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Abstract

Systems of polynomial equations arise naturally from many problems in applied
mathematics and engineering. Examples of such problems come from robotics,
chemical engineering, computer vision, dynamical systems theory, signal processing and
geometric modeling, among others. The numerical solution of systems of polynomial
equations is considered a challenging problem in computational mathematics.
Important classes of existing methods are algebraic methods, which solve the problem
using eigenvalue computations, and homotopy methods, which track solution paths in
a continuous deformation of the system. In this text, we propose new algorithms of
both these types which address some of the most important (numerical) shortcomings
of existing methods.

Classical examples of algebraic techniques use Grébner bases, border bases or resultants.
These methods take advantage of the fact that the solutions are encoded by the
structure of an algebra that is naturally defined by the equations of the system. In
order to do computations in this algebra, the algorithms choose a representation of it
which is usually given by a set of monomials satisfying some conditions. In this thesis
we show that these conditions are often too restrictive and may lead to severe numerical
instability of the algorithms. This results in the fact that they are not feasible for finite
precision arithmetic. We propose the framework of truncated normal forms to remedy
this and develop new, robust and stabilized methods. The framework generalizes
Grobner and border bases as well as some resultant based algorithms. We present
explicit constructions for square systems which show ‘generic’ behavior with respect
to the Bézout root count in affine space or the Bernstein-Khovanskii-Kushnirenko
root count in the algebraic torus. We show how the presented techniques can be
used in a homogeneous context by introducing homogeneous normal forms, which
offer an elegant way of dealing with solutions ‘at infinity’. For instance, homogeneous
normal forms can be used to solve systems which define finitely many solutions in
projective space by working in its graded, homogeneous coordinate ring. We develop
the necessary theory for generalizing this approach to the homogeneous coordinate
ring (or Cox ring) of compact toric varieties. In this way we obtain an algorithm for
solving systems on a compactification of the algebraic torus which takes the polyhedral
structure of the equations into account. This approach is especially effective in the
case where the system defines solutions on or near the boundary of the torus in its
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compactification, which typically causes difficulties for other solvers. Each of the
proposed methods is tested extensively in numerical experiments and compared to
existing implementations.

Homotopy methods are perhaps the most popular methods for the numerical solution
of systems of polynomial equations. One of the reasons is that, in general, their
computational complexity scales much better with the number of variables in the
system than that of algebraic methods. However, the reliability of these methods
depends strongly on some design choices in the algorithm. An important example
is the choice of step size in the discretization of the solution paths. Choosing this
too small leads to a large computational cost and prohibitively long computation
times, while choosing it too large may lead to path jumping, which is a typical cause
for missing solutions in the output of a homotopy algorithm. In this thesis, a new
adaptive step size path tracking algorithm is proposed which is shown to be much less
prone to path jumping than the state of the art software.



Beknopte samenvatting

Stelsels veeltermvergelijkingen duiken op in talrijke problemen in toegepaste wiskunde
en ingenieurswetenschappen. Voorbeelden van zulke problemen kan men vinden in
onder meer de robotica, chemische ingenieurstechnieken, computervisie, dynamische
systeemtheorie, signaalverwerking en geometrische modellering. Het numeriek oplossen
van een stelsel veeltermvergelijkingen wordt beschouwd als een uitdagend probleem
in de computationele wiskunde. Belangrijke klassen van bestaande methodes zijn
algebraische methodes, die het probleem oplossen via eigenwaardenberekeningen, en
homotopiemethodes, die oplossingspaden volgen in een continue vervorming van het
stelsel. In deze tekst stellen we nieuwe algoritmes voor van beide soorten die op
verschillende vlakken beter presteren dan de bestaande methodes.

Klassieke voorbeelden van algebraische technieken maken gebruik van Grobner-basissen,
border-basissen of resultanten. Deze methodes zijn gebaseerd op het feit dat de
oplossingen geéncodeerd zijn in de structuur van een algebra die op een natuurlijke
manier door de vergelijkingen van het stelsel wordt gedefiniéerd. Om berekeningen
te doen in deze algebra kiezen de algoritmes een wvoorstelling ervan die gebruikelijk
bestaat uit een aantal monomen die aan zekere voorwaarden voldoen. In deze thesis
tonen we aan dat deze voorwaarden vaak te strikt zijn en mogelijk leiden tot ernstige
numerieke onstabiliteit van de algoritmes. Dit resulteert in het feit dat ze niet
geschikt zijn voor berekeningen in eindige precisie. We stellen het raamwerk van
afgeknotte normaalvormen (truncated normal forms, TNFs) voor om deze tekortkoming
te verhelpen en ontwikkelen nieuwe, robuuste en gestabiliseerde methodes. Het
raamwerk veralgemeent Grébner- en border-basissen, alsook een aantal resultant-
gebaseerde algoritmes. We stellen expliciete constructies voor om vierkante systemen
op te lossen die ‘generiek’ gedrag vertonen, waarmee we bedoelen dat ze het verwachte
aantal oplossingen hebben in de zin van Bézout of Bernstein-Khovanskii-Kushnirenko.
We tonen aan hoe de voorgestelde technieken gebruikt kunnen worden in een homogene
context door het definiéren van homogene normaalvormen (homogeneous normal forms,
HNFs) die een elegante manier bieden om oplossingen ‘op oneindig’ af te handelen.
Bijvoorbeeld, homogene normaalvormen kunnen gebruikt worden om stelsels op te
lossen die eindig veel oplossingen definiéren in de projectieve ruimte door te werken
in de homogene codrdinaatring. We ontwikkelen de nodige theorie om deze aanpak
te veralgemenen naar de homogene coordinaatring (of Cox ring) van een compacte
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torische variéteit. Op deze manier bekomen we een algoritme voor het oplossen van
veeltermstelsels in een compactificatie van de algebraische torus die rekening houdt
met de polyhedrale structuur van de vergelijkingen. Deze aanpak is vooral effectief in
het geval waarin het systeem oplossingen definiéert nabij de rand van de torus in zijn
compactificatie, hetgeen typisch een probleem vormt voor andere methodes. Elk van
de voorgestelde algoritmes wordt getest in numerieke experimenten en vergeleken met
bestaande implementaties.

Homotopiemethodes zijn wellicht de meest populaire methodes voor het numeriek
oplossen van een stelsel veeltermvergelijkingen. Eén van de redenen daarvoor is dat
de rekenkost veel beter schaalt met het aantal variableen in het stelsel dan voor
algebraische methodes. Echter, de betrouwbaarheid van deze methodes hangt sterk af
van een aantal ontwerpkeuzes in het algoritme. Een belangrijk voorbeeld is de keuze
van de stapgrootte in de discretisatie van de oplossingspaden. Kiezen we deze te klein
dan leidt dit tot lange rekentijden. Kiezen we deze te groot dan kan dit leiden tot
path jumping, wat een typische oorzaak is voor verloren oplossingen in de output van
een homotopie algoritme. In deze thesis ontwerpen we een nieuw homotopie algoritme
dat gebruik maakt van een adaptieve stapgrootte en tonen we aan dat dit algoritme
beduidend minder last heeft van path jumping dan state-of-the-art alternatieven.
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Chapter 1

Introduction

This text is about the mathematical problem of solving a system of polynomial
equations, which is a fundamental problem in nonlinear algebra and algebraic geometry.
Application areas of this problem include cryptography, signal processing, data science,
chemical engineering, robotics and computer vision, to name a few.

With motivations coming mainly from pure mathematics, the research on algorithms
for solving polynomial equations in the 19th and most of the 20th century focused
on symbolic methods. This led to major advances in computer algebra with the
development of powerful tools for testing theories, formulating conjectures and even
proving theorems. Although very useful for such purposes, symbolic manipulation is
often unfeasible for problems coming from applications. There are two main reasons
for this. Firstly, the scale of such problems can be very large, requiring too much
time for symbolic algorithms to terminate. Secondly, the input data of the problems
(e.g. the coefficients of the polynomials) may come from measurements or previous
numerical computations. The representation of these data as rational numbers requires
the use of large integers, which rapidly leads to memory issues. These observations
establish the need for robust numerical algorithms that produce reliable results in
finite precision arithmetic. Somewhat surprisingly, the fields of numerical nonlinear
algebra and numerical algebraic geometry have remained largely uncharted territory
until the end of the 20th century. One possible explanation is that numerical analysts
have rarely been exposed to commutative algebra or algebraic geometry in their
undergraduate years. On top of that, the classical sources on these subjects often
assume a background in algebra and topology that excludes numerical analysts and
engineers from their reading audience. Books such as Ideals, Varieties and Algorithms
and Using Algebraic Geometry by Cox, Little and O’Shea are game changers from this
perspective. Among other things, the publication of such books has paved the way for
today’s growing community of applied and numerical algebraic geometers.

In this text, we have aimed to include background information on basic algebraic
geometry, commutative algebra, numerical analysis and numerical linear algebra. We
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assume basic knowledge of algebraic structures, linear algebra and floating point
numbers. For the sake of readability, some of the preliminary material is moved to an
appendix and references are provided where a full discussion would be too lengthy.
In the first section of this chapter, we state the problem of solving a system of
polynomial equations in its simplest form and discuss some conventions used in this
thesis. In Section 1.2 we present a selection of applications of the problem in some
more detail. Section 1.3 gives an overview of some state of the art methods. In Section
1.4 we describe the goals of this thesis and our main contributions. Finally, in Section
1.5 we discuss the outline of the thesis.

1.1 Polynomial systems

Let R = C|x1,...,x,] be the ring of n-variate polynomials with coefficients in C.
An element f € R defines a function f : C" — C. We will use the short notation
x = (21,...,2,) € C" and when n < 3 we may use variable names such as z,y, z
instead of x1,x2,x3 to avoid subscripts. Given s elements f1,..., fs € R, we define
the map F': C* — C? such that

F(LE) = (fl(x)v : 7fs(x))

We will be interested in the inverse image of the origin in C® under this map, i.e., in
the fiber
F7H0)={z € C" | F(z) =0}.

This set consists of all the points satisfying the relations

file) == fi(@) = 0.

Therefore, F~1(0) is called the set of solutions of the system of polynomial equations
defined by f1,..., fs. In this context, by solving the system of polynomial equations
fi =+ = fs =0 we mean ‘computing’ F~1(0). Here we have to specify what we
mean by ‘computing’ a set of points in C". Some issues are:

1. The set F~1(0) may be infinite.

2. There may be no expression in radicals for the coordinates of the points in
F~1(0), i.e. there is no algorithm that computes these coordinates in finite time.

Example 1.1.1. If n =2 and s = 1, then f(z,y) = 0 defines infinitely many points
in C? unless f is a nonzero constant function. If n = s = 1, then there is no expression
in radicals for the roots of a general quintic asz® + asz* + - - - + ag = 0 by the famous
Abel-Ruffini theorem. A

In this thesis, we will assume that fi,..., fs are such that the first situation does not
occur. That is, we will assume that F~1(0) consists of isolated points, and this implies
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that F~1(0) is finite by Bézout’s theorem 3.1.2. As we will see (Theorem 2.2.4), in
order for this assumption to be satisfied we must have s > n. A system with finitely
many solutions is called zero-dimensional, which refers to the dimension of F~1(0) as
an affine algebraic variety. We will say more about dimension in Chapter 2 and use it
as an intuitive concept for now. If the f; are non-constant, the ‘expected dimension’
of F~1(0) is n — s, where negative dimensions (for s > n) indicate that F~1(0) is
expected to be the empty set.

Example 1.1.2. If f; = a0 +a;171 + - - - + @i, are affine functions, then F~1(0) is
the affine space of solutions of a linear system of equations defined by an s X n matrix
A = (a;j)1<i<s,1<j<n. The dimension of the solution space is n — s, except when the
matrix A is not of full rank. AN

This means that systems given by n equations in n variables are expected to have
finitely many isolated solutions. Systems for which n = s are called square systems.
They form an important class of polynomial systems and they will play an important
role in this thesis.

The second issue listed above means that there is no hope for developing algorithms
for computing ezactly the coordinates of the solutions of any system of polynomial
equations in finite time. However, the solutions can be approximated to arbitrary
precision by using, for instance, Newton’s method. Motivated by this, by ‘computing’
the solutions of f; = -+ = f; = 0 we mean computing satisfactory numerical
approximations of the coordinates of the solutions in C". A way of measuring the
quality of an approximate solution is discussed in Appendix C.

In the formulation above, C™ is called the solution space of the system f; = --- = f, = 0.
Especially when dealing with systems in more than one variable (n > 1) it may be
convenient to work with different solution spaces X, as we will do later on in this
text. In the more general context, on which we will not elaborate until Section 3.2, F'
will be a section of a rank s algebraic vector bundle on X, and the set of solutions
is the zero locus of F' in X. One of the reasons for changing the solution space is
that systems may define solutions ‘at infinity’, and for numerical stability reasons we
may want to include ‘infinity’ in our solution space. This leads for instance to the
projective solution space X = P" (see Section 2.2) or other compact toric varieties
(see Chapter 5). In all these cases, we will define coordinates on our solution space
X, and by solving we mean computing satisfactory numerical approzimations of the
coordinates of the solutions in X.

Throughout this thesis, we will mostly work with polynomials, varieties and matrices
over the complex numbers C. This choice needs to be motivated, since many systems
arising from applications have real coefficients and it is often only important to
compute the real solutions. On top of that, the number of real solutions can be much
smaller than the number of complex solutions. Real solutions of polynomial systems
are studied in the field of real algebraic geometry [BCR13, Sot03]. Finding only the
real solutions without computing all complex solutions first is a hard problem that is
still largely open. One reason is the fact that C is algebraically closed and R is not.
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In fact, C is the algebraic closure R of R, which means that C is the smallest of all
fields K containing R such that every non-constant polynomial in R[x] has a solution
in K. This implies that we can invoke Hilbert’s Nullstellensatz (see Subsection 2.1.3),
which is a celebrated result in algebraic geometry. It also leads to the fact that for
certain families of polynomial systems and varieties, one can make statements about
what happens in general or generically. Finally, working over the complex numbers is
essential for the success of homotopy continuation methods (see Chapter 6) for solving
polynomial systems. In conclusion, although many of the polynomial systems we are
interested in have coefficients in R, we will solve them over C = R, and if we are only
interested in real solutions, we will adopt the usual strategy of computing all complex
solutions in C™ and taking the intersection with R"™.

Example 1.1.3. Consider a general quadratic polynomial f = az? + bx + ¢ € R[z]
with @ # 0. The polynomial f has two solutions in R when b? — 4ac > 0, one
solution in R when b? — 4ac = 0 and no solutions in R when 4% — 4ac < 0. A
geometric way of thinking about this is the following. The discriminant surface
{(a,b,c) € R? | b — 4ac = 0} partitions the parameter space {(a,b,c) € R? | a # 0}
into two compartments, each with a different real root count. A quadratic equation
f = ax? + bx + ¢ € C[z] with a # 0 always has a solution in C, and for general a, b, ¢
there are two solutions in C. If there is only one solution, then b2 —4ac = 0. A general
cubic f = ax® + bx? + cx +d € R[z],a # 0 may have 1 or 3 solutions in R. The
discriminant is now given by Ay = b?c? — 4ac® — 4b3d — 27a?d? + 18abed = 0. If the
coefficients are complex, there are 3 solutions except when Ay = 0. A

1.2 Applications

Systems of polynomial equations are at the heart of many problems in pure and applied
mathematics. Some examples are computing all possible conformations of molecules in
molecular biology [EM99a], the design of wavelet families in signal processing [Tell6,
Section 1.2], analyzing feasible robot configurations in robotics [WS11], computing
Nash equilibria in economics and game theory [Stu02, Chapter 6] (or [WS05, Chapter
9]), numerous applications in statistics [Sull8], curvature and bottleneck computation
in topological data analysis [Bre20] and solving linear partial differential equations
with constant coefficients [Stu02, Chapter 10]. The author learned about several of
these applications and others in a course taught by David Cox at the 2018 CBMS
conference on ‘Applications of Polynomial Systems’. The course material has recently
been published in [Cox20a]. In the remainder of this section we present a selection of
other applications of polynomial systems in some more detail.

1.2.1 Polynomial optimization

Systems of polynomial equations often arise in applications in the form of a polynomial
optimization problem [AL11], where the goal is to minimize a polynomial objective
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function g(z1,...,zr) € Rlzy,...,25] C Clz1,..., 2] over a real algebraic set (the
zero locus of a set of polynomials hi,...,hy € Rzy,..., 2] in R¥). That is, we
consider the optimization problem

min g(x1, ..., zk),

r€R (1.2.1)

subject to hi(x1,...,x5) =+ = he(z1,...,25) = 0.
This is an example where one is only interested in real solutions: minimizing over the
complex numbers does not make much sense. Introducing new variables Aq,..., Ay we
obtain the Lagrangian L = g — A1hy — - - — A\hy, whose partial derivatives give the

optimality conditions

oL oL

=2 =k =--=h, =0. 1.2.2

a$1 8xk ! ¢ ( )
This is a polynomial system with n = s = k 4+ £. The real solutions are obtained by
computing all the complex solutions and intersecting with R*. By the discussion in
Section 1.1, the number of solutions is typically finite.

Example 1.2.1 (Euclidean distance degree). Given a general point y = (y1,...,yx) €
R*, we consider the (squared) Euclidean distance function g(xq,...,zx) = ||z — y||% =
(v —y1)% + -+ (2 — yr)% Let Y be the zero-locus of hy,...,hy € Rlzy,. .., 2z]:

Y={zecR"|h = =hg=0}.

Consider the optimization problem (1.2.1) given by these data. The solution y* is the
point on Y that’s closest to y. The number of complex solutions of (1.2.2) is called
the Euclidean distance degree of Y [DHO116]. The authors of [DHO'16] point out
that if y is a noisy sample from Y, then y* is the maximum likelihood estimate for y
under the assumption that the noise has a standard Gaussian distribution in R™. A

Example 1.2.2 (Computing critical points). In many applications one is interested
in finding the critical points of a differentiable function f : R™ — R, not necessarily
polynomial, in a bounded domain 2 C R™. These are the real solutions in €2 of

of .. _0F _

R . 1.2.

