] L. Sorber, M. Van Barel, and L. De Lathauwer. Numerical solution
of bivariate and polyanalytic polynomial systems. SIAM Journal on
Numerical Analysis, 52(4):1551–1572, 2014.

[SVTW06] J. Sidman, A. Van Tuyl, and H. Wang. Multigraded regularity:
coarsenings and resolutions. Journal of Algebra, 301(2):703–727, 2006.

[SVW01] A. J. Sommese, J. Verschelde, and C. W. Wampler. Numerical
decomposition of the solution sets of polynomial systems into irreducible
components. SIAM Journal on Numerical Analysis, 38(6):2022–2046,
2001.

[SVW05] A. J. Sommese, J. Verschelde, and C. W. Wampler. Introduction to
numerical algebraic geometry. In Solving polynomial equations, pages
301–337. Springer, 2005.

[Syl40] J. J. Sylvester. LVII. Note on elimination. The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science, 17(111):379–380,
1840.

[Sze39] G. Szegő. Orthogonal polynomials, volume 23. American Mathematical
Soc., 1939.

[TBI97] L. N. Trefethen and D. Bau III. Numerical linear algebra, volume 50.
SIAM, 1997.

[Tel16] S. Telen. Solving systems of polynomial equations. 2016. Master’s
thesis, available at https://www.scriptiebank.be/scriptie/2016/
het-oplossen-van-stelsels-veeltermvergelijkingen.

[Tel20] S. Telen. Numerical root finding via Cox rings. Journal of Pure and
Applied Algebra, 224(9), 2020.

[Tim20] S. Timme. Mixed precision path tracking for polynomial homotopy
continuation. arXiv preprint arXiv:1902.02968, 2020.

[TMVB18] S. Telen, B. Mourrain, and M. Van Barel. Solving polynomial systems
via truncated normal forms. SIAM Journal on Matrix Analysis and
Applications, 39(3):1421–1447, 2018.

[Tre02] L. N. Trefethen. The SIAM 100-dollar, 100-digit challenge. SIAM News,
35(6):2, 2002.

https://www.scriptiebank.be/scriptie/2016/het-oplossen-van-stelsels-veeltermvergelijkingen
https://www.scriptiebank.be/scriptie/2016/het-oplossen-van-stelsels-veeltermvergelijkingen


344 BIBLIOGRAPHY

[Tre17] L. N. Trefethen. Multivariate polynomial approximation in the hypercube.
Proceedings of the American Mathematical Society, 145(11):4837–4844,
2017.

[Tre19] L. N. Trefethen. Approximation theory and approximation practice,
volume 164. SIAM, 2019.

[Tre20] L. N. Trefethen. Quantifying the ill-conditioning of analytic continuation.
BIT Numerical Mathematics, pages 1–15, 2020.

[TT13] A. Townsend and L. N. Trefethen. An extension of chebfun to two
dimensions. SIAM Journal on Scientific Computing, 35(6):C495–C518,
2013.

[TTVB20] S. Telen, S. Timme, and M. Van Barel. Backward error measures for
roots of polynomials. Numerical Algorithms, pages 1–21, 2020.

[TVB18] S. Telen and M. Van Barel. A stabilized normal form algorithm for
generic systems of polynomial equations. Journal of Computational and
Applied Mathematics, 342:119–132, 2018.

[TVB20] F. Tisseur and M. Van Barel. Min-max elementwise backward error for
roots of polynomials and a corresponding backward stable root finder.
arXiv:2001.05281, 2020.

[TVBV19] S. Telen, M. Van Barel, and J. Verschelde. A robust numerical path
tracking algorithm for polynomial homotopy continuation. arXiv preprint
arXiv:1909.04984, 2019.

[Vak17] R. Vakil. The rising sea: foundations of algebraic geometry. preprint,
2017.

[VC94] J. Verschelde and R. Cools. Symmetric homotopy construction. J.
Comput. Appl. Math., 50:575–592, 1994.

[vdH15] J. van der Hoeven. Reliable homotopy continuation. Technical report,
LIX, Ecole polytechnique, 2015.