A possible strategy for finding these points is approximating f by a polynomial function
f on Q and computing the critical points of f in Q instead. An effective way of doing
this approximation numerically is by the use of multivariate Chebyshev interpolants
[Mas80, Trel7]. Replacing f in (1.2.3) by f gives the optimality conditions for an
unconstrained version of (1.2.1). This approach is used in [NNT15] (in combination
with domain subdivision) for solving one of the STAM 100-Digit Challenge problems
[Tre02]. A

Example 1.2.3 (Parameter estimation for system identification). System identifi-
cation is an engineering discipline that aims at constructing models for dynamical
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systems from measured data [Lju86]. The general model for a discrete time, single-
input single-output linear time-invariant system with input sequence v : Z — R,
output sequence y : Z — R and white noise sequence e : Z — R is

Here A, By, By, C1,C5 € Clq] are unknown polynomials in the backward shift operator
g which acts on any sequence s : Z — R by ¢s(t) = s(t —1). Let da,dp,,dp,,dc,,dc,
be the degrees of these polynomials, which depend on the choice of model. Clearing
denominators gives

A(q)B2(q)C2(q)y(t) = B1(q)Ca(q)u(t) + Ba(q)Cr(q)e(t). (1.2.4)

Suppose we have measured u(0),...,u(N),y(0),...,y(IN). Then we can find algebraic
relations among the coefficients of A, By, Ba, Cy, Cy by writing (1.2.4) down for ¢t =
d,d+1,..., N where

d= max(dA + d32 + dc2,d31 + dcz,d32 + dcl).

The coefficients of these polynomials are then estimated by solving the polynomial
optimization problem

i 0)?+...+e(N)?
Jain e(0)” +...+e(N)
subject to (1.2.4) is satisfied for t =d,..., N
where © is the set of parameters consisting of e(0),...,e(N) and the unknown

coefficients of A, By, By, C1,Cs. The interested reader is referred to [Lju86, chapter
7] for a detailed treatment of parameter estimation in system identification, and to
[Bat13, Subsection 1.1.1] for a worked out example. A

1.2.2 Chemical reaction networks

The equilibrium concentrations of the chemical species occuring in a chemical reaction
network satisfy algebraic relations. Taking advantage of the algebraic structure of
these networks has led to advances in the understanding of their dynamical behaviour.
We refer the interested reader to [Dicl6] and references therein. The network below
involves 4 species A, B,C, D and models T cell signal transduction (see [Dicl6]).

A+ B

y( 5 1}9
<
K23

D

C
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The parameters kio, ko1, k31,k23 € Rso are the reaction rate constants. Let
Ta,Tp,xc,Tp denote the time dependent concentrations of the species A, B,C, D
respectively. The law of mass action gives the relations

d{EA

fa= o —K12ZATB + K21Z¢c + K31ZD,
de

fB= T —K12ZATB + K21X¢ + K312 D,
de‘C

fo= ¢ = F129ATB — k21%c — Kas¥c,

f d(ED

D = —5, = R23ZCc — K31TD-

dt

The set {(za,2p,7c,2p) € (Rs0)* | fa = fs = fo = fp = 0} is called the
steady state variety of the chemical reaction network. By the structure of the
equations, for given initial concentrations, the solution (z,2p,2c,xp) cannot leave
its stoichiometric compatibility class, which is an affine subspace of (Rs)*. Adding the
affine equations of the stoichiometric compatibility class to the system, we get the set
of all candidate steady states. We conclude by pointing out that there are remarkable
connections with toric geometry [CDSS09] and geometric modeling [CGPSO08].

1.2.3 Tensor decomposition

Tensors, as a generalization of matrices, are represented in coordinates by multi-
dimensional arrays. They have numerous applications in signal processing, chemistry
and data mining, among others [KB09, Com02, CMDL"15, SDLF*17]. In these
applications, a frequently encountered problem is to find a decomposition of a tensor
into a sum of ‘simple’ tensors. For example, the tensor rank decomposition or Canonical
Polyadic Decomposition (CPD) of a third order tensor A € C! @ C™ @ C" is

A= 20y @z (1.2.5)

i=1

where r is the rank of A (it is the minimal number for which such a decomposition
exists), z; € Cly; € C™,z; € C" and a term z; @ y; ® 2 is called a rank-one tensor,
or elementary tensor [DSLO08]. Equivalently, in coordinates we can write (1.2.5) as

Ajre = Z%‘jyikziz, 1<j<[1<k<m,1<{<n. (1.2.6)
i=1

Even when the rank r is known, it is considered a difficult problem to find the rank-one
summands in (1.2.5). It is clear from (1.2.6) that the entries of the x;,y;, z; are the
solutions to a set of polynomial equations. Some variables can be eliminated by
observing that ax; ® by; ® cz; = (abe)(x; ® y; ® z;). That is, with an appropriate
change of coordinates one can assume that z;; = y;; = 1, and the solution space
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has dimension (I + m + n — 2). For some formats (I,m, n), there exists r € N such
that the resulting polynomial system is square. These are the formats (I, m,n) for
which Imn/(l +m +n — 2) € N. Such tensor formats are called perfect and homotopy
methods of numerical algebraic geometry have proved very useful for investigating the
identifiability and the generic number of possible decompositions [HOOS19].

In applications, the data in A are often contaminated by noise and there is no hope
for having equality in (1.2.5) for low ranks r. One is usually interested in finding a
rank r tensor that approximates A. In the case where r = 1 one computes the critical
points of the algebraic function

Z(Ajkz — z5yx20)°,

ke
which is another example of polynomial optimization (Subsection 1.2.1).

In [KL18], homotopy continuation methods have been successfully applied for
decomposing unbalanced tensors (in our example, these are temsors with r <
max(l,m,n)). The key ingredient is an alternative algebraic formulation for the
decomposition problem using basic (multi-)linear algebra techniques.

Symmetric tensors A in (C))®? (i.e., tensors for which the coordinates are invariant
under permutation of the indices) are homogeneous polynomials f4 of degree d in
[ variables (see Section 2.2). For d = 2, this statement reduces to the standard
observation that a matrix A € C'*! = C' ® C' defines a quadratic form fa(u) = u' Au
where u = (uy,...,u;) . The symmetric tensor rank decomposition of a symmetric
tensor A is the decomposition of A into a minimal sum of symmetric elementary
tensors. The number of summands is called the symmetric rank. This decomposition
is given by the Waring decomposition of the corresponding homogeneous polynomial,
which is its minimal decomposition into a sum of powers of linear forms. For instance

((Cl)®3 BAZZ!L‘Z‘@JJi@CL’Z‘ ~  falu) = Zli(u)37
i=1 i=1

where [;(u) = zju1 + -+ - + xyu. Apolarity theory relates the problem of finding the
Waring decomposition to the theory of polynomial system solving [IK99, Chapters
1-2]. This was exploited in [BCMT10, BT20b] to design an algorithm for symmetric
tensor decomposition which combines ideas from algebraic polynomial system solving
methods and homotopy methods.

So far, we have discussed how polynomial system solving techniques can be applied
to solve tensor decomposition problems. Going the other way around, in [VSDL17a,
VSDL17b] the authors use tensor decomposition as the last step in their algorithm for
solving systems of polynomial equations. The connection between the CPD of third
order tensors and joint eigenvalue decomposition of commuting matrices, as discussed
in [DLO6], is exploited. Multiple roots of the polynomial system are handled using
the block term decomposition and the algorithms can be used in particular for solving
noisy, overdetermined systems.
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1.2.4 Computer vision

An important problem in computer vision is that of estimating internal calibration
parameters of a camera or camera displacement from point correspondences in a
sequence of images [HZ03]. Every such point correspondence imposes an algebraic
relation on the parameters that are to be estimated. For some minimal number of
points, the number of solutions to the resulting system is finite. Problems that can be
formulated in this way are called minimal problems [Kuk13].

Example 1.2.4 (relative pose problems). Consider a moving, fully calibrated camera
taking two pictures of the same object at different moments in time. In these pictures,
there are certain points that correspond to one another. For instance, if the object is
a cube, one of its vertices might appear in both pictures. A question one could ask is:
‘What is the minimal number of point correspondences that we need to know such
that there are only finitely many possible displacements of the camera that can realize
these correspondences?’” The answer to this question is five [Nis04]. If the focal length
of the camera needs to be estimated as well (i.e. the camera is not fully calibrated),
we need six point correspondences. A

Example 1.2.5 (the 8-point radial distortion problem). The epipolar geometry and
one parameter radial lens distortion of a camera can be estimated simultaneously from
eight point correspondences [KP07]. This problem has several alternative formulations.
See [Kuk13, Section 7.1] for a formulation as a polynomial system with 7 equations in
7 unknowns, and a different formulation as a system with 3 equations and 3 unknowns.
In the first formulation with n = s = 7, there are 6 equations of degree 2 and one of
degree 3. In the formulation with n = s = 3, two equations have degree 3 and one has
degree 5. Geometric problems coming from applications can often be described by
different polynomial models with solution spaces of different dimensions. Typically, as
is the case in this example, the price one pays for reducing the number of variables is
an increase of the degree of the equations and vice versa. We will say a bit more about
the structure of the equations in the n = s = 3 formulation in Experiment 5.5.2. A

1.3 State of the art

In this section we give an overview of the available methods for solving systems of
polynomial equations. We will elaborate more on methods related to those proposed
in this thesis in later chapters. For more information, the reader can consult overview
books such as [Stu02, WS05, EM07, CCCT05]. Strategies for solving polynomial
equations over the complex numbers can be roughly subdivided into two classes. One
class of methods reduces the problem to a univariate root finding problem or an
eigenvalue problem via algebraic manipulations of the input polynomials. We refer to
such methods as algebraic methods. Other methods use a topological approach, where
a polynomial system is continuously deformed into another one and numerical methods
are used to track the paths of the isolated solutions. Such methods are referred to
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as homotopy methods. We give an overview of algebraic and homotopy methods in
Subsections 1.3.1 and 1.3.2 respectively.

We should mention that there is another popular class of methods, called subdivision
methods, for finding solutions in bounded domains of R” [MP09]. The approach uses
a combination of domain reduction and domain subdivision for iterative refinement
of the subregions where solutions may be located. We will not give any details here,
since both the used techniques and the scope of these methods are fundamentally
different from the ones in this thesis. We refer the interested reader to [MP09] and
references therein.

1.3.1 Algebraic methods

We denote by I C R the ideal generated by the polynomials fi,..., fs defining our
system of polynomial equations. As explained in Section 3.1, the solutions of the
polynomial system are encoded in the C-algebra structure of the residue ring R/I.
Algebraic methods for polynomial system solving deduce the algebraic structure of
R/I by performing linear algebra operations on vector subspaces of I.

This approach finds its origins in 18th, 19th and early 20th century works on
elimination theory and resultants by Bézout, Waring, Poisson, Sylvester, Cayley,
Macaulay. . . [Béz79, War91, Poi02, Syl40, Cay64, Mac02, Mac94]. Matrices whose
entries are coefficients of the polynomials f1, ..., fs play a key role in these works, and
they continue to do so in research on algebraic solving methods today. An explicit
construction of such matrices was introduced for computing projective resultants, see
e.g. [Mac02]. These matrices are also called Macaulay resultant matrices or, in the
case of two homogeneous polynomials in two variables, Sylvester resultant matrices.
See [CLOO06, Chapter 3] for a detailed treatment. Analogous constructions have been
described for computing toric or sparse resultants [EC93, PS93, D’A02, DS15]. These
are among the main objects of study in sparse elimination theory and find their origins
in the foundational work of Gel’fand, Kapranov and Zelevinsky [GKZ94]. Other
types of matrix constructions come from residual resultants [Bus01] and Bézoutians
[CCCt05, Chapterl]. An overview of these matrix techniques can be found in [EM99b]
and a nice summary of the history of elimination theory is given in [Cox20a, Chapter 1].
Although the original application of the theory of elimination and resultants was mainly
in symbolic computing, the methods have been analyzed and used in a numerical
context; see for instance [Tell6, JV05, BKMO05]. We will say more about resultants in
Section 3.4. In [Bat13, Drel3, DBDM12] (non-square) Macaulay-type matrices are
used for root finding in a numerical linear algebra context. The authors have also
developed algorithms that exploit the structure of these matrices (see, e.g., [BDDM14])
and show that their methods are useful in an overdetermined context where equations
may be contaminated by noise. All of these tools can be used to reduce the problem
of solving polynomial systems to a classical, generalized or polynomial eigenvalue
problem.
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Another well-established approach to describe the algebra R/I uses Grobner bases. A
Grobner basis for I with respect to a certain term order is a finite set of generators
for the ideal I satisfying some criteria (see Section 3.3). These criteria make the set of
generators extremely useful for computations with and modulo the ideal. Grébner bases
were introduced in 1965 by Bruno Buchberger in his Ph. D. thesis [Buc06] entitled An
algorithm for finding the basis elements of the residue class ring of a zero dimensional
polynomial ideal. In this thesis he also presents what is now called the Buchberger
algorithm for computing Grobner bases. Many algorithms in computer algebra rely on
(optimized versions of) this algorithm. A great introduction to the basics of Grébner
bases and the Buchberger algorithm can be found in [CLO13, Chapters 2-3] or [AL94,
Chapter 1]. More advanced topics are discussed in [Stu96]. Great improvements on the
efficiency of Grobner basis computation have been made by using linear algebra tools.
This has led to Faugere’s F4 and F5 algorithms [Fau99, Fau02], which are considered
the state of the art algorithms. The FGDb library [Faul0O] has an implementation of
these algorithms and an interface to Maple [Map18]. The development of specialized
Grobner basis algorithms is an active area of research; see e.g. [BFT19] for Grobner
bases in a toric context.

Grobner basis computations depend strongly on a choice of term order (see Section
3.3). H-bases, introduced by Macaulay [Mac94], are a different type of ideal bases
which can be viewed as a ‘coarser’ version of Grobner bases. The term order (which
is always a total order on monomials) is replaced by a coarser order on monomials
given by the total degree. Such bases have interesting properties and can be used, like
Grobner bases, for computing normal forms and to describe R/I [MS00].

Although Grobner bases are indispensable symbolic tools for algebraic root finding,
their use in a numerical context has remained limited. The reason is that Grébner
basis computations are numerically unstable. One of the causes is the fact that the set
of standard monomials (these are the residue classes of monomials corresponding to a
term order that form a basis for R/, see Section 3.3) change discontinuously with the
coefficients of the input polynomials f1, ..., fs [Ste97, Mou99]. We will give an example
in Subsection 3.3.2. To address this drawback of Grébner bases, border bases have been
introduced [AS88, MMMO91, Mo193, Ste97, Mou99, KK05, KKR05, KK06, MT08]. A
border basis for [ is a finite set of generators of I satisfying criteria that are less strict
than those imposed on Grébner bases. For example, border bases do not necessarily
correspond to a term order. For some finite dimensional vector subspace B C R,
a border basis establishes the equality R = B @ I identifying R/I ~ B as vector
spaces. It is commonly required that B be connected to 1 (see [Mou99]). If B is
spanned by a set B of monomials of R, this restriction is sometimes made stronger by
imposing that B be an order ideal (e.g. [KKRO05]). Both restrictions are satisfied by
the span of the standard monomials coming from a Grobner basis computation. These
generalizations lead to more robust numerical methods than Groébner bases. The
algorithms work with matrices that are usually smaller than resultant constructions
because of their incremental nature [MT00]. However, these techniques do not offer a
canonical choice for the representation of R/I that is optimized for numerical stability.
This is mentioned as an open problem in [Mou07] and will be addressed in this thesis.
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1.3.2 Homotopy methods

The strategy of homotopy continuation methods for solving systems of polynomial
equations can be described (omitting many subtleties) as follows. Consider F' : C* —
C™ as in Section 1.1 where we take s = n. Suppose G : C™ — C" represents a different,
square polynomial system whose solutions we know or can be easily computed. On
top of that, assume that G has the same number of solutions as F'. The next step is
to construct a polynomial map

H:C"xC—C" suchthat H(z,0)=G(z) and H(z,1)= F(x).

For instance

H(z,t) = (1 —t)G(z) + tF(z).

In this setup G is called the start system and F' is called the target system of the
homotopy H. As t goes from 0 to 1 along any continuous 1-real dimensional path in C,
the polynomial map G deforms continuously into F'. If this path is ‘nice’; the solutions
will describe smooth, continuous paths in C™ during this deformation, and the idea of
homotopy continuation is to track these paths numerically. This is usually done by
discretizing the path into small steps and applying a predictor-corrector scheme. An
introduction to homotopy continuation can be found in [AG12, MS87, Li97, SVWO1,
SVW05, WSO05].

Working over the complex numbers is crucial for the success of homotopy continuation
methods (although recently, in [EdW19], the authors have made some progress in
investigating what is possible over the reals). This means that these methods have
an intrinsic numerical character. In fact, numerical path tracking is strongly related
to numerically solving initial value problems given by ordinary differential equations
[WS11, Part 2].

Constructing an appropriate start system G is an interesting problem on its own.
One issue is that if G has too many solutions, some paths will diverge to infinity
as t approaches 1. This leads to waste of computational efforts, which is of course
undesirable. If all paths converge to a solution of F', the homotopy is called optimal
[HSS98]. Optimal homotopy constructions exist for some important types of polynomial
systems. Examples are total degree homotopies for square systems with the Bézout
number of solutions [WS05, Subsection 8.4.1], multihomogeneous homotopies for square
systems with the multihomogeneous Bézout number of solutions [Wam93] or polyhedral
homotopies for square systems with the BKK number of solutions [HS95, VVC94].
We will say more about these solution counts in Sections 3.1 and 5.1.