[VDS+16] N. Vervliet, O. Debals, L. Sorber, M. Van Barel, and L. De Lathauwer.
Tensorlab 3.0, Mar. 2016. Available online at https://www.tensorlab.
net.

[Ver99] J. Verschelde. Algorithm 795: PHCpack: A general-purpose solver for
polynomial systems by homotopy continuation. ACM Transactions on
Mathematical Software (TOMS), 25(2):251–276, 1999.

[VLLP79] V. V. Vavilov, G. López Lagomasino, and V. A. Prokhorov. On an
inverse problem for the rows of a Padé table. Matematicheskii Sbornik,
152(1):117–127, 1979.

https://www.tensorlab.net
https://www.tensorlab.net


BIBLIOGRAPHY 345

[VSDL17a] J. Vanderstukken, A. Stegeman, and L. De Lathauwer. Systems of
polynomial equations, higher-order tensor decompositions and multidi-
mensional harmonic retrieval: a unifying framework–Part I: The canonical
polyadic decomposition. Available at ftp: // ftp. esat. kuleuven. be/
pub/ stadius/ nvervliet/ vanderstukken2017systems1. pdf , 2017.

[VSDL17b] J. Vanderstukken, A. Stegeman, and L. De Lathauwer. Systems of
polynomial equations, higher-order tensor decompositions and multidi-
mensional harmonic retrieval: a unifying framework–Part II: The block
term decomposition. Available at ftp: // ftp. esat. kuleuven. be/
pub/ stadius/ nvervliet/ vanderstukken2017systems2. pdf , 2017.

[VVC94] J. Verschelde, P. Verlinden, and R. Cools. Homotopies exploiting Newton
polytopes for solving sparse polynomial systems. SIAM Journal on
Numerical Analysis, 31(3):915–930, 1994.

[Wam93] C. W. Wampler. An efficient start system for multi-homogeneous
polynomial continuation. Numerische Mathematik, 66(1):517–523, 1993.

[War91] E. Waring. Meditationes Algebraicae: An English Translation of the
Work of Edward Waring; Ed. and Transl. from the Latin by Dennis
Weeks. American Mathematical Society, 1991.

[WS05] C. W. Wampler and A. J. Sommese. The Numerical solution of systems
of polynomials arising in engineering and science. World Scientific, 2005.

[WS11] C. W. Wampler and A. J. Sommese. Numerical algebraic geometry and
algebraic kinematics. Acta Numerica, 20:469–567, 2011.

[XBY18] J. Xu, M. Burr, and C. Yap. An approach for certifying homotopy
continuation paths: Univariate case. In Proceedings of the 2018 ACM
International Symposium on Symbolic and Algebraic Computation, pages
399–406, 2018.

[Zen16] Z. Zeng. Sensitivity and computation of a defective eigenvalue. SIAM
Journal on Matrix Analysis and Applications, 37(2):798–817, 2016.

[ZL14] Z. Zeng and T.-Y. Li. NAClab: A matlab toolbox for numerical
algebraic computation. ACM Communications in Computer Algebra,
47(3/4):170–173, 2014.

ftp://ftp.esat.kuleuven.be/pub/stadius/nvervliet/vanderstukken2017systems1.pdf
ftp://ftp.esat.kuleuven.be/pub/stadius/nvervliet/vanderstukken2017systems1.pdf
ftp://ftp.esat.kuleuven.be/pub/stadius/nvervliet/vanderstukken2017systems2.pdf
ftp://ftp.esat.kuleuven.be/pub/stadius/nvervliet/vanderstukken2017systems2.pdf




Curriculum

Simon Telen was born on October 27, 1993 in Maaseik, Belgium.