Under the right assumptions on the path that is followed in the parameter space, the
solution paths are smooth and do not cross each other along the way. However, if the
system F' has singular solutions, some paths may come together at ¢ = 1. Also, if we
were not able to construct an optimal homotopy, some paths may diverge to infinity.
For dealing with this type of situations, so-called end games have been developed
[MSW92a, MSW92b, HV98|. An alternative way of dealing with diverging paths is
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compactifying the solution space. It is common practice to track paths in projective
and multiprojective spaces [WS05, Chapter 3].

An important reliability issue of these methods is the possibility of path jumping.
This is the phenomenon where the numerical approximation of a point on one path
jumps to another path along the way. This happens, for instance, when the predicted
next point on the path is too far off and lands in the Newton basin of attraction of a
different path. In order to avoid this problem, the steps taken in the discretization
of the path should be small enough. On the other hand, taking the step size too
small would result in a high computational cost. Motivated by this, adaptive step size
methods have been developed that aim to choose the step size adaptively by detecting
which regions of the path are easy/hard to track [SC87, KX94, GS04, Tim20]. In this
thesis, we will propose a path tracking algorithm that proves to be more robust than
the state of the art implementations with respect to path jumping.

Some state of the art implementations of the homotopy continuation method for
solving systems of polynomial equations are Bertini [BSHW13]|, PHCpack [Ver99],
HOM4PS [LLT08] and the recently developed Julia package HomotopyContinuation.jl
[BT18]. We should also mention that certified path trackers have been developed
[HS12, HLJ16, XBY18], which avoid path jumping and provably compute approximate
solutions to the polynomial system F in the sense of Smale’s a-theory [BCSS12].
However, these methods are computationally significantly more expensive and the
certification assumes that the coefficients of the input systems are known ezactly.

If one of the solutions of F is known, one could construct a homotopy H(x,t) such
that H(z,0) = H(x,1) = F(z) by describing a closed loop in the parameter space.
If this loop encircles some branchpoints, tracking the corresponding solution path
will give us a new solution of the system. This is (again, omitting many details) the
approach taken in monodromy solvers [DHJ'19], which turn out to be very successful
for generating start systems and starting solutions.

1.4 Research goals and contributions

Given a polynomial system f; = --- = f; = 0 with solution space X defining finitely
many solutions, our aim in this thesis is to develop new algorithms that work in finite
precision arithmetic for finding numerical approrimations of the coordinates of the
solutions on X. In particular, with these algorithms we seek to address numerical
stability and robustness issues of existing implementations. We develop the necessary
theory for presenting the algorithms and perform numerical experiments to show their
effectiveness in comparison with the state of the art. The numerical algorithms we
present in this thesis are of two different types: some are algebraic solvers using normal
forms and eigenvalue computations, others are homotopy algorithms.

Classical algebraic methods impose restrictions on the representation of the quotient
algebra associated to a polynomial system which may lead to ill-conditioned rewriting
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rules. More specifically, often monomial bases are used which either come from a
monomial ordering or which satisfy some connectedness property (see Section 3.3). We
develop the framework of truncated normal forms (TNFs) which allows more general,
possibly non-monomial representations for the quotient algebra and leads to significant
improvements in the stability of normal form algorithms. For example, an algorithm
based on the classical Macaulay resultant construction fails at computing the 400
intersection points of two general degree 20 curves in the plane: the backward error is
O(1). With the TNF algorithm proposed in Subsection 4.3.2 we can compute all 28900
intersection points of two general degree 170 curves with a backward error no larger
than 1078 (see Subsection 4.3.3). The key feature of the algorithm that realizes this
improvement is an automatic choice of representation for the quotient algebra with
good numerical properties by applying standard tools from numerical linear algebra.

Truncated normal forms generalize both Grébner and border bases. We develop the
theory and propose explicit constructions for square polynomial systems which show
‘generic’ behavior with respect to their degrees or their monomial supports (Algorithms
4.1 and 5.3). These constructions are strongly related to Macaulay and toric resultant
constructions. Just like in these constructions, exploiting the polyhedral structure of
the system instead of only considering the degrees of the equations gives a significant
reduction of the sizes of the matrices involved in our algorithms.

The systems encountered in applications are often ‘non-generic’: the number of isolated
solutions may be much smaller than the expected number for a system with the same
degree or support. Enlarging our solution space to projective space or a more general
compact toric variety X, we can present constructions which allow isolated solutions
‘at infinity’. The methods rely on a homogeneous interpretation of the theory of
truncated normal forms. The ‘normal forms’ in this context work in the (multi-)graded
homogeneous coordinate ring or Coz ring of X. We call them homogeneous normal
forms and show how they lead to algorithms which can deal with solutions at or ‘near’
infinity (i.e. with large coordinates) in a robust way and which can help to understand
the solution count in the torus for certain families of systems. For this, we prove a
toric version of the classical eigenvalue-eigenvector theorems and prove new regularity
results for homogeneous ideals in the Cox ring, defining finitely many points on X.

Perhaps the most important reliability issue for homotopy continuation methods is
the possibility of path jumping, which happens when a numerical path tracker jumps
‘too far off’ the path that is currently being tracked, onto a different solution path.
This is a typical way of how solutions are lost during the path tracking. To address
this issue, we develop an adaptive stepsize algorithm that uses Padé approximants
in the predictor to detect ‘difficult’ regions along the path. It detects where there is
danger for path jumping and adjusts the discretization step of the path accordingly by
using a new heuristic. The resulting algorithm can reliably solve challenging problems
where other implementations fail.
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1.5 Outline

To conclude this chapter, we give an overview of the contents of this thesis by
summarizing the subject and goal of each of the next chapters.

In Chapter 2 we give an overview of some basic concepts from algebraic geometry and
we fix our notation for varieties, rings and ideals. We have included examples which are
instructive for later chapters. The goal of the chapter is to recall important concepts
such as the correspondence between varieties and their coordinate rings, the definition
of projective space and its standard affine open covering, homogeneous coordinate
rings of projective varieties and the gluing construction, which play a prominent role
in this thesis.

Chapter 3 consists of four sections, of which the first two recall some specific properties
of zero-dimensional varieties in affine and projective space and the last two describe
some classical methods for computing zero-dimensional varieties. The main goal of
the first part of the chapter is to state two versions of the eigenvalue-eigenvector
theorem for isolated root finding and to describe generic properties of systems of
equations, introducing Bézout’s theorem as an important example. The second part of
the chapter focuses on how these results are used by Grobner basis, border basis and
resultant algorithms for solving equations. These methods have strong connections to
the algorithms proposed in this thesis.

Chapter 4 introduces truncated normal forms (TNFs) and algorithms based on this
framework for solving square polynomial systems. Different choices of representations
for the quotient ring are discussed together with several adaptations and improvements
of the proposed algorithms. The last section introduces homogeneous normal forms
(HNFs) for solving square systems in projective space. Several numerical experiments
illustrate the effectiveness of the proposed methods. The chapter is strongly based on
the papers [TVB18, TMVB18, MTVB19].

In Chapter 5 we show how TNFs and HNFs can be used to solve more general families
of polynomial systems. More specifically, we consider systems that are called sparse in
the literature, referring to the fact that not all monomials up to a certain degree occur
in the equations. Taking the polyhedral structure of the equations into account leads
to smaller matrices than those of the constructions in Chapter 4. In order to use HNFs
in this setting, we work in the Cox ring of a compact toric variety which is a natural
solution space for our polyhedral system. We generalize the homogeneous version of
the eigenvalue-eigenvector theorem to use it in this setting and answer some questions
regarding the regularity of a homogeneous ideal in the Cox ring. The chapter is based
on [TMVBI18, Tel20, BT20a].

Chapter 6 is fairly independent of Chapters 3-5 since it deals with a different type of
methods for solving polynomial systems. It discusses homotopy continuation algorithms.
We recall the definition of Padé approximants, discuss some of their properties in
the context of homotopy continuation and propose a new numerical path tracking
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algorithm. In several numerical experiments, this algorithm proves to be significantly
more robust with respect to the issue of path jumping than existing implementations.
This chapter is based on [TVBV19].

The text is supported by a total of five appendices which contain some supplementary
material. Appendix A contains a summary of definitions and results from commutative
algebra which are relevant to the text. Appendix B gives an overview of the used
methods and concepts from numerical linear algebra. Appendix C motivates and
defines the way in which we measure the error of computed approximate solutions to
a system. Appendix D discusses objects and results from polyhedral geometry. Finally,
Appendix E contains a crash course in basic toric geometry.

For the reader’s convenience, we have summarized the most important dependencies
between the different parts of the text in the table below.

Section ... depends on ...
Chapter 2 2.1 Appendix A
2.2 Appendix A, Section 2.1
2.3 Sections 2.1 and 2.2
Chapter 3 3.1 Appendix A, Section 2.1
3.2 Appendix A, Section 2.2
3.3 Section 3.1
3.4 Section 3.2
Chapter 4 4.1 Sections 3.1 and 3.3
4.2 Appendix A, Sections 3.1 and 3.3
4.3 Appendices B and C, Sections 4.2 and 3.4
4.4 Section 4.3
4.5 Appendix C, Sections 3.2, 3.4 and 4.2
Chapter 5 5.1 Appendices A and D, Sections 2.1 and 3.1
5.2 Sections 2.1, 3.4, 5.1
5.3 Appendix C, Sections 5.1 and 5.2
5.4 Appendix E, Sections 2.3 and 5.1
5.5 Appendices C and E, Sections 3.2, 3.4, 5.1, 5.3
Chapter 6 6.1 Section 2.1
6.2 Section 6.1
6.3 Section 6.2
6.4 Appendix B, Sections 6.3 and 6.2
6.5 Appendix C, Section 6.4
Appendix E E.1l Appendices A and D, Section 2.1

E.2 Appendices A and D, Sections 2.2 and 2.3



Chapter 2

Basic algebraic geometry

Algebraic geometry is the study of geometric objects described by algebraic equations.
These objects are called algebraic varieties. The goal of this chapter is to introduce
some basic concepts from algebraic geometry on which the methods for system solving
proposed in this thesis are built. We limit ourselves to the concepts that are instructive
for the rest of the material in this thesis.

Many of the powerful results in modern algebraic geometry have been made possible
by the rigorous algebraic foundations laid out by pioneers such as David Hilbert,
Emmy Noether, Jean-Pierre Serre, Bartel Leendert van der Waerden, André Weil,
Oscar Zariski and the high level of abstraction in the works of Alexander Grothendieck.
However, it is this same level of abstraction that has given the subject the reputation
of being rather unaccessible for outsiders. In order to appreciate the field to the
fullest, it is crucial to start with the right book. Which book that is depends, of
course, on the reader’s background. An excellent introduction for readers with an
engineering or applied mathematics background is [CLO13], and so is the follow-up
book [CLOO06]. Other gentle treatments can be found in [SKKT04, SR94]. The book
of Hartshorne [Har77] is a standard, more advanced reference. Other advanced and
complete treatments can be found in [Mum96, Eis13, Vak17, Cutl8], and [Harl3] is
an excellent source of examples.

Just like differentiable manifolds locally look like open subsets of Euclidean space,
algebraic varieties locally look like affine varieties. These can be viewed as the building
blocks of algebraic varieties, and they are a natural starting point for this chapter.
We will discuss affine varieties in Section 2.1. After that, we will introduce projective
and quasi-projective varieties in Section 2.2. Finally, we briefly describe how affine
varieties can be glued together to obtain more general, abstract varieties in Section
2.3. This gluing construction gives us a good way to think about toric varieties, which
will play an important role in later chapters.

17
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2.1 Affine varieties

Our starting point is the n-dimensional complex affine space C™. As a set, C™ consists
of all n-tuples of complex numbers. Some authors write A™ for this space to emphasize
that the origin 0 € C™ does not play a special role here, as it does when we think of
C™ as a vector space over C. We believe this will not be a source of confusion here and
write C" to avoid introducing too much notation. Let R = C[xz1,...,z,] be the ring
of polynomial functions on C". As stated in the introduction, if n is small (n = 1,2, 3)
we will use variable names such as x,y, z to avoid subscripts.

2.1.1 Definition

We are interested in special subsets of C™, namely the zero sets of polynomials.

Definition 2.1.1 (affine variety). An affine variety in C™ is a subset Y C C™ such
that there is a set P C R of polynomials for which

Y={zeC"| f(x) =0,Vf € P}

In this case, we denote Y = Vgn (P) or, for short, ¥ = V(P) when the ambient
affine space is clear from the context. If P = {f1,..., fs} is finite! we will write

Ve (f1, ..o fs) for Ve ({f1, ..., fs ).

Although we work over the complex numbers, for visualization purposes we often
consider the real part Y NR™ of an affine variety, especially when n = 2, 3.

Example 2.1.1 (Plane curves). Let R = Cx,y|. Algebraic plane curves are affine
varieties Y = Vg2 (P) where P is a singleton {f}, f € R\ C. A nice class of examples
of algebraic curves is given by Lissajous curves. These are curves parametrized by
x = sin(t),y = sin(ait 4+ a2) with 0 < ag < w/2. Under the assumption that a; € Q,
the curve is the zero set of a polynomial in R intersected with the box [—1,1]2. These
curves have applications, for instance, in polynomial approximation and interpolation
[BCDMT06]. An example is shown in Figure 2.1. A

Example 2.1.2 (Algebraic surfaces). Let R = Clz,y,z]. If Y = Vs (P) where P is
a singleton {f}, f € R\ C, then Y is called an algebraic surface. As an example we
consider the surface given by the equation

f=(x*—yH? —22% — 2y — 162> +1=0.

Its real part is shown in Figure 2.2. This surface is obtained from projecting the double
pillow surface, which lives in a 4-dimensional space, to a 3-dimensional space. The
interested reader can find more information in [Sot17, Subsection 3.3]. It is clear from
the figure that the surface contains one ‘pillow’ embracing the origin. The second
pillow is in fact embracing a point ‘at infinity’, which we will make more concrete in
Section 2.2. A

n fact, by Hilbert’s basis theorem (see Theorem A.1.1), P can always be assumed to be finite,
since V(P) =V ({f1,..., fs}) for some fi,...,fs € R.
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Figure 2.1: Lissajous curves with parameters a; = 3/2, a2 = 0 (left) and a; = 3/2,a9 =
7/7 (right). The left curve is equal to the real part of V(z%(42? — 3)? + 49%(y? — 1)).

Figure 2.2: The double pillow.

Example 2.1.3 (Space curves). Let P = {y— 22,z — 23} C R = C[z,y, 2]. The affine
variety Ves (P) is the intersection of the algebraic surfaces Vs (y — 22) and Ves (2 — 23).
This is a standard example of an algebraic space curve (i.e., an algebraic curve in
3-space) called the twisted cubic. It is the image of the map ¢ : C — C3 defined by
#(t) = (t,12,#3). This is illustrated in Figure 2.3. A

Example 2.1.4. Note that C* = V(0) is itself an affine variety, and so is each point
p=(a,...,a,) € C* as p=V(z1 —a,...,z, — a,). Also the empty set & is an
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Figure 2.3: The twisted cubic.

affine variety, by @ = V(1). A

2.1.2 Affine varieties as topological spaces

Definition 2.1.1 defines affine varieties as sets. In this subsection we will define them
as topological spaces (that is, we will specify which subsets are closed and which
subsets are open in an affine variety Y'). One way to do this is by considering the
classical topology on C™ and the induced topology on affine varieties, which are among
the closed subsets of C™ (by continuity of polynomial maps). However, in algebraic
geometry we mostly work with a different topology on C™, called the Zariski topology.

Definition 2.1.2 (Zariski topology on C™). The Zariski topology on C™ is the topology
where the closed subsets are the affine varieties.

One can check that affine varieties satisfy the axioms for closed sets in a topology:
both C™ and @ are closed by Example 2.1.4, intersections of affine varieties are affine
varieties and finite unions of affine varieties are affine varieties.

Definition 2.1.3 (Zariski topology on an affine variety). Let Y C C™ be an affine
variety. The Zariski topology on Y is the subspace topology induced by the Zariski
topology on C™.

This means that the closed subsets of Y are the intersections of Y with closed subsets
of C™, which are affine varieties. Closed subsets of Y are also called subvarieties of
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Y. The Zariski closure Y of a subset Y C C" is the smallest Zariski closed subset
containing Y.

Example 2.1.5. The only closed subsets of C are C, @ and finite subsets. The set
{(z,y) € C? | |z| < 1,|y|] < 1} is closed in the classical topology, but it is neither open
nor closed in the Zariski topology. In fact, its Zariski closure is C2. The same is true
for the set {(z,y) € C? | y = exp(x)}. A

Definition 2.1.4 (Reducibility). An affine variety Y is called reducible if it can be
written as a union Y = Y; U Y5 with Y; and Y, proper closed subsets. A variety that
is not reducible is called irreducible.

2.1.3 The Nullstellensatz

It is a simple observation that V(P) = V(I), where I = (P) = {>_.9:fi | 9; €
R, f; € P} is the ideal generated by the elements in P. For some basic properties and
definitions related to ideals, we refer the reader to Appendix A. By Hilbert’s basis
theorem (see Theorem A.1.1) we can always find a finite set {f1,...,fs} CP C R
such that

I= <f1a~~~vfs> :{glf1+"'+gsfs |gi GR}

Given an ideal I C R, the operator V(-) gives an affine variety Y C C". Going the
other way around, one could start from a subset Y C C" and define its vanishing ideal

IY)={f€R| f(zx)=0,Yz €Y} CR.

It is clear that V(I(Y)) =Y is the Zariski closure of Y in C". In particular, if Y is an
affine variety, then V(I(Y)) =Y. A natural question to ask is whether I(V(I)) = I?
Although it is not hard to show that I C I(V(I)), a simple counterexample shows
that the other inclusion does not hold in general.

Example 2.1.6. Let I = (22) C C[z]. Then V(I) = {0} and [(V(I)) = (z) #1. A

Example 2.1.6 gives us an intuition about what can go wrong for the other inclusion.
The ideal (z2) consists of all polynomials with a root of multiplicity at least 2 at the
origin. The operator V(-) does not ‘see’ the multiplicity: for a polynomial to be in the
ideal I(V(I)), it need only vanish at © = 0. A celebrated result by David Hilbert tells
us that I = I(V(I)) for a subclass of ideals in R.