Education
Doctoral researcher in applied mathematics September 2016 - Present
KU Leuven, Department of Computer Science
Supervisor: Marc Van Barel
Supervisory committee: Marc Van Barel, Nick Vannieuwenhoven, Wim Veys

M.Sc. summa cum laude 2014 - 2016
KU Leuven
Mathematical Engineering
Master’s thesis title: Solving Systems of Polynomial Equations

B.Sc. magna cum laude 2011 - 2014
KU Leuven
Major in Electrical Engineering
Minor in Mathematical Modelling of Living Systems

Awards
Best poster award at the MEGA 2019 Conference June 2019
Universidad Complutense de Madrid, Spain
for our poster ‘Robust Numerical Path Tracking for Polynomial Homotopies’ with
Marc Van Barel and Jan Verschelde

Best poster presentation award at the ISSAC 2018 conference July 2018
City University of New York, USA
for our poster ‘Truncated Normal Forms for Solving Polynomial Systems’ with Bernard
Mourrain and Marc Van Barel

347





List of publications

Articles in internationally reviewed academic journals
Simon Telen, Sascha Timme and Marc Van Barel. Backward error measures for roots of polynomials.
Numerical Algorithms (2020):1-21.

Simon Telen. Numerical root finding via Cox rings. Journal of Pure and Applied Algebra, 224(9),
2020.

Bernard Mourrain, Simon Telen and Marc Van Barel. Truncated normal forms for solving polynomial
systems: generalized and efficient algorithms. Journal of Symbolic computation, https://doi.org/
10.1016/j.jsc.2019.10.009, 2019.

Simon Telen, Bernard Mourrain and Marc van Barel. Solving polynomial systems via truncated
normal forms. SIAM Journal on Matrix Analysis and Applications, 39(3):1421-1447, 2018.

Simon Telen and Marc Van Barel. A stabilized normal form algorithm for generic systems of
polynomial equations. Journal of Computational and Applied Mathematics, 342:199-132, 2018.

Articles in review
Simon Telen, Marc Van Barel and Jan Verschelde. A robust numerical path tracking algorithm for
polynomial homotopy continuation. arXiv:1909.04984, 2019.

Matías R. Bender, Simon Telen. Toric eigenvalue methods for solving sparse polynomial systems.
arXiv:2006.10654, 2020.

Seminar talks and invited talks
Numerical Root Finding via Cox Rings January 2020
Forschungsseminar Diskrete Mathematik/Geometrie, FU Berlin, Germany

Truncated Normal Forms December 2019
Algorithmic Algebra Seminar, TU Berlin, Germany

Numerical Root Finding via Cox Rings November 2019
Seminar Algebraische Geometrie, FU Berlin, Germany

Robust Numerical Path Tracking in Polynomial Homotopies April 2019
NUMA seminar, KU Leuven, Belgium

Stabilized Algebraic Methods for Multivariate Polynomial Root Finding March 2019
Research visit with Tomas Pajdla, CIIRC, Prague

349

https://doi.org/10.1016/j.jsc.2019.10.009
https://doi.org/10.1016/j.jsc.2019.10.009


350 LIST OF PUBLICATIONS

Stabilized Algebraic Methods for Multivariate Polynomial Root Finding December 2018
Research visit with Bernd Sturmfels, MPI Leipzig

Polynomial System Solving through Stabilized Representation of Quotient Algebras April 2018
Research visit with Tyler Jarvis, BYU, Provo

Polynomial System Solving and Numerical Linear Algebra September 2017
Research visit with Bernard Mourrain, INRIA, Sophia-Antipolis

Systems of Polynomial Equations and Numerical Linear Algebra May 2017
NUMA seminar, KU Leuven, Belgium

Talks and posters at international conferences
Solving Polynomial Systems using Cox Rings February 2020
Milestone conference of the thematic Einstein semester ‘Algebraic Geometry’, Berlin

Numerical Root Finding via Cox Rings (poster) October 2019
Opening conference of the thematic Einstein semester ‘Algebraic Geometry’, Berlin

Robust Numerical Path Tracking in Polynomial Homotopies July 2019
ICIAM conference, Valencia

Solving Nonlinear Eigenvalue Problems using Contour Integration July 2019
ICIAM conference, Valencia

Numerical Root Finding via Cox Rings July 2019
SIAM AG conference, Bern

Robust Numerical Path Tracking for Polynomial Homotopies (poster) June 2019
MEGA conference, Madrid

Numerical Root Finding via Cox Rings (poster) June 2019
Conference ‘Ideals, Varieties and Applications’ (celebrating the influence of David Cox)