Theorem 2.1.1 (Hilbert’s Nullstellensatz). Let I C R = Clzy,...,z,] be an ideal
and let Y C C™ be an affine variety. Then

VIY)=Y and I(V(I)=VI,
where VI = {f € R | f™ € I for some m € N} is the radical of I.

Proof. Proofs can be found, for example, in [CLO13, Chapter 4], [Eis13, Chapter 4]
or [Rei95, Chapter 5]. O
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Theorem 2.1.1 establishes a nice interplay between algebra and geometry. More
specifically, it tells us that there is a one-to-one correspondence between affine varieties
in C" and radical ideals of R.

2.1.4 Coordinate rings and morphisms

Our goal in this subsection is to establish a one-to-one correspondence between affine
varieties and some special commutative rings with identity. As a first step, given an
affine variety Y C C”, we want to understand the polynomial functions on Y. That is,
we want to characterize the set C[Y] of functions Y — C that are the restriction of a
polynomial in R. It is clear that this set has a ring structure and there is a surjective
ring homomorphism R — C[Y] given by ‘restriction to Y’. The elements of R that
restrict to 0 on Y are exactly the elements in I(Y). This gives a short exact sequence
(see Subsection A.2.2)

0—-IY)—>R—=C[Y]=0. (2.1.1)

By the first isomorphism theorem (Theorem A.2.2) we find that C[Y] = R/I(Y). The
quotient ring R/I(Y) is called the coordinate ring of Y. It is a finitely generated
C-algebra with no nilpotents? (by the fact that I(Y) is radical), see Section A.1 for
definitions.

Example 2.1.7 (Some trivial coordinate rings). Note that C[C"] = R and C[@] =
{0}. A

Example 2.1.8 (Coordinate rings of points). If Y = {p} is a single point p =
(a1,...,an) € C*, then I(Y) = (1 — a1,...,Z, — ap) is a maximal ideal of R. In
fact, all maximal ideals of R are of this form [CLO13, Chapter 4, §5, Theorem 11]. In
this case C[Y] = C and the map R — C[Y] in (2.1.1) sends f to f(p). A

Example 2.1.9 (Irreducible varieties). The geometric notion of an affine variety being
irreducible (which means it cannot be written as the union of two strict subvarieties)
corresponds to the equivalent algebraic notions of the ideal I(Y") being prime and the
ring R/I(Y) being an integral domain [CLO13, Chapter 4, §5, Proposition 3]. A

Definition 2.1.5 (Morphisms of varieties). Let ¥ C C™ and Y’ C C™ be affine
varieties. A morphism between Y and Y’ is a map ¢ : Y — Y given by polynomials:

o(x) = (fr(@),..., fm(x)), fi€Clzy,...,xy].

Example 2.1.10 (Morphisms). The parametrization ¢ — (¢, ) of the twisted
cubic in Example 2.1.3 is a morphism between C and C?, and between C and the

twisted cubic. The coordinate ring of an affine variety Y is the ring of morphisms
Y - C. A

2We say that a ring has no nilpotents or is nilpotent-free if its only nilpotent element is 0.
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Note that the composition of two morphisms is again a morphism. A morphism
¢ Y — Y’ gives a C-algebra homomorphism ¢* : C[Y'] — C[Y] by composing
f € ClY'] with ¢: ¢*(f) = f o ¢. The map ¢* is called the pullback map or simply
the pullback of ¢.

Definition 2.1.6 (Isomorphism). A morphism ¢ : Y — Y is an isomorphism if the
pullback ¢* : C[Y’] — C[Y] is an isomorphism of C-algebras. Two affine varieties
Y c C", Y’ € C™ are called isomorphic if there exists an isomorphism ¢ : Y — Y.

One can check that Y and Y’ are isomorphic if and only if there exists morphisms
¢:Y =Y and ¢’ : Y = Y with ¢ o ¢’ =idy and ¢’ o ¢ = idy [CLO13, Chapter 5,
§4, Theorem 9]. If Y and Y’ are isomorphic, we write Y ~ Y’ and sometimes, with a
slight abuse of notation, Y =Y.

Example 2.1.11. Let Y C C? be the twisted cubic as in Example 2.1.3. The
pullback of the map ¢ : C — Y given by ¢(t) = (¢,t%,¢3) is the map ¢* that
sends f + (y — 22,z —2%) € Clz,y,2]/{y — 2%,z —23) to f(t,t%,t3) € C[t]. It is
clearly surjective because t = ¢*(z + (y — 22, z — 23)). It is also injective because if
f(t,t2,t%) = 0, then f vanishes at every point of Y, hence f € (y — 2%,z — 23). It
follows that Y is isomorphic to C. A

Example 2.1.11 tells us that the twisted cubic in C?® and the affine line C are basically
the same affine varieties, they are just embedded in a different ambient space. The
intrinsic reason for this is that the algebras of polynomial functions on the twisted
cubic and on C are the same. That is,

Clz,y,2]/(y — 22, 2 — 23) ~ C[t].

The different embeddings come from a choice of representation of the C-algebra C[t] as
an image of a polynomial ring: it is the image of C[t] under the identity morphism but it
is also the image of C[z, y, 2] under the map f — f(t,2,3) with kernel (y — 22, z — 23).
This hints at a more general procedure for associating an affine variety to a finitely
generated C-algebra A. We first represent A as the image of a polynomial ring:
R — A — 0. Next, we consider the kernel of this map, which is an ideal I C R, to
obtain the affine variety Y = V(I). If A is nilpotent free, then I is radical and by
the Nullstellensatz I(V(I)) = I(Y) = I. Therefore, C[Y] = R/I(Y) = R/I ~ A. The

following theorem is a consequence of this.

Theorem 2.1.2. There is a one-to-one correspondence between isomorphism classes of
affine varieties and isomorphism classes of finitely generated, nilpotent free C-algebras.

We have the notation ¥ — C[Y] to make this correspondence explicit. To go in
the other direction, we introduce the notation A — MaxSpec(A) which associates to
a finitely generated, nilpotent free C-algebra A an affine variety by the procedure
presented above. The notation MaxSpec(A) is motivated by the fact that for an affine
variety Y C C", the points in Y are in one-to-one correspondence with maximal ideals
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in R/I(Y). This was established in Example 2.1.8 in the case where Y = C". The
general case is described in [CLO13, Chapter 5, §4, Theorem 5].

Morphisms between varieties give homomorphisms between C-algebras going in the
opposite direction by considering the pullback morphism. Going the other way around,
a C-algebra homomorphism ¢* : A’ — A with A, A’ finitely generated and nilpotent
free gives a morphism ¢ : MaxSpec(A) — MaxSpec(A’) defined as follows. A point
p € MaxSpec(A) corresponds to a maximal ideal I(p) of A. The inverse image
(¢*)"1(I(p)) is again a maximal ideal in A’ (see, e.g., [SKKTO04, Section 2.6]) and
corresponds to a point p’ € MaxSpec(A’). We set 1»(p) = p’. One can check that v is
a morphism and that ¢* = ¢*. For readers familiar with category theory, we remark
that this construction makes the correspondence in Theorem 2.1.2 functorial: the
functor Y — C[Y] establishes a contravariant equivalence of categories between affine
varieties and finitely generated nilpotent free C-algebras [Har77, Chapter I, Corollary
3.8].

The machinery introduced in this chapter allows us to state a more general version
of the Nullstellensatz which identifies subvarieties of an affine variety Y with radical
ideals in its coordinate ring. For a subvariety Y’ C Y = MaxSpec(A) and an ideal
I ¢ A =C[Y] we define the vanishing ideal of Y’ and subvariety of I as

LA(Y)={feAlflp)=0peY'}, W()={peY|[f(p)=0,Yfecl}
respectively. In the following theorem we recover Theorem 2.1.1 when A = R.

Theorem 2.1.3. Let A be a finitely generated nilpotent free C-algebra and let Y =
MaxSpec(A) be the corresponding affine variety. Let I C A be an ideal and letY' CY
be a subvariety. Then

Vy(Ia(Y) =Y and I (Vy (1)) = V1,

where VI = {f € A| f™ € I for some m € N} is the radical of 1.

Proof. See [CLO13, Chapter 5, §4, Theorem 5. O

Example 2.1.12 (Localization at f). Let A be a finitely generated nilpotent free
C-algebra and Y = MaxSpec(A). Let Ay be the localization of A at f € A, f # 0 (see
Subsection A.1.4). Note that Ay is finitely generated and nilpotent free. When A is
an integral domain with field of fractions K (A), then the canonical map A — Ay is
injective and Ay is given by

g
Af:{fzeK(A) geA,éeN},
see for instance [CLS11, Exercise 1.0.3]. We will now describe the corresponding affine
variety Y; = MaxSpec(As). The maximal ideals of Ay are the maximal ideals of A
not containing f [AM69, Chapter 3]. Since points of Y; are maximal ideals of Ay,
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the points of Y} are the points p € Y such that f(p) # 0. This shows, somewhat
surprisingly, that the open subset of Y consisting of the complement of Vy-(f) can be
given the structure of an affine variety. A standard example that clarifies this is the
case where Y = C is the affine line and f =¢ € A = C[t]. Here Y; = C\ {0} = C*
and Ay = C[t]; ~ Clz, y]/(xy — 1). This isomorphism of algebras is given explicitly
by ¢* : C[z,y]/{zy — 1) — CJt]; defined as

¢ (f + {wy = 1)) = f(t.t7).

This corresponds to the morphism ¢ : C* — Vez(zy — 1) given by ¢(¢t) = (¢,¢~1). This
morphism is illustrated in Figure 2.4.

Mr

lll

Figure 2.4: Illustration of the morphism ¢ : C* — V2 (xy — 1) from Example 2.1.12.

The affine variety C* is an example of an algebraic torus: the n-dimensional algebraic
torus is the affine variety (C \ {0})" = (C*)" = MaxSpec(Clz1,...,Tn]z, -z, )-
Algebraic tori will play an important role in later chapters of this thesis. Subvarieties of
algebraic tori are defined by elements of Clz1, ..., %]z .0, = Clzr, 27 . Tny 2]
which are called Laurent polynomials. A

2.1.5 Dimension

Although the geometric concept of dimension is very intuitive, formal definitions of
dimension often are not. For completeness, we will include some formal, equivalent
definitions of dimension in this subsection. The equivalence of these definitions
establishes nicely the interplay between algebra and geometry. More elaborate
treatments can be found in [CLO13, Chapter 9], [AM69, Chapter 11}, [SR94, Chapter 1,
Section 6], [Cut18, Chapter 2, Section 2.4], [Eis13, Chapter 2]. We should mention that,
since we are working over the complex numbers, we always think of complex dimension.
For instance, C has complex dimension one, but real dimension 2. Therefore, we will
think of C as the affine line (a terminology that has been used a few times above) as
opposed to the complex plane.



26 BASIC ALGEBRAIC GEOMETRY

A first observation is that a reducible affine variety may have components of different
dimension. For instance, the affine variety Y = Vs (ay, 22) is a union of the yz-plane
where x = 0 and the z-axis defined by y = z = 0. We will define dimension for
irreducible affine varieties and say that the dimension of an affine variety Y is the
maximum among the dimensions of its irreducible components (which are always finite
in number, see [Har77, Chapter I, Proposition 1.5]).

Definition 2.1.7 (Dimension of an irreducible affine variety). Let Y C C™ be an
irreducible affine variety. The dimension of Y, denoted dim Y, is the length k of the
longest possible chain of strict inclusions

Yoenic-- Y=Y

where Y; are irreducible subvarieties.

An affine variety is called pure dimensional if all its irreducible components have the
same dimension. Pure dimensional affine varieties of dimension 1 are called (affine)
curves, those of dimension 2 are called (affine) surfaces and those of dimension n
are called (affine) n-folds. When embedded in an affine space C" of dimension n,
an affine variety Y has codimension n — dimY and affine varieties of codimension 1
are called (affine) hypersurfaces. More generally, for a subvariety Y/ C Y we define
codimy Y =dimY — dimY".

Example 2.1.13. Consider the affine varieties
= Ves(a® + 4% + 22 - 1),
Vip (@ + 9% — 2+ (0% + 47 + 2% = 1) = Vea (2 +¢° + 2% — La® +¢° —a),
Vv, (z =14+ @® + 9%+ 22 — 1,22 + 9> — 2))
(2 +2+ 22— 1,2+ 9% — 2,2 —1).

Y1

= Ves

This gives Yy C Y7 C Y5, which is a chain of maximal length as in Definition 2.1.7.
This shows that the sphere has dimension 2 in C3. It also shows that dimY; = 1 and
dimYy = 0. The (real part of the) curve Y; in this example is known as Viviani’s
curve. The situation is illustrated in Figure 2.5. A

The following theorem establishes the equivalence of the geometric (topological)
Definition 2.1.7 with an algebraic definition of dimension. It shows, for instance, that
the dimension is independent of the choice of embedding.

Theorem 2.1.4. Let Y be an irreducible affine variety with coordinate ring C[Y].
The following natural numbers are all equal to dim Y :

1. the Krull dimension of C[Y] (see Subsection A.1.3),
2. the transcendence degree of the quotient field C(Y) of C[Y] over C,

3. the mazimal number of elements of C[Y] that are algebraically independent over
C,
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Figure 2.5: Ilustration of the affine varieties Y3 (blue surface), Y; (orange curve) and
Yy (black point) from Example 2.1.13.

4. the degree of the affine Hilbert polynomial as defined in [CLO13, Chapter 9, §3].

Proof. The first statement follows directly from the fact that prime ideals of C[Y] are
irreducible subvarieties of Y, and the correspondence is inclusion reversing [CLO13,
Chapter 5, §4, Theorem 5]. For the equivalence between the first and the second
definition see [Har77, Chapter 1, Section 1, Proposition 1.7 and Theorem 1.8A], [AM69,
Chapter 11]. The equivalence of the second, third and fourth definition is established
in [CLO13, Chapter 9, §3 and §5]. O

2.1.6 Affine schemes

For any ideal I C R, we can consider the affine variety V(I). However, if I is not
radical, some information is lost in making this association. There are many more ideals
than affine varieties. Looking more closely, two ideals I # I’ C R with V(I) = V(I')
determine objects with different geometric behavior. Here are two examples.

Example 2.1.14. Consider the ideals (f) = (2?(x—1)) C C[z] and (g) =
(z(z —1)?) C C[z]. It is clear that V(f) = V(g) = {0,1} c C. However, f has
the point z = 0 as a double root, since f(0) %(0) = 0, whereas %(O) = 1.
Slightly perturbing the polynomial f would result in a variety consisting of two points
near z = 0 (although they may be far away from 2 = 0 relative to the ‘size’ of the
perturbation) and a point near = 1. On the other hand, slightly perturbing g would

result in the opposite scenario. The situation is illustrated in Figure 2.6. A

Example 2.1.15. Consider the parametrized ideal I(¢t) = ((x —¢)(z +¢t)) C C[z].
For ¢t # 0, V(I(t)) = {t,—t} consists of two points in C and C[z]/I(t) has no nilpotents.
As t — 0, the two points collide and I(0) = (x?) is the ideal from Example 2.1.6 and
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Figure 2.6: Hlustration of V(f) (left, black dots) and V(g) (right, black dots) from
Example 2.1.14 and the varieties (blue dots) corresponding to perturbed polynomials
(dashed curves).

x + I1(0) is a nilpotent element of C[z]/I(0). This illustrates that finitely generated
C-algebras with nilpotent elements may arise as a limit of a sequence of finitely
generated, nilpotent free C-algebras. A

From Example 2.1.15 one can imagine more complicated situations such as points in
higher dimensional affine spaces moving together resulting in multiple points or fat
points (i.e. points with multiplicity > 1), curves moving together resulting in multiple
curves, points moving into curves resulting in embedded points inside these curves,
embedded curves in surfaces, and so on. In order to take these limiting situations into
account, it is clear that we have to extend our correspondence between affine varieties
and finitely generated, nilpotent free C-algebras to larger classes of objects (i.e. larger
categories). For instance, we want to allow nilpotent elements in our algebras. A
powerful extension of this correspondence is given by the theory of affine schemes.
Affine schemes form a category of geometric objects of which ‘affine varieties’ can
be considered a subcategory. The equivalent category on the algebraic side consists
of commutative rings with identity, containing the finitely generated, nilpotent free
C-algebras. The power and extent of this generalization can be seen from how small
the subset of finitely generated, nilpotent free C-algebras is in the commutative rings
with identity.

The theory of schemes uses high levels of abstraction and defining them formally
would require notions of sheaf theory, which would take us too far. Affine schemes will
only make a modest appearance in this text: we will only consider finitely generated
C-algebras but we will sometimes allow nilpotents. Such schemes are sometimes called
affine C-schemes, and they are in one-to-one correspondence (up to isomorphism) with
all rings of the form R/I where R is a polynomial ring over C and I C R is any ideal of
R. Among affine C-schemes there are the affine varieties, whose algebras are nilpotent
free. Affine schemes corresponding to nilpotent free rings are called reduced. We will
also mostly be interested in zero-dimensional affine C-schemes. Fortunately, these
schemes have a very explicit and relatively simple description, which will be given in
Subsection 3.1.3. For more information about schemes, we refer to [EHO06] for a gentle
introduction with many examples or [Har77, Chapter 2] for a denser treatment.
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2.2 Projective varieties

The projective n-space P™ is defined as the set of all lines through the origin in C™*1.
If 20, ..., 2, are coordinates on C*t1,

P = (C"\{0})/ ~

where the quotient is by the equivalence relation

(Toy .oy xn) ~ (24 .., xh) & (26, ... 2l) = (AT1,. .., Axy) for some X € C*. (2.2.1)
Points in P" are denoted by @ = (z¢ : -+ : @), where (xg: -+ :xp) = Azg : -+ : Azyp)
for A € C*. We will use the notation S = Clzy,...,z,] for the coordinate ring of
Cntl,

2.2.1 Definition

For a monomial 2% = z{°---2% € S with a = (ag,...,a,) € N*"1 we define its
degree to be deg(z®) = |a| = ap + - - - + a,,. We will consider S as a Z-graded ring (see
Subsection A.2.4). The C-vector subspaces of the polynomial ring S spanned by the
monomials of a fixed degree are called the graded pieces of S. They are denoted by

Si= @ C-2", deZzy and S;={0}, deZ,
|a|=d

where a ranges over N**1. The decomposition

S =P S

deN

of S into its graded pieces coarsens the decomposition S = @, cyni: C - 2
corresponding to the monomial basis. Note that for all d,e € N, S. - Sy ={fg | f €
Sevg S Sd} - Sd+e~

Definition 2.2.1 (Homogeneous polynomial). A polynomial f € S is called
homogeneous if it is contained in a graded piece of S, that is, if f € S; for some d € Z.
The degree of a nonzero homogeneous polynomial f, denoted deg(f), is d such that
f € Sq. The zero polynomial is homogeneous and its degree is —oco by convention.

Example 2.2.1. A homogeneous polynomial of degree 1 is called a linear form. A
homogeneous polynomial of degree 2, 3, 4, 5, 6, ... is called a quadratic, cubic, quartic,
quintic, sextic, ... form. Homogeneous polynomials in 2, 3, 4, 5, 6, ... variables are
called binary, ternary, quaternary, quinary, senary, ... forms. For example, a general
binary quintic form is given by

5 4 3.2 2.3 4 5
csx] + caxixo + czxiah + cexixy + 1z + coxg, ¢ € C.

Often the word ‘form’ is dropped: a binary quintic is a binary quintic form. A
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Just like affine varieties in C™ were defined as subsets of affine space given by
polynomials in R, we will define projective varieties as subsets of P" given by
polynomials in S. In order to do so we investigate which polynomials have well defined
zero sets on P". As we saw in Section 2.1, elements of S are polynomial functions
on C"*!. Note that for a homogeneous polynomial f € Sy we have f(Az) = M\ f(x),
x € C™t1 X\ € C*. Therefore, for an element f € Sy, the set

V]pn(f) = {(.’EO LI LUn) e Pp” | f(ajo, Ce ,.’L’n> = O}
is well defined. This leads to the following definition.

Definition 2.2.2 (Projective variety). A projective variety is a subset X C P™ such
that there is a subset P C S of homogeneous polynomials for which

X=A(xg: - :xy) €P"| f(xo,...,2zn) =0,Yf € P}.
In this case, we denote X = Vpn (P). f P = {f1,..., fs} we will write Vpn (f1,..., fs) =
VP”({flv"’vfs})~

Every polynomial f € S can be decomposed uniquely as

f=fa+ faar+-+fo, fi€S:

Therefore f(A\z) = A fq(z) + X1 f4_1(z) + -+ fo. We conclude that a polynomial
f € S gives a function

f:P"—=C givenby f((zo: - :xn)) = f(zo,...,zn)

if and only if f is homogeneous and deg(f) = 0. Indeed, homogeneous polynomials of
degree d > 0 do not give functions on P", but they do have well defined zero sets. A
set of homogeneous elements P C S also defines an affine variety

Vensi (P) = {z € C"* | f(2) = 0,Vf € P}
which is called the affine cone over Vpn (P).

Example 2.2.2. The projective space P itself and the empty set @ C P" are
projective varieties. One can easily check that any finite union of projective varieties
is again a projective variety, and so is any intersection of projective varieties. A

Example 2.2.3 (Linear subspaces). The image under the quotient by (2.2.1) of a
vector subspace of C"*! is a projective variety, for which P consists of linear forms. A

2.2.2 Projective varieties as topological spaces

Just like affine varieties, projective varieties are topological spaces where closed sets
are subvarieties.
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Definition 2.2.3 (Zariski topology on projective varieties). The Zariski topology
on P” is the topology where the closed subsets are projective varieties. The Zariski
topology on a projective variety X C P” is the induced topology on X as a closed
subset of P”.

By Example 2.2.2, projective varieties satisfy the axioms on closed sets. As in the
affine case, a projective variety is called reducible if it can be written as a union of two
proper closed subsets. If a projective variety is not reducible, it is called irreducible.
We will also be interested in subsets of P™ that are almost projective varieties, but
not quite.

Definition 2.2.4 (Quasi-projective variety). A quasi-projective variety is an open
subset of a projective variety with its induced subspace topology.

2.2.3 Projective Nullstellensatz

A natural question to ask is whether we also have a nice correspondence between
radical ideals of S and projective varieties, as in the affine case (see Subsection 2.1.3).
A first observation is that ideals of S corresponding to a projective variety X should
have a special structure: their elements vanish on the affine cone over X in C*t!.

Definition 2.2.5 (Homogeneous ideal). An ideal I C S is called homogeneous if it
can be generated by homogeneous elements of S. Equivalently, I is homogeneous if
and only if for every element f € I with decomposition f = f;+ -+ fo, fi € S;, we
have f; € I,i=0,...,d.

For a homogeneous ideal I = (P) C S generated by a set P of homogeneous
polynomials, we set Vpn(I) = Vpn(P). Given a projective variety X C P", we
can associate an ideal to it by defining

Is(X)={feS| flxo,-.-,xn) =0,V(x0: - : ) € X}

Ideals arising in this way are homogeneous (see [CLO13, Chapter 8, §3, Proposition
4]). They are also radical since either Is(X) C S is the vanishing ideal of the affine
cone over X or it is the ring S itself.?> We conclude that radical homogeneous ideals
define projective varieties, and projective varieties define radical homogeneous ideals.
The question is whether this correspondence is one-to-one. The following observation
shows that we should be careful.

Remark 2.2.1. The radical homogeneous ideal B = (xo,...,z,) defines the affine
variety Vent1(B) = {0}, but Ve (B) = @. However, also Vp= (S) = @. A
3Here’s a proof. If X is empty, Is(X) = S. Otherwise every f = fq+ ---+ fo € Is(X) is such

that f; € Is(X),VI. In particular fo € I(X) and since X # & this implies fo = 0 and f vanishes at
the origin in C**1.
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Theorem 2.2.1 (Projective Nullstellensatz). Let I C S = Clxzg,...,xn] be a
homogeneous ideal and let X = Vpn (1) C P™. If X # &, we have

Ver(Is(X)) =X and Ig(Ven(I)) = V1.

Proof. The first statement follows from Vpn (I5(X)) = X = X where X is the closure
of X in P™ in its Zariski topology. The second statement follows from Theorem 2.1.1
and from the fact that Is(X) is the vanishing ideal of the affine cone over X (see
above). O

Note that the ideal B C S from Remark 2.2.1 is left out of the correspondence between
radical homogeneous ideals and projective varieties in Theorem 2.2.1. Because this
ideal has no corresponding closed subset, it is called the irrelevant ideal of S.

2.2.4 Homogeneous coordinate rings

For an affine variety ¥ C C™, we defined its coordinate ring as C[Y] = R/Ir(Y)
where R = Clxy,...,2,] = C[C"]. Similarly, for a projective variety X we define the
homogeneous coordinate ring of X as C[X| = S/Ig(X). If X # @, C[X] is the ring of
polynomial functions on the affine cone over X.

For any homogeneous ideal I C S, the grading on S induces a grading on I:

I= @Id, where I;=1NS,.
dez

The grading on S also induces a grading on the quotient ring S/I:

S/I=EP(S/1)a, where (S/I)q= Sa/Ia.

d€L

Therefore the homogeneous coordinate ring C[X] of X has the natural structure of a
graded ring.

Closed subsets of a projective variety X are given by homogeneous ideals of C[X]: for
I={(fi +Is(X),..., fs + Is(X)) C C[X] we define

Vx(I) = {(,’L‘O R :,’En) eX | fi(.’l?07...,$n) =0, = 1,...,8}.
Conversely, a closed subset X’ C X gives a homogeneous ideal

Iex)(X') ={f +Is(X) e CIX] | f(zo,. .. zn) =0,¥(xo:---:2,) € X'}
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2.2.5 Affine coverings

In the introduction to this chapter we claimed that varieties locally look like affine
varieties. We will make this precise for projective varieties in this subsection. We
define the Zariski open subsets

U={(zo:  :an) €EP" |2; #0},i=0,...,n
of P". These correspond to the Zariski open subsets
Ul ={zecC"™ |z #0}

of C"*! via U; = U!/ ~. As we saw in Example 2.1.12, U/ is an affine variety with
coordinate ring C[U/] = S, (the localization of S at x;). The grading on S induces
a grading on S,,, such that if a nonzero element of S, is represented by f/zf, its
degree is deg(f) — £. The rational functions in S,, that give well defined functions on
U; are those of the form f/x¢ with deg(f) = ¢. Indeed, if deg(f) = ¢ then

)\é
L) = D - L),

These are the elements of degree zero, denoted by (S,,), = C[U/]o. Note that

C[U{]O:{i;|feS¢,éeN}:(C{mo,...,xi1 Litl x”}

s Sy
Li Ly Ly Ly

By the results of Subsection 2.1.4, the inclusion of finitely generated, nilpotent free
C-algebras C[U/]o — C[U]] gives a morphism U] — C™ given by

Zo Ti—1 Ti41 Tn
(20, ... an) — (=2, 2=t 2l )

This morphism factors through U;: U] — U; — C™ and U; — C" is clearly bijective.
The following theorem tells us that it also identifies U; and C™ as topological spaces.

Theorem 2.2.2. The map ¢; : U; — C" given by

(L0 : ..t @n) (”CO L, it T “”””) (2.2.2)

) ) )
T Ty T T

is a homeomorphism of topological spaces with respect to the Zariski topology on both

U; and C™.

Proof. We need to show that closed subsets of U; are identified with closed subsets
of C™ under ¢;. We identify C" with MaxSpec Clyo, ..., ¥i—1,Yi+1,Yn)- Let X; C U;
be a closed subset with closure X = X; in P*. The projective variety X gives a
homogeneous ideal I = Ig(X) = (f1,..., fs) C S with f; homogeneous j =1,...,s.
We set

A

fij:fj(yla"'ayi—17layi+1a-~-ayn)- (223)
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and find that ¢;(X;) = Vcn(ﬁ-l,...,ﬂ-s). Conversely, for a closed subset ¥ =
Ver (fits - -+, fis) C C™ let d; be the smallest integer such that

d; [ To Ti—1 Tit1 Ln
=z fii | —, .., , ey — 2.24
fy = b (0:@ x| ; ) 224
is a homogeneous polynomial. We have that ¢; (V) = Ven (f1, ..., fs) N Us. O

Theorem 2.2.2 shows that the affine variety C™ can be identified as a topological space
with an open subset of P™. This makes C" into a quasi-projective variety. Also, an
affine variety Y C C™ corresponds to a closed subset X; C U;, which is open in its

closure X = X; in P™. Therefore, any affine variety is a quasi-projective variety.

The theorem also shows that P = [J_, U; writes P" as a union of affine spaces. Each
of the U; is Zariski open in P™ and every x € P™ belongs to at least one of the Us;.
We say that {Uy,...,U,} is an affine open covering of P*. The U; are called the
affine charts of P". More generally, any projective variety X C P™ can be written as
X = o(XNU;). As X NU; is closed in U;, Theorem 2.2.2 shows that it can be
identified with an affine variety ¥; C C". We say that {X NUp,...,X NU,} is an
affine open covering of X (X NU; is closed in U;, but open in X). The Y; are called
the affine charts of X. It is slightly less straightforward that any quasi-projective
variety has an affine open covering.

Theorem 2.2.3. Any quasi-projective variety X C P™ can be written as X = J;_, V;
where Y1, ..., Ys are isomorphic to affine varieties. The set {Y1,...,Ys} is called an
affine open covering of X.

Proof. First, we write X = |J;_, X NU;, which writes X as a union of open subsets of
affine varieties. By Hilbert’s basis theorem, every open subset U of an affine variety Y
can be written as a finite union U = Yy, U...UY}, for some f1,..., fo € C[Y] where

By Example 2.1.12, each Y}, is affine, which proves the theorem. O

Example 2.2.4 (The projective line). The projective line P! is covered by two copies
of C:
U():{(J,‘QZZ‘1)€P“|.’EQ7£O}, U1={(.730:J)1)EP“|$1750}.

Note that P!\ Uy = {(0: 1)}. We can send C into P! by identifying it with Uy. This
gives the map ¢ : ¢t — (1 : t). Note that the point (0 : 1) = lim;_, ¢(¢). For this
reason, if C is identified with Uy, the point (0 : 1) € P™ is called the point at infinity
and with a slight abuse of notation we write P! as the disjoint union P! = C U {oo}.
If we choose to identify C with U; C P!, the point (1 : 0) is the point at infinity. A
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Example 2.2.5 (Affine stratification of P"). The construction in Example 2.2.4
generalizes to higher dimensions. If we choose to identify C™ with Uy, the complement
Hy =P"\ Uy is called the hyperplane at infinity. This is the closed subspace

Ho=Vpn(xg) ={(0:2y::m,) €EP" | (21 :---: 1) € P71} =P L
This shows that P™ can be written as the disjoint union
PP =C"UHy=C'UP*!=Ccruc"tucCc*2u---uCu{oo},

where P! = C LU {co} as in Example 2.2.4. This is called an affine stratification of
P, A

Example 2.2.6. Consider the homogeneous polynomial f = zy — 22 € S, with
S = Clz,y, z]. We consider the projective variety X = Vp2(f). In the affine chart
Us={(z:y:2) €P?|z+#0}, XNU, =Y, has equation y — 22 = 0 and looks like
a parabola. On the other hand, Y, ~ X N U, has equation zy — 1 = 0, which is a
hyperbola. A picture of (the real part of) these affine charts can be obtained by cutting
the affine cone over X with the planes with equation x = 1 and z = 1 respectively.
This is illustrated in Figure 2.7. We note that in P2, hyperbolas and parabolas look
exactly the same, and they all look like an ellipse. The reason is that any ternary
quadric corresponds to a symmetric 3 x 3 matrix, and any full rank 3 x 3 matrix is
similar to any other full rank symmetric 3 x 3 matrix. Since full rank symmetric 3 x 3
matrices are exactly the ellipses/parabolas/hyperbolas in P2, they are all equal up
to a change of coordinates. Rank two symmetric 3 x 3 matrices correspond to the
union of two different lines (i.e. 2 copies of P!, e.g. Vp2(xy)) in P2, and the rank one
case corresponds to a line with multiplicity 2 (e.g. Vpz2(2?)). See [Eis13, Exercise 1.15].

A

Remark 2.2.2. Note that for any nonzero polynomial h = coxg + ... + ¢z, € St,
Uy, = P™\ Vpn (h) is an affine space. To see this, we can either consider a transformation
of coordinates such that z; < coxg + ... + cpy or consider the map U, — C**1

(To: -+ mp) — 0 ey In
h(zo,...,zn) h(zg,...,zn,)

which identifies Uy, with Vent1(h — 1) =~ C™ and proceed as in the proof of Theorem
2.2.2. A

The maps (2.2.3) and (2.2.4) establish an isomorphism of vector spaces

:Rey = cy® € R| maxlal <dj — Sy,
N R<q {; y |Cu¢0|| } d

where R = Clyy,...,yn] is the polynomial ring in n variables, |a| = a1 + ... + a,
and S = C[zg,...,2,]. The map ny is defined by sending ﬁ-j € R<gto f; € Sqasin
(2.2.4), but with d; replaced by d. This map is called homogenization of degree d, and
its inverse n;l is called dehomogenization.
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Figure 2.7: Two affine charts of X = Vpz(zy — 22) as in Example 2.2.6.

Example 2.2.7 (Projective closure of an affine variety). It is sometimes useful to
think of an affine variety as an affine chart of a projective variety. Let Y C C" be an
affine variety. We identify ¥ with the closed subset of Uy C P" given by X, = ¢5 ' (Y),
where ¢g is the map from Theorem 2.2.2. We define the projective closure of Y to be
the Zariski closure X = X, in P*. Given equations for Y ¢ C", we would like to know
homogeneous equations for X. Suppose Y = Ven (fl, ceey fs) and let d; € N be the
smallest number such that f; € R<q,. A first guess would be that X = Vpn (f1,..., fs)
where f; = n4,(f;). This is not true in general. It does work if Y = Ven(f) is an
affine variety defined by only one equation. For instance, the projective closure of
Y = Vez(y—22)is X = Vp2(zy—22) = YU{(0: 1:0)} (with homogeneous coordinates
(z:y:z) on P?), see [SKKTO04, Section 3.3]. An example where this doesn’t work is
the twisted cubic (see Example 2.1.3). This is the affine variety Y = Vs (y — 22, 2 — 23).
Using homogeneous coordinates (z : y : z : w) on P? and thinking of Y as a subset
of Uy, the projective variety X = Vps(wy — 2%, w?z — 23) is a union of the closure
of the twisted cubic and the line {(0:y:2:0) | (y:z) € P1} ~ PL. As the twisted
cubic is irreducible in C3, so should its projective closure be in P3. The reason for this
‘extra’ component is that this is not a good representation of the vanishing ideal of the
twisted cubic for the purpose of taking its projective closure. For more information,
the reader can consult [CLO13, Chapter 8, §4]. A

2.2.6 Regular functions and morphisms

In Subsection 2.1.4 we defined rings of polynomial functions on affine varieties and
morphisms between affine varieties. Since affine varieties are quasi-projective varieties,
we are now looking at a strictly larger class of objects. In this subsection, our goal
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is to define the ring of reqular functions of quasi-projective varieties, and morphisms
between them. The most important results of this subsection for the purpose of this
thesis are the rings of regular functions in Example 2.2.8 and the fact that there is a
notion of (iso-)morphisms which generalizes (iso-)morphisms in the affine setting.