Truncated Normal Forms for Solving Polynomial Systems (poster) September 2018
ICERM nonlinear algebra semester, workshop ‘Core Computational Methods’, Providence

Truncated Normal Forms for Solving Polynomial Systems (poster) July 2018
ISSAC conference, New York

Truncated Normal Forms for Solving Polynomial Systems (poster) June 2018
CBMS conference on Applications of Polynomial Systems, Fort Worth

Structured Matrices in Polynomial System Solving May 2018
SIAM ALA conference, Hong Kong

Solving Nonlinear Eigenvalue Problems using Contour Integration May 2018
SIAM ALA conference, Hong Kong

Polynomial System Solving and Numerical Linear Algebra August 2017
SIAM AG conference, Atlanta

Matrices in Polynomial System Solving May 2017
Rencontre en Algèbre Linéaire Numérique Amiens-Calais, Amiens

Solving Systems of Polynomial Equations July 2016
ILAS conference, Leuven





FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF COMPUTER SCIENCE

NUMA
Celestijnenlaan 200A box 2402

B-3001 Leuven
simon.telen@kuleuven.be

https://simontelen.webnode.com/


	Abstract
	Beknopte samenvatting
	List of Abbreviations
	List of Symbols
	Contents
	List of Figures
	List of Tables
	Introduction
	Polynomial systems
	Applications
	Polynomial optimization
	Chemical reaction networks
	Tensor decomposition
	Computer vision

	State of the art
	Algebraic methods
	Homotopy methods

	Research goals and contributions
	Outline

	Basic algebraic geometry
	Affine varieties
	Definition
	Affine varieties as topological spaces
	The Nullstellensatz
	Coordinate rings and morphisms
	Dimension
	Affine schemes

	Projective varieties
	Definition
	Projective varieties as topological spaces
	Projective Nullstellensatz
	Homogeneous coordinate rings
	Affine coverings
	Regular functions and morphisms
	Dimension and degree

	Abstract varieties

	Zero-dimensional varieties
	Points in affine space
	The eigenvalue, eigenvector theorem
	Genericity and Bézout's theorem
	Multiplicity

	Points in projective space
	The Hilbert function and Bézout's theorem
	Projective eigenvalue, eigenvector theorem
	Homogenization

	Gröbner and border bases
	Gröbner bases
	Border bases

	Resultants and Macaulay matrices
	Definition and properties
	Macaulay matrices


	Truncated normal forms
	A motivating example
	A general framework for normal form methods
	Solving generic, dense systems
	Resultant maps
	Algorithm
	Numerical experiments

	Improvements and generalizations
	Fast cokernel computation
	TNFs in non-monomial bases

	Homogeneous normal forms

	Toric methods
	Polyhedral families and the BKK theorem
	Toric resultants
	Definition and properties
	The Canny-Emiris construction

	Truncated normal forms for polyhedral families
	Solutions on toric varieties
	Unmixed families
	Mixed families

	Cox rings and homogeneous normal forms
	The Cox ring of a complete toric variety
	Multigraded regularity
	Toric eigenvalue-eigenvector theorem
	Toric homogeneous normal forms
	More on regularity and fat points


	Homotopy continuation
	Tracking smooth paths
	Puiseux series and Padé approximants
	Puiseux series
	Padé approximants

	Computing power series solutions
	A robust algorithm for tracking smooth paths
	Adaptive stepsize: two criteria
	Path tracking algorithm

	Numerical experiments

	Conclusion and future work
	Contributions
	Future directions

	Commutative algebra
	Rings and ideals
	Elementary definitions
	Quotient rings
	Krull's principal ideal theorem
	Localization

	Modules over rings
	Elementary definitions
	Exact sequences
	Free resolutions
	Graded rings, modules and resolutions
	The Koszul complex
	Localization of modules


	Numerical linear algebra
	Conditioning and stability
	Singular value decomposition
	QR factorization
	Eigenvalue problems

	Error measures
	Polytopes, cones and fans
	Polytopes
	Polyhedral cones
	Fans

	Toric geometry
	Affine toric varieties
	Projective toric varieties and polytopes

	Bibliography
	Curriculum
	List of publications