We have established earlier that the only polynomial functions on P™ are the constants.
However, if we consider open subsets and allow rational functions that are well defined
on these subsets, we get much larger rings of functions. Just like elements of (S, ),
give well-defined functions on U;, rational functions of the form

f

=, f,g €Sy for some ¢
g

give well defined functions on P" \ Vpn(g). The proof of Theorem 2.2.2 shows that
considering functions in (S;,), on U; agrees with considering the polynomial functions
on the affine variety C™ as we did in the previous section. The following definition
associates the ring (S,,), to U; as its ring of reqular functions.

i

Definition 2.2.6 (Regular functions). Let X C P™ be a quasi-projective variety and
let U C X be an open subset. A function ¢ = U — C is called regular at x € U if

¢(p) = =(p), with f,g € S, for some ¢,

for all p in an open subset U’ C U containing = and such that V= (¢) NU’ = @. If ¢
is regular at all z € U, we say that ¢ is regular on U. The ring of all regular functions
on U is denoted by Ox (U).

Note that an open subset U of a quasi-projective variety X is again a quasi-projective
variety and Oy (U) = Ox(U). If it is not important that we think of U as a subset of
X we will use the short notation &(U).

Remark 2.2.3. Definition 2.2.6 is quite technical. It is important that it has the
following consequences.

1. A regular function ¢ on an open subset U C X gives a regular function ¢’ on a
smaller open subset U’ C U by restricting ¢ to U’.

2. Suppose an open subset U C X is covered by open subsets {U/};c# for some
index set .7 (i.e. U = ;e » U{). If a regular function ¢ : U — C restricts to 0
on U/, for all i € .7, then ¢ = 0.

3. If ¢; is a regular function on Uj, for all i € 77, such that ¢}/, = for
i 7

¢3‘|U;OUJ',
all 4,j € 7, then {¢}}icr ‘glue together’ to a regular function ¢ on U (given by
() = ¢i(z) when z € U}). Indeed: at any point 2z € U, choose i € 7 such that
x € U]. Since ¢} is regular, it looks like a rational function on an open subset
of U] containing z, which is open in U. Since the ¢}(z) agree on overlaps, the
value of ¢(x) is independent of the choice of i.
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A

Example 2.2.8. If Y C C” is affine, we have 0y (Y) = C[Y]. If f is a nonzero
element of C[Y], consider the open set

Yi=f{e eV | f(z) # 0}

Then we have Oy (Yy) = C[Y]; = C[Y}] and we can think of the canonical map
C[Y] — C[Y]; as the restriction of a function on Y to the open subset Y;. For any
nonempty projective variety X C P", Ox(X) = C. For f € C[X], the quasi-projective
variety

Xp=A{(zo:--:2n) | fz) # 0}

has ring of regular functions Ox (Xs) = (C[X]s)o. Restriction from X to X is given
by the inclusion C — (C[X]¢)o. A

In the affine case, we defined morphisms Y — Y’ between affine varieties as maps
that pull back to C-algebra homomorphisms C[Y'] — C[Y]. This definition is valid
for morphisms between open subsets of the form Y}, since these are again affine (see
Example 2.1.12). We extend this definition to general open subsets of affine varieties
first.

Definition 2.2.7. Let U C Y,U’ C Y’ be open subsets of affine varieties Y,Y".
A function ® : U — U’ is a morphism if the composition of any regular function
¢’ : U — C with ® is a regular function ¢ = ¢ o ® : U — C. Equivalently, ® is a
morphism if ¢’ — ¢’ o @ is a map of rings &* : Oy (U’) — Oy (U).

Remark 2.2.4. The map sending a function ¢’ to a composition ¢’ o @ is always a
C-algebra homomorphism: (c¢’) — (c¢’) o @ = ¢(¢' o @),c € C. A

Definition 2.2.8. Let X C P" X’ C P™ be quasi-projective varieties. Let
{Y1,...,Y,} and {Y/,...,Y.} be affine open coverings of X and X’ respectively.
A function ® : X — X' is a morphism if for all 4, j,

(I)Ym@—l(y]{) (Y:N (I>_1(Yj’) N yj/

is a morphism as defined in Definition 2.2.7.

Two quasi-projective varieties X, X’ are isomorphic if there exist morphisms @ : X —
X" and ¥ : X’ — X such that o ¥ =idys and Vo ® = idy.

Example 2.2.9. The homeomorphism ¢; in Theorem 2.2.2 is an isomorphism of
quasi-projective varieties, since ¢} (f) € (Sz,)o = OU;) = (C[P"]g,)o for all f €

Example 2.2.10. A composition of morphisms is a morphism and the identity map
idx : X — X is an isomorphism. Every inclusion U C U’ of open subsets of X is a
morphism which gives a restriction map Ox(U') — Ox(U), and if U = U’ this is the
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identity map idg, (7). In the language of category theory, Ox is a contravariant functor
from ‘open subsets U of X with inclusion maps’ to ‘rings Ox (U) with restriction maps’
This, together with the observations in Remark 2.2.3, makes Ox into a sheaf of rings
on X, called the structure sheaf of X. Going more into detail would take us to far.
We refer the reader to [EHO06, Section 1.1.3], [Har77, Chapter 2] or [Ser55]. A

2.2.7 Dimension and degree

In this subsection we introduce the concepts of dimension and degree for a projective
variety. For the dimension, we could use a topological definition such as Definition
2.1.7. Instead (but equivalently), we will use the definition of dimension for affine
varieties.

Definition 2.2.9 (Dimension of a quasi-projective variety). The dimension of a
quasi-projective variety X, denoted dim X, with affine open covering {Y7,...,Y;} is
max; dim Y; (as affine varieties). The codimension of a quasi-projective variety X C P"
is codim X = n — dim X.

Theorem 2.2.4. Let X, X' C P" be irreducible projective varieties of dimension k,
respectively. Then every irreducible component of the projective variety X N X' C P"
has dimension at least k + ¢ —n. In particular, if k + £ > n then X N X' # &.

Proof. See [Har77, Chapter 1, Theorem 7.2]. O

Example 2.2.11. Two lines in the projective plane P? always meet, which corresponds
to the intuition that parallel lines in C? meet ‘at infinity’. A

The degree of a projective variety tells us ‘how far’ the variety is from being linear
(i.e. given by linear equations). A first definition is very intuitive but hard to make
rigorous.

Definition 2.2.10 (Degree of a projective variety). Let X C P™ be a projective
variety such that all irreducible components of X have dimension k. The degree of
X, denoted deg X, is the number of intersection points of X with a ‘general’ linear
subvariety of P of codimension k.

A linear subvariety or linear subspace of P™ is a projective subvariety defined by linear
equations (i.e. elements of S1). The problem with Definition 2.2.10 is that it is rather
complicated to make the word ‘general’ precise. We will mention an algebraic definition
of degree below, but Definition 2.2.10 will often be more useful for our purposes as it is
more intuitive. The reader should think of a ‘general’ linear subvariety as one defined
by linear equations with random complex coeflicients (e.g. with real and imaginary
part drawn from a normal distribution).
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Example 2.2.12. If f € S\ {0},deg(f) = d, then Vpu(f) is called a hyperplane if
d =1 and a hypersurface of degree d for general d. For n = 2, a hypersurface is called

a curve. A curve of degree 2, 3, 4, ... is called a plane conic, cubic, quartic, .... For
n = 3, a hypersurface is called a surface. A surface of degree 2, 3, 4, ... is called a
quadratic, cubic, quartic, ... surface. A

An algebraic definition of dimension and degree for projective varieties is provided by
an important tool called the Hilbert function. It is defined as follows.

Definition 2.2.11 (Hilbert function). Let I C S be a homogeneous ideal of S. The
Hilbert function of I is

HF]:Z*)N givenby HF](d):dlm(c(S/I)d

The Hilbert function of a projective variety X is HF x = HF,(x), i.e. HFx(d) =
dim(c (C[X]d

The Hilbert function can be defined for any graded S-module, but considering modules
of the form S/I for some homogeneous ideal I C S suffices for us. Remarkably, the
Hilbert function HF x of a projective variety carries a lot of geometric information.

Theorem 2.2.5 (Hilbert-Serre). Let I C S be a homogeneous ideal and let X =
Ven (I). There exists a unique polynomial HP; € Q[t] such that for some £ € N,
HF;(d) = HP;(d) for all d > ¢. Moreover, the degree of HP;(t) is dim X and if
I = Is(X), the degree of X is defined as the leading coefficient of HP(t), multiplied
with (dim X)!. That is,
deg X
HP (x)(t) = ﬁtdlmx + lower order terms.

If all irreducible components of X have the same dimension, this definition of degree
agrees with Definition 2.2.10.

Proof. See [CLO06, Chapter 6, §4, Proposition 4.7] for the existence of HP, [Har77,
Chapter 1, Theorem 7.5] for the statement about dim X and [Cut18, Theorem 16.9]
for the equivalence of the definitions for deg X. O

The polynomial HP; in Theorem 2.2.5 is called the Hilbert polynomial of I, and the
Hilbert polynomial of a projective variety X C P" is defined as HP x = HP (x). The
theorem implies by the projective Nullstellensatz that deg HP; = deg HP 7.

Remark 2.2.5. In the notation of Theorem 2.2.5, if I C Ig(X), the leading coefficient
of HP; encodes the degree of the projective scheme associated to I. This takes into
account, for instance, that certain irreducible components of Vp» (I) may occur with
arbitrary multiplicities. For more information, see [EH06, Chapter 3]. AN
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Example 2.2.13 (The Hilbert function of P™). The Hilbert function of the projective
space P" is given by

4t >k
HFp- (d) = dim¢(Sg) = <n—7;d> where (}i) _ {k!(e_k)! =

0 otherwise -

In this case HFpn (d) = HPpn (d) for d > 0. A

Example 2.2.14 (The Hilbert function of a hypersurface). Let X = Vpn(f) for
f € Sa,; homogeneous and of degree dy. Assume moreover that f is square-free, which
means that Is(Vea (f)) = (f). For I = (f), we have

- , HFpn(d—d;) d>d
dime Iy = dime{gf | g € Su—a;} =4 (d—dy) fo

0 otherwise
Since HF x (d) = dim¢(S/I)q = dim¢ Sy — dime Iy we get

HF]P?H (d) d < df

HF x (d) =
x(d) {HFpn(d)—HFPn(d—df) d > dy

and the Hilbert polynomial HP x agrees with the Hilbert function for d > dy. It is

given by
_(n+d n+d—ds\ _ dy 1
R I (ST WS

2.3 Abstract varieties

In the previous section we have started by defining the projective n-space P and
showed that it is covered by affine open subsets which overlap on Zariski open subsets.
In this section, we will go the other way around and define a topological space by
‘gluing together’ affine varieties. This construction will give us a good way of thinking
about toric varieties, which will play an important role in later chapters.

Consider a set {Y;};c of affine varieties for some index set 7. Suppose that for
all pairs i, j € 7, we have isomorphic Zariski open subsets Y;; C Y;, Yj; C Y;. Let
{¢ij}ije7 be isomorphisms such that for all 4,5,k € 7,

1. (7257;]‘ : Y;;j — Y;Z and ¢ji : Y]'L — Y;'j satisfy ¢ij @) ¢ji = ldyﬂ, ¢ji ) (z)ij = idyl.].,

2. ¢ij(Yi; NYig) = Yj N Yy,

3. Pik = Gjk 0 @i on Y NY5.
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The disjoint union | |, 5 Y; is the set

X=||YVi={@Y)|ic T 2zeVi}.
€T

It is a topological space with the disjoint union topology, which is such that the open
subsets of X are disjoint unions of open subsets in the Y;. We define an equivalence
relation ~ on X by setting (z,Y;) ~ (y,Y;) if € Y;j, y € Yj; and ¢;;(x) = y. The
first condition on the ¢;; makes ~ reflexive and symmetric, the second and third
conditions make it transitive. We consider the quotient space X = X / ~ with its
quotient topology, in which

Ui ={[(zY)] |z eYi} C X

are open subsets isomorphic to Y; (here we denoted [-] for an equivalence class in
the quotient). The topological space X is called the gluing of the affine varieties in
{Yitico and {Yitico,{¢ij}ijeo are called the gluing data.

Example 2.3.1 (Gluing of P'). The projective line P! is covered by P! = U, U U,
where

Us={(z:y)eP |z £0}, U,={(z:y) €P'|y+#0}.

Consider the isomorphisms
hy : Uy = Cy and hy: U, = C,,

where C; is C with coordinate ¢ and analogously for w, given by h,(z : y) = y/x and
hy(x : y) = /y (these are the maps ¢; in Theorem 2.2.2). For a point (z : y) € U,NU,,
we have hy(z :y) = hy(z :y)~'. Let

Ctu = (Cr = Ct \ {0}, Cut = (CZ = (CU \ {O}

and ¢y, @ Cyy — Cyy given by ¢, (t) = t71, dur = ¢;}. This gives the following
commutative diagram.

Uy MU, — = Cyo,

¢ut
Ptu

hy

(Cut

The projective line P! is a gluing of two copies of C with gluing data {C;,C,}
and {¢¢y, dur}- The two affine lines C; and C, are glued together along the open
subsets C; and Cj, to get the open subset U, N U, C P!. The missing points
P\ (U,NU,) ={(1:0),(0: 1)} correspond to the origin in C; and C,,. If we consider
P! as the projective closure of Cy, the point at infinity (see Example 2.2.4) corresponds
to the origin in C,. This gluing construction is illustrated in Figure 2.8. A
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Figure 2.8: Illustration of the construction of P! as the gluing of two affine lines. The
affine lines are represented as circles with a missing point (‘at infinity’). The origin in
each line is indicated with a black dot and the gluing isomorphism is illustrated by
black line segments.

Example 2.3.2 (Gluing of P?). One can repeat Example 2.3.1 for higher dimensional
projective spaces. For P2, we consider the isomorphisms

hy : Uy — C2, hy :U, — C2, and h, : U, — C2

u’

where C? is the affine plane with coordinates t1,t5 (analogously for u,v) and

he(z iy :2) = (y/a,2/x), hylz:y:2)=(2/y,2/y), ho(z:y:2)=(2/2,9/2)

The gluing morphisms ¢, = (b;tl come from identifying the images of points in U, NU,
under h, and h,, e.g. on C? = C?\ V(t2)

bunltr, 1) = (15, 115") comes from (%, Y) = ((;)1 (Y (;)1> .

The morphism sends the parabola Y, from Example 2.2.6 (more precisely, its
intersection with C?)) to the hyperbola Y, (intersected with C2,). A

All quasi-projective varieties can be obtained via the gluing construction. From now
on, we will use the word wariety for any topological space that is obtained from a
gluing of affine varieties as described in this section. Using Definitions 2.2.6, 2.2.7 and
2.2.8 it is straightforward to define regular functions on open subsets of varieties and
morphisms between varieties. Dimension can also be defined locally. An analogous
construction can be used for gluing affine schemes together to obtain general schemes
[EHO6, Section 1.2.4]. As mentioned before, an important application in the context of
this thesis is the gluing of a complete toric variety from a set of affine toric varieties.
In this case, the gluing data has a particularly nice description in terms of a polytope
(or in its normal fan). This construction generalizes Examples 2.3.1 and 2.3.2 and is
described in Appendix E.






Chapter 3

Zero-dimensional varieties

In this chapter we discuss zero-dimensional subvarieties of C™ and P". These are
varieties consisting of finitely many points. Understanding their coordinate rings allows
us to compute coordinates for these points via eigenvalue computations. In the affine
case, this is a result called the classical eigenvalue, eigenvector theorem. Together with
a description of the multiplicity (or scheme) structure of zero-dimensional algebras and
an affine version of Bézout’s theorem, this is the subject of Section 3.1. In Section 3.2,
after introducing the necessary theory on Hilbert functions and Bézout’s theorem, we
formulate a projective version of the eigenvalue, eigenvector theorem and we discuss
the effects of homogenizing a given set of affine equations. Among the methods for
polynomial system solving that exploit these results are Grobner and border basis
techniques and Macaulay resultants. Since these approaches are strongly related to
the framework of truncated normal forms, introduced in the next chapter, we will give
an overview in Sections 3.3 and 3.4.

We use the following notation for some basic concepts from linear algebra. For a
finite dimensional C-vector space W, we write WV = Homg¢ (W, C) for the dual vector
space. For a vector space endomorphism ¢ : W — W, a right eigenpair is a tuple
(A w) € C x (W {0}) satisfying ¢(w) = Aw. Similarly, a left eigenpair is a tuple
(v,A) € (WY \ {0}) x C such that v o ¢ = Av. The C-linear span of a subset W C W
is denoted by spans(W) C W.

3.1 Points in affine space

Throughout this section, let R = C[zy,...,z,] be the n-variate polynomial ring over
C and for f1,...,fs € Rlet I = (f1,...,fs) C R be an ideal. We assume that the
affine variety defined by I consists of finitely many points:

V(I) = Vea(I) = {21, ..., 25} C C".

45
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Ideals of R satisfying this assumption are called zero-dimensional, which reflects the
dimension of V' (I) as an algebraic variety and, equivalently, the Krull dimension of R/I
(see Subsection 2.1.5). We remark, for the reader who is familiar with commutative
algebra, that by [AMG69, Theorem 8.5] these are exactly the ideals of R for which R/I
is Artin.

3.1.1 The eigenvalue, eigenvector theorem

In this subsection we will make the extra assumption that I = /T is a radical ideal.
This is equivalent to the assumption that R/I is nilpotent free or reduced. We will
discuss the more general case in Subsection 3.1.3. By the Nullstellensatz (Theorem
2.1.1), the assumption I = VT implies

I=IV(I)={feR| flz)=0i=1,...,5}.

This makes it particularly easy to describe the quotient ring R/I. The following lemma
will be helpful.

Lemma 3.1.1. For a collection of § < oo points {z1,...,25} C C", there is a linear
form h =hiz1 + -+ hyx, € R such that h(z) # h(z;),i # j.

Proof. If § = 1, there is nothing to prove. For § > 1, the condition that h(z;) =
h(z;),i # j is a (nonzero) linear condition on the coefficients hy, ..., hy. Let

o)

In total, this gives at most C' pairwise linearly independent conditions, which means
that the points (hq,...,h,) € C™ for which h does not satisfy the desired property
are on the union of at most C' hyperplanes through the origin in C™. O

The proof of Lemma 3.1.1 shows that almost all linear forms h = h1z1+---+h,z, € R
satisfy h(z;) # h(z;),1 # j. We say that a generic linear form has this property. We
will say more about the notion of genericity in Subsection 3.1.2.

Definition 3.1.1 (Evaluation map). Let I = /I be a zero-dimensional ideal with
V() ={z1,...,25}. Fori=1,...,8, we define ev,, € (R/I)Y by ev,,(f + 1) = f(z:).
Furthermore, we define the evaluation map 1 : R/T — C° by ¢ = (ev.,,...,ev.,),
that is

P(f+1) = (f(z1),- -, f(25))-

Note that the map v : R/I — C? is well-defined: if f, g € R are such that f —g € I,
then f(z;) = g(zi),i=1,...,d. Moreover, the map % is C-linear. Lemma 3.1.1 allows
us to construct polynomials whose residue classes map to the standard basis vectors
of C% under 1.
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Lemma 3.1.2. Consider the evaluation map from Definition 3.1.1. There exist
polynomials {1, ...,0s € R satisfying

0 i#j

Polynomials satisfying (3.1.1) are called Lagrange polynomials for {z1,...,zs}.

(z) = {1 1= (3.1.1)

Proof. Let h be as in Lemma 3.1.1 and set

[Tz, (A(z) — h(2)))
[Liz; (h(2) = h(2)))
Proposition 3.1.1. For a zero-dimensional ideal I = /I, an element f +1 € R/I

is completely determined by the values f(z1),..., f(zs). In particular, the evaluation
map ¢ : R/T — C° is an isomorphism of C-vector spaces.

0 = O

Proof. Since I = /I, the map ¥ is injective: 9 (f + I) = 0 implies f € I. To show
that it is also surjective, let V/(I) = {z1,...,25} and let £1,...,¢s € R be a set of
Lagrange polynomials of V(I) (these exist by Lemma 3.1.2). Then surjectivity follows
from ¢ (¢; + I) = e;, where ¢; = (0,...,1,...,0) (1 in the i-th position) is the i-th
standard basis vector of C°. O

Proposition 3.1.1 establishes the fact that, under the assumptions of this subsection,
R/I has dimension 6 as a C-vector space (we write dim¢ R/I = 0, whereas dim R/I = 0
denotes the Krull dimension) and the evaluation map gives us one way to define
coordinates on R/I. It also shows that {¢; + I,...,¢s + I} is a C-basis for R/I with
dual basis {ev,,,...,ev,, } for (R/I)Y. The next step is to understand the structure
of R/I as an R-module in terms of linear algebra operations.

Definition 3.1.2 (Multiplication map). For any g € R we define the multiplication
map representing multiplication with g as the C-linear map

M, :R/I— R/I with My(f+1)=fg+1.

Note that the multiplication maps define the structure of R/I as an R-module, in the
sense that scalar multiplication is given by Rx R/I — R/I with (g, f+1) — My(f+1I).
Since M, is a C-linear endomorphism on a finite dimensional vector space, it can
be represented by a matrix once we fix coordinates. With the very special choice of
coordinates discussed above, these matrices are diagonal. This leads immediately to a
proof of the main theorem of this subsection.

Theorem 3.1.1 (Eigenvalue, eigenvector theorem). Let I = /T be a zero-dimensional
ideal of R with V(I) = {z1,...,25}. The multiplication maps My : R/I — R/I are
pairwise commuting and have left and right eigenpairs

(eve,9(2i), (9(zi), 6+ 1), i=1,...,6.
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Proof. The fact that My, o Mg, = Mg, o My, for any g1,g2 € R follows directly from
Definition 3.1.2. The statement about the eigenpairs follows from the fact that ¢ is a
vector space isomorphism and the diagram

R/I Moy BT

oo b

C —2

commutes, where A is the linear map corresponding to the diagonal matrix
diag(g(z1), .-, 9(25))- O

Remark 3.1.1. The name of Ludwig Stickelberger is often attached to this theorem.
See [Cox20b] for a discussion on why, and for an overview of the theorem’s origins. A

Example 3.1.1 (Companion matrices for n = 1). Let f = co+cix+---+cs2® € Cla]
with ¢s # 0 and I = (f) C C[z]. Moreover, suppose that I = /T such that f has §
distinct roots V(f) = {z1,...,2s}. The algebra C[z]/I has dimension § as a C-vector
space and the Lagrange polynomials

Hi;«éj(x - zj)
Hi;ﬁj (i — 25)

give the C-basis {¢; + I,...,¢s + I} for C[x]/I. However, in order to compute
the ¢;, we need to know the roots. An alternative basis for C[x]/I is given by
{1+Lz+1,... 01 4 I}. Tt is easy to check that these monomials are indeed
C-linearly independent modulo I. Let us construct the matrix representation of
M, : Clz]/I — C[z]/I in this basis. By M,(z* + ) = 297! + T and 2% + I =
—c;(co+ 1w+ -+ es_12°71) + I, we get that

0 = i=1,...,0

—co/cs
1 —c1/cs
M, = 1 —ca/cs

1 —cs—1/cs

where e; € C? is identified with '~ + I. This is the so-called Frobenius companion
matriz of f, whose eigenvalues are well-known to be the roots of f. This observation
is at the heart of many numerical algorithms for univariate root finding, such as
[AMVW15]. The roots z1, ..., 25 are indeed the values g(z1),...,g(zs) for g =z, and
Theorem 3.1.1 also characterizes the left and right eigenvectors of this matrix. A

With a slight abuse of notation, where there is no confusion possible we let M, denote
both the linear map M, : R/I — R/I and its matrix representation in some basis.
Theorem 3.1.1 tells us that a matrix representation M, has eigenvalue decomposition
(see Appendix B)

DM,D~" = diag(g(21), - - -, 9(25));
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Figure 3.1: Picture in R? of the algebraic curves V(1) (in blue) and V(f2) (in orange)
from Example 3.1.2.

where the rows of D represent the linear functionals ev,, and diag(g(z1),...,9(zs)) is
a § x § diagonal matrix with the values g(z;) on its diagonal. Note that the matrix
D does not depend on g. Indeed, {M, | g € R} is a commuting family of matrices
which share eigenvectors. This naturally leads to the following pseudo-algorithm for
computing coordinates of z1, ..., zs.

1. For some basis of R/I, compute the matrices My, ,..., M, .

2. Diagonalize them simultaneously (compute DM, D~! = diag(z1;, ..., 2ni), i =
1,...,n) and read off the coordinates from the diagonal.

Among the classical methods for performing step 1 are Grébner basis, border basis or
resultant techniques, as we will discuss in Sections 3.3 and 3.4. Section 4.2 is devoted
to developing the framework of truncated normal forms, which generalizes the above
mentioned approaches and is highly flexible for taking numerical stability into account.
In this thesis, we leave step 2 mostly to a ‘numerical linear algebra blackbox’ which
uses the standard techniques for computing (joint) eigenvalue decompositions. We
will say a little more about this in Section 4.3.

Example 3.1.2 (Intersecting two conics in the plane). This is an example taken from
[TMVB18]. Let R = C[z,y] and consider the ideal T = (f1, f2) with

f1 =7+ 3z — 6y — 422 + 2xy + 5y,
fo=—1—3z+4 14y — 222 + 2zy — 3>

As illustrated in Figure 3.1, the two curves V' (f1) and V(f2) meet in four real points
21 =(-2,3),220 = (3,2),23 = (2,1),24 = (—1,0) and these are the only points in
V(I) C C%. A C-basis for R/I is B= {x + I,y + I,2?> 4+ I,y + I} and one can check
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the identities

234 T =20+ 12y — 32° + 6y + I
—15 33 15
iy + 1= TJ:—!—?y— sz—&—Bxy—&—I
in R/I. Using the basis B (with its elements ordered as above) we obtain the matrix
representation

00 —2 —15/4
o0 12 33/2
Me=11 0 —3 _154
01 6 5

This matrix has right eigenvector (—3/8,5/4,—3/8,1/2)T corresponding to the
eigenvalue 3, which is x evaluated at zo. This represents the Lagrange polynomial
= 5

by = —x+ - —§x2+1m
TR TR T

3.1.2 Genericity and Bézout’s theorem

Throughout this thesis we will work with polynomial systems on which we make certain
genericity assumptions. More specifically, we usually assume that the polynomial
system belongs to some family of polynomial systems, and it has the properties
of a general or generic member of the family. We have already encountered some
examples of genericity assumptions. In Lemma 3.1.2 we considered a linear polynomial
h = hyx1+- -+ hyx, from the family of all linear polynomials satisfying the condition
of Lemma 3.1.1. The proof of Lemma 3.1.1 showed that almost all members of
the family satisfy this condition. In our definition of degree for a projective variety
(Definition 2.2.10) we considered ‘general linear subvarieties of codimension k’. These
correspond to general members of the family of polynomial systems given by k linear
equations.

Definition 3.1.3 (Families and genericity). Let R be a polynomial ring over C and
let W1,..., W, C R be finite dimensional C-vector subspaces of R. For some p € N,
let

¢:CP - Wy x- - x Wy

be a morphism (W7 x - - - x Wy is thought of as an affine variety). We think of an element
in im ¢ as a polynomial system given by f; = --- = f; = 0 where (f1,..., fs) = ¢(a)
for some a € CP. We say that the image of ¢ is a family of polynomial systems
parametrized by CP. A property of a polynomial system is said to hold for a generic
or general member of the family im ¢ if there is a nonzero polynomial f € C[CP] such
that the property holds for all ¢(a) with a € CP \ Ve (f).
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We note that if property A and property B hold for a generic member of a family,
then so does property ‘A and B’ (the intersection of two nonempty open subsets of
CP is again open and nonempty). Working over the complex numbers allows us to
think of many of the properties of polynomial systems we are interested in as generic
properties. An important example is the number of solutions of the system. Here is
an example for n = 1.

Example 3.1.3. Consider the family of polynomials given by ¢ : C* — C[z]<2 given
by

#(a,b,c) = ax® + bx + c.
Generically, a member of this family has two solutions in C. Indeed, ¢(a,b, ¢) has two

solutions unless f(a,b, c) = a(b?—4ac) = 0. It is also true that a general member of this
family has two solutions in C* = C\ {0}. This happens whenever ac(b® —4ac) #0. A

To give examples for larger n, we need to specify which family of systems we want to
consider. A first example of a family of multivariate polynomial systems is the family
of so-called total degree systems. As in Subsection 2.2.5, let

e~ {Sean e oyl <af.

Definition 3.1.4 (Total degree systems). For an ordered tuple (dy,...,ds) € N® the
family of total degree polynomial systems of degree (dy,...,ds) is the image of

¢:Cm X"'XCPS%Rgdl X"'XRSdsa Wherepi: (n—’;dz)

and @¢((c1,a)ja|<dys» -+ -+ (Cs,a)|a|<d,) = (Z|a|§dl €1,a2% ..., Z\a\gds cs,ax“) Here |al
d; means that a runs over all tuples a = (aq, ..., a,) € N" satisfying |a| = a1+ - -+a,
d;. We will denote this family by

VANVAN

fR(dl,...,ds) :iqu:RSdl Xoeee XRSds'

When n = s, the family Fr(ds,...,d,) is called a family of square total degree systems.
An important property that holds for general members (f1,..., fn) € Fr(di,...,dn)
is given by Bézout’s theorem in C™.

Theorem 3.1.2 (Bézout’s theorem in Cm"). For any member (fi,...,fn) €
Fr(dy,...,d,) we have that the number of isolated points in V(f1,..., fn), counted
with multiplicities (see Subsection 3.1.3), is bounded by [, d;. For a general member
(fis---s fn) € Fr(d1,...,dn) we have that

1. the affine variety V(f1,..., fn) C C™ consists of finitely many points,
2. the ideal (f1,..., fn) is radical,
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3. the number of points in V(f1,..., fa), counting multiplicities, is []}_, d;.

Note that the theorem implies that a general member of Fr(dy,...,d,) has H?:l d;
isolated solutions, all these solutions have multiplicity one and there are no positive
dimensional components. We omit the proof of this theorem for now and we will say
more about this result in the projective setting in Section 3.2. The theory of resultants
will allow us to describe exactly when the generic properties of Theorem 3.1.2 fail to
hold.

Remark 3.1.2. When s < n and d; > 0,i = 1,...,s, we have that for a general
member (fi,...,fs) € Fr(dy,...,ds), dimVen(f1,...,fs) = n—s. When s > n,
a general member has no solutions: Ven(f1,...,fs) = &, which implies by the
Nullstellensatz that (f1,..., fs) = R. A

Example 3.1.4. The system in Example 3.1.2 is a general member of Fr(2,2), in
the sense that all three generic properties of Theorem 3.1.2 are satisfied. AN

3.1.3 Multiplicity

In this subsection, our aim is to generalize the results from Subsection 3.1.1 to the
case where [ is zero-dimensional, but not necessarily radical. An example for n =1
gives us an idea of what to expect.

Example 3.1.5. Let R = C[z] and I = (f) where f = 2%(z — 1). Note that I C /T,
since g = z(x — 1) ¢ I but g? € I. The variety V(f) consists of § = 2 points {0,1}.
However, the dimension dim¢ R/I = 3: the residue classes 1 + I,z + I,2% + I are
C-linearly independent in R/I and they generate R/I over C. The reason for this
discrepancy is that the point 0 in this example should be counted twice. That is,
the point 0 has multiplicity 2 as a root of f. One way to see this is by decomposing
R/I into smaller rings, each of which ‘contributes’ one root to V(I). Observe that
I={(z?)N(x —1) and (z?) and (z — 1) are coprime ideals since 2> — (x —1)(z+1) = 1.
By the Chinese remainder theorem (Theorem A.1.3) the map

R/I — R/(z*) x R/{x —1) givenby f+ 11— (f+ (@), f+ (xz—1))
is an isomorphism. This shows that
dim¢ R/I = dim¢ R/{(z?) + dime R/(x — 1) =2 +1,
where the root 0 contributes the term 2 in this sum. A
For general n, if V(I) = {z1,..., 25} the Nullstellensatz tells us that

VI=p N---Nps (3.1.2)
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where p; is the maximal ideal for which V(p;) = z;. Since p; +p; = R for ¢ # j, we
can apply the Chinese remainder theorem to write

R/VI~R/py x - x R/ps~Cx---xC~C°

The decomposition (3.1.2) of /T into prime (in this case, maximal) ideals corresponds
to the decomposition of V(I) into irreducible varieties. The generalization of this
operation for arbitrary ideals is given by the primary decomposition (see Theorem
A.1.2). In our case, the primary decomposition writes I as an intersection

I=Q:N---NQs (3.1.3)

where the Q; are primary ideals such that v/Q; = p;,i = 1,...,5. We say that Q; is
p;-primary. Since V(Q; + Q;) = &, # j, we have that the primary ideals Q1, ..., Qs
are pairwise coprime. By the Chinese remainder theorem this gives

R/I~R/Q1 % ---x R/Qs. (3.1.4)

We are now ready to define the multiplicity of the points in V(I), generalizing the
observations of Example 3.1.5.

Definition 3.1.5. Let I C R be a zero-dimensional ideal with V/(I) = {z1,...,25} C
C™. Let p; = I({z}),i = 1,...,6 be the corresponding maximal ideals of R and
consider the primary decomposition I = @1 N ---N Qs such that Q; is p;-primary. For
each 7, the multiplicity p,; of the point z; as a solution of [ is given by

pi = dime R/Q;.

We denote 6 = iy + --- + pus = dime R/I. Recall that in the case where I = /T,
,uizl,z':l,...,éand

fel << ev,(f+1I)=f(z)=0i=1,...,0.

In words, to check whether f € I, it is enough to check whether f vanishes at all points
of V(I). In the case where n =1 and I is not necessarily radical, the multiplicities of
z1,--.,%2s impose vanishing conditions on the derivatives of f in order for f to be in
the ideal:

d'f

I _ <
fe — P

(21) :0, €:0,...,,u2-—1, 1= 1,...,5.

This generalizes nicely for general n: the decomposition (3.1.4) of the algebra R/I
gives a way of writing the condition f € I in terms of the vanishing of some differential
operators. We now describe how this works.

For an n-tuple a = (ay,...,a,) € N* we define the C-linear map 9, : R — R given by

1 3a1+“‘+anf

ar! - -ap! Ozt - Oxpr”

9a(f) =
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These differential operators generate the C-vector space

7= { Z ¢q0, | finitely many ¢, are nonzero} .

a€N"

For each a € N", we also define the antidifferentiation operator s, : I — 2 by
Sa (Z Cb3b> = Z b0p—a,
b b—a>0

where the sum on the right hand side ranges over all b = (by,...,b,) € N” such that
b;—a; > 0,i=1,...,n. These operators allow for a very simple formulation of Leibniz’
rule, which says that for 0 € 2,

A(f9) =D I(9)(s(0))(f). (3.1.5)

bEN™
Definition 3.1.6. A C-vector subspace D C 2 is closed if dim¢(D) < oo and for
each 0 € D and each a € N, s,(9) € D.

Note that if D C & is closed, then 9y = idg € D (here idg is our notation for the
identity map f — f on R). The motivation for defining closed subsets of 2 in this
way is the fact that they ‘annihilate’ zero-dimensional primary ideals of R.

Theorem 3.1.3. Let z = (21,...,2,) € C". There is a one-to-one correspondence
between (x — z1,...,x — zp)-primary ideals Q of R and closed subspaces D of 9.
Ezxplicitly, the correspondence is given by

Q—{0e€2]|0(f)(z)=0, foradl f € Q}

and
D—{feR|d(f)(z)=0, forall D € D}.

Moreover, we have that dim¢ D = dim¢ R/Q.
Proof. See [MMMO93, Theorem 2.6]. O

It follows from Theorem 3.1.3 that the ideals Q; from (3.1.4) give closed subspaces
D;={0e2|0d(f)(z)=0, forall feQ;}.
Note that any 0 € D; gives a well-defined functional
ev,00:R/T—C with (ev,,0d)(f+1)=0(f)(z).
This follows from the fact that D; can be identified with (R/Q;)Y C (R/I)Y via
9= (f +Qi = 0(f)(2:))-
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In particular, the theorem also implies that dim¢ D; = p,;. For a differential operator
0 =3,¢0q € Z we define ord(9) = maxe,+o|a]. We denote by (D;)<q = {0 €
D; | ord(0) < d} the subspace of differential operators in D; of order bounded by d.
For giving explicit descriptions of the eigenstructure of multiplication maps (defined
below), it is convenient to work with a special type of basis for the spaces D; (see
[MS95, Section 5]).

Definition 3.1.7. An ordered tuple (0;1, ..., 0;,,) with 0;; € D; is called a consistently
ordered basis for D; if for every d > 0 there is jq such that {01, ..., 0;;,} is a C-vector
space basis for (D;)<q.

Note that a consistently ordered basis always exists for any closed subspace D, its
first differential operator is always 0y and it is a C-vector space basis for D.

Lemma 3.1.3. Fori=1,...,0, let (0;1,...,0iu,) be a consistently ordered basis for
D;. The linear map R/T — cs* given by

fHL = ((evz, 0 00)(f), - - (eve, © 01y )(f), - - (V2 0 051)(f), - (ev2y © D) (f))

is an isomorphism of vector spaces.

Proof. The map is injective because f € I < f € Q1N ---NQs, which is equivalent to
(ev,, 0 0)(f)=0,YO € D;,i=1,...,5. The lemma follows since dim¢ R/I =4§+. O

Note that if I = v/I, the map from Lemma 3.1.3 is the map v from Proposition 3.1.1.
As in Lemma 3.1.3, for i = 1,...,4, let (9i1,...,0iu,) be a consistently ordered basis
for D;. Note that by Leibniz’ rule, for all f + I € R/I we have

((evz, 0 8ij) o My)(f + 1) = ev2,(9i5(fg) + 1)

= ov., (Z Dh(9)s6(953)(f) + f) (3.1.6)

beN™

=3 0(g)(z0) - (evai0 (@) (f + D). (3.L7)

beN™

In particular, for 9;; = 0y = idg we get
€Vy, 0 Mg = g(zl) €V,

which shows that the evaluation functionals ev, are (left) eigenvectors of M, with
eigenvalues g(z;). In general, by the property of being closed, s,(0;;) can be written as
a C-linear combination of 9;1,. .., 0;,,. For b # 0, by the property of being consistently
ordered and ord(sy(0)) < ord(9), sp(0;;) can be written as a C-linear combination
of 0;1,...,0; ;-1 (in fact, we only need the differentials of order strictly lower than
ord(0;;)). Therefore, we can write

J—
Z (g (evs, 0 5p(0i5)) = g(2i)(evs, 0 05) + Z (k)(evz7 o Oik).
k=1

beN™
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Then, in matrix notation, (3.1.6) becomes

ev;, o Oin 9(2;1) ev,, o i1
ev, o Oi2 cgz) g9(zi) ev, o Oia

DiOMg = . OMg = . . . = LZODz (318)
evz, 0 Oy, CE;II,).L cfbi)l ¢ evz; 0 Oip,

Here the notation D; is (ab-)used for the linear map represented by a consistently
ordered basis for D; composed with ev,,. Putting the equations (3.1.8) together for
i=1,...,0 we get

Dl L1 Dl
Dy Ly Dy
. OMg = . o . . (319)
Ds Ls Ds
S~ S~
D L D

By observing that the map D in (3.1.9) is exactly the map from Lemma 3.1.3, we
get that any matrix representation of My is similar to the lower triangular matrix L,
whose diagonal is

9(z1),. .., 9(z1), .., 9(25), - 9(25) -

(1 times ps times

The following theorem follows easily.

Theorem 3.1.4. For any matriz representation of the multiplication map Mgy : R/I —

R/I, we have that
5

det(X ides+ — My) = [T(A = g(zi)™.

i=1

Remark 3.1.3. Describing the multiplicity structure by means of differential operators
has the advantage that it gives a very explicit description of the invariant subspaces of
the multiplication operators. An alternative way of decomposing the algebra R/I into
subalgebras coming from the different points in V(1) is via localization. This is the
approach taken in, for instance, [CLO06, Chapter 4, §2]. The key idea is to establish
an isomorphism

R/I - RP1/IRP1 X X RP&/IRPM

where Ry, is the localization of R at the maximal ideal p; = I({2;}) (see Subsection
A.1.4). The equivalence of the approaches follows from the exact sequence

0—Q; = R— Ry, /IR,, =0,

from which R/Q; ~ Ry, /IR,,. This is discussed in [CLO06, Chapter 4, §2, Exercise
11]. A
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Remark 3.1.4. A solution z; € V(I) =V (f1,..., fs) has multiplicity u; > 1 if and
only if there is a differential operator d = > | ¢;0, € Z with ord(9) = 1 such that
0 € D;. This is equivalent to the condition that 0(f;)(z;) =0 for i = 1,...,s, which
means that the Jacobian
A fr
s = (5

dxy )
Lo 1<k<s,1<f<n

has the vector ¢ = (cy,...,¢c,) " in its kernel: J(z;)c = 0. In particular, if n = s, the
root z; has multiplicity u; > 1 if and only if det J(2;) = 0. A

Given an isolated point z; € V(I), there is a numerical linear algebra based algorithm
for computing a basis of D; [DZ05]. A description of this algorithm is outside the
scope of this thesis.

Example 3.1.6. Consider the ideal I = (f1, fo) C R = Clz, y] generated by

_ ]'2 2 __1 12
f1—:ﬂ+3y =, fo= 3o+

The variety V(I) = {#1, z2} consists of the two points z; = (1,0), z2 = (0,0). One can
easily check that

afi . .
(evzj o 8(0,1))(f1) = 872(2]) = Oa 1= 1727 J= 172

It follows that Vi, V4 have at least dimension two, and by Bézout’s theorem (Theorem

3.1.2), the sum of these dimensions is at most 4. We conclude that {9 0y, 90,1)} C Z

is a basis for D; as well as for Dy. In the algebra R/I we have the equalities
V4+I=0+1, 2*4+I=x+1,

and B={1+1I,y+ I, zy+ I,2%+ I} is a C-basis for R/I. Using the basis B with its
elements in this order we find that ‘multiplication with y’ is given by

0 0 0O

1 0 0 O

M, = 0 0 0 1

0 0 0 O

The matrix D from (3.1.9) is given by

ev., © 9(0,0) 1 0 0 1
D= D1 _|evz o 6(0)1) 01 10
- D2 o €ev, O 6(070) 1 0 0 O
€V, O 8(071) 01 0 0

Note that D is indeed invertible (Lemma 3.1.3). For j = 1,2 and any g € R we have

(eVZj © 8(0,0)) © Mg(f + I) = g(zj)(eVZj Oa(O,O))(f + I)v

(evs; 0 O(o,1)) © My(f + 1) = g(25)(evs, 000, (f + 1) + %(Zj)(esz 000,0))(f + I).
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In matrix notation, this gives DMy, = LD where

{’g(fl)) (1)
_ *Z 21)  g{z1
L=\’ 9(22)

%Z(Zz) 9(22)

In particular, for g = y this gives

1 0 0 1](0 0 O O 0 00 Of[|1T 0 01
01101000 1L 0OO0O0J01 10
10 0 0/|0 O O 1| |0 O O Ol |1 O 0 O
01 0 010 0 0 O 0 01 0|0 1 0 O
A
3.2 Points in projective space
In this section, we work in the Z-graded ring S = Clzy,...,z,] and consider zero-

dimensional homogeneous ideals of S (see Section 2.2). These are the homogeneous
ideals I C S such that Vpn(I) = {(3,...,(s} consists of finitely many points. Each
of the points ¢; € Vpn(I) can be represented by a set of homogeneous coordinates
2i = (2i0, - -+ Zin) € C"1\ {0} such that ¢; = (20 : ... : 2in) and z; € Venta (I). Our
motivation for studying zero-dimensional homogeneous ideals is twofold. Firstly, the
solutions of some problems coming from applications have a natural interpretation
as points in P". Think for instance about the case where solutions are elements in
the kernel of some matrix, eigenvectors of a (nonlinear) eigenvalue problem [GT17]
or conics in P? [BST19]. Secondly, it is sometimes beneficial to reinterpret equations
on C™ as equations on P" via a process called homogenization. After describing
some basic properties of zero-dimensional homogeneous ideals and formulating a
projective eigenvalue, eigenvector theorem in Subsections 3.2.1 and 3.2.2, we will
discuss homogenization in Subsection 3.2.3.

3.2.1 The Hilbert function and Bézout’s theorem

Let I = (f1,...,fs) C S be a zero-dimensional homogeneous ideal with V= (I) =
{¢1,...,¢s} and such that d; = deg(f;),i =1,...,s. Our goal in this subsection is to
say something more about the expected value of § in this setting. In the language of
Subsection 3.1.2, we want to understand the number of solutions of a general member
of the following family of homogeneous polynomial systems.
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Definition 3.2.1 (Homogeneous systems). For an ordered tuple (di,...,ds) € N*,
the family of homogeneous polynomial systems of degree (di,...,ds) is the image of

@:CPLx ... xCPs — Sy x--- x84, wherep; = (n—;dl)

and ¢((c1,a)|a|=dss - - - » (Cs,a)ja|=d,) = (Elalzdl CLaZ% - D)=, cs,ax“). Here |a| =
d; means that a runs over all tuples a = (ag,as,...,a,) € N*! satisfying |a| =
ag+ ay + -+ -+ ap = d;. We will denote this family by

fs(dl,...,ds):im¢:5d1 Xoeee XSdS-

The most interesting scenario happens when n = s, which is the case covered by
Bézout’s theorem in projective space. The tool we will use for understanding this
theorem is the Hilbert function, see Subsection 2.2.7.

First, we define the concept of multiplicity for a point in Vpn(I). We do this by
restricting the equations to an affine chart. As in Section 2.2, let

U ={(zo::x,) €P” | a; #0} ~ C".

A first observation is that for i =0, ..., n, the ideal I gives an ideal

o Ti—1 Lit1 X
j(Uz)CﬁP"(Uz):(C 7a~~~717,iv"'a7n :(C[y()a"'vyiflvyinLl,"'ayn]
T T T T

by dehomogenization. Here’s how this works. For j =1,...,s let
flJ = 77(1771(-]0.]) = fj(y()? s Yi-1, 17y’£+17 e 7yn)7

where 14, : Opn(U;)<q; — Sa; is the homogenization isomorphism (see Subsection
2.2.4). We define .7 (U;) = (fi1, ..., fis). Note that the polynomials f; do not define
functions on P", but the functions ﬁ-j do define functions on U; and on the overlaps
U; N Ug, k # i, the functions fij and fkj agree on where they are zero.! Indeed, for

z € U; N Uy, we have
A xk} d‘j A
fij(z) = () fir(x),

Zq

where it should be clear that f”(x) = ﬁj(x()/mi7 e i1 [T i1 [Ty -, X J25), and
the analogous notation is used for fi.

The points ¢; € Vpn(I) can be assigned a multiplicity as in the affine case (see
Subsection 3.1.3). The multiplicity of a point is defined locally, so for some affine chart
U; C P" containing (;, we can define the multiplicity u; of (; as the multiplicity of

1For the reader who is familiar with vector bundles, we are describing fj as a global section of
the line bundle with sheaf of sections Opn (d;) on P with transition functions (zj/z;)% . The tuple
(f1,-..,fs) can be seen as a global section of the rank s algebraic vector bundle with sheaf of sections
Opn (dl) @D Opn (ds)
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this point as a solution of .#(U;). This is independent of the choice of U; containing
¢j- We do not go into detail here.

Another concept which we have to introduce before talking about Hilbert functions is
that of saturation with respect to the irrelevant ideal. Recall from Section 2.2 that the
irrelevant ideal B = (xo, ..., z,) plays a special role in our graded ring: it is a proper
ideal whose projective variety is the empty set. Here’s an example of the kind of issues
that this causes, similar to Remark 2.2.1 but for a nonempty projective variety.

Example 3.2.1. Let S = Clzg, 1] and consider I = (zox1,2%) with Ve (I) =
{(1 : 0)}. Dehomogenizing this to the chart Uy where zy # 0, we get the ideal
I (Us) = (y1,9%) = (y1) C Cly1], which shows that the point (1 : 0) has multiplicity 1.
Therefore, the geometric object associated to I is exactly the same as the one associated
to (1) C S, which is a strictly larger ideal of S. Note that .#(U;) = Op: (U; ), which
reflects the fact that there are no points in V1 (I) N Uj. A

The reason for the ambiguity in Example 3.2.1 is that the affine scheme defined by
(woz1,2?) in C? consists of the line x1 = 0 with an ‘extra’, ‘distinguished’, or embedded
point at the origin. Think for instance of (zgz1,z?) as the limit of ((zo — t)xy,22)
for ¢ — 0. This embedded point is no longer visible when moving to projective space.
A remedy for this is provided by ‘dividing the ideal 6 out’ This is a process called
saturation.

Definition 3.2.2 (Saturation). For a homogeneous ideal I C S, the saturation of I
(with respect to 9B) is the homogeneous ideal

(I:98%)={fecS|forallbe®B,b'f eI forsomelcN}CS.

If I = (I:B°), we say that I is (B-)saturated.

For any homogeneous ideal I C S, there is some ¢ € N such that the saturation of I
equals the ideal quotient

(I:B>%) = (I:9B"
of I by the ideal B = (b ---by | b; € B,i =1,...,£) = (Sy) (see [CLO13, Chapter 4,
§4, Proposition 9]). The fact that the ideals I and (I : B°°) carry the same geometric
information is reflected in their behavior for high degrees.

Proposition 3.2.1. Let I C S be a homogeneous ideal. For some ¢ € N, we have that

Id = (I : %m)d, d Z L.

Proof. The inclusion I C (I : B°°) is clear (in all degrees). For the opposite inclusion,

let / be such that (I : B>) = (I : BY). Since S is Noetherian, (I : B>) = (g1,..., gs)
is finitely generated, where we can take g; homogeneous of degree d;. Take ¢ € N such
that { = max;—1,.. ¢+ d;. Then

(I8 = {hagy + -+ hogo | hi € Se-a;}
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and since £ —d; > f, i=1,...,5, wehave for each f = hyg1+---+hygse € (I :B>),
that f € I, since h; € B O

Recall that in the affine setting, a zero-dimensional ideal is radical if and only if all
the points in its variety have multiplicity 1. In the projective setting, we have to take
the irrelevant ideal 8 into account.

Proposition 3.2.2. Let I = (f1,..., fs) be zero-dimensional. If Vpn(I) = {(1,...,Cs}
with multiplicities p; = 1,i=1,...,0, then (I : B>®) = Is(Vpn (1)) = /(I : B>).

Proof. Let g € (I : B>). Without loss of generality, we may assume that g is
homogeneous. By definition, we know that for some ¢ € N and for ¢ = 0,...,n
xfg € I. For all ¢; € Vpn(I), pick i such that (; € U;. Now afg = hyfi + -+ + hsfs
vanishes at (;, but #¢ does not. We conclude that g(¢;) = 0, and hence g € Is(Vpn (I)).
To prove the opposite inclusion, take g € Is(Vpn (1)) homogeneous. For i =0, ..., n,
let §; = g(xo/xiy. .., xi—1/®i, L, iv1/%i, ..., xn/x;) be the dehomogenization. For
each (; € Uj, since all multiplicities are one we have

)

3(G) =0 = G €IWU)=fi,.-, fio).
It follows that for some fzi,i =1,...,s we can write
Gi = hifir 4+ hofis. (3.2.1)

There exists ¢ € N such that multiplying both sides of the equation (3.2.1) with
x¢ clears the denominators and ¢; > max(deg(g),deg(f1),...,deg(fs)). Since g =

20895 and f; = 20¥Y9) f. we find that 27 4@y € I Tt follows that for
éfmaxl 0..nli —deg(g), xfg € 1,i =0,...,n, which implies g € (I : B>). O
The following theorem shows that for a zero-dimensional homogeneous ideal I C S,
the Hilbert function HF; stabilizes for high degrees, and it reveals the number of
points in Vpn, counted with multiplicity.

Theorem 3.2.1. Let I C S be a B-saturated, zero-dimensional homogeneous ideal.
Denote Vpn (I) = {1, ..,Cs} where ¢; has multiplicity p; and 67 = py + -+ -+ ps. For
some { € N, the Hilbert function HF| satisfies

HF;(d) = dim¢(S/I)g =6, d>¢.

Moreover, HF;(d),d = 0,1,2,... is a non-decreasing sequence.

Proof. See [EH06, Proposition III-59]. The fact that HF;(d) is constant for large
enough d follows from Theorem 2.2.5. O
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d 01 2 3 4
HF;(d) 12 1 1 1
HF p=)(d) |1 1 1 1 1

Table 3.1: Hilbert function of the ideals from Example 3.2.2.

Example 3.2.2. The ideal I = (zoz1,2%) C S from Example 3.2.1 is not saturated:
its saturation is (I : B°*°) = (z1). Some values of the Hilbert functions of these
ideals are shown in Table 3.1. The table illustrates that HF; stabilizes for d > 2, and
HF (1.3 stabilizes for d > 0. By Proposition 3.2.1, the Hilbert functions must agree
for large enough degrees. This happens for d = 2 in this example: Iy = (I : B>®), is
the C-vector space spanned by xoz; and 3. A

An important and fascinating consequence of Theorem 3.2.1 is that if T = (f1,..., fn)
(note that s = n) is zero-dimensional, the number of points in V(I) (counting
multiplicities) only depends on the degrees dy, ..., d, of the generators. In other words,
it only depends on the family Fg(dy,...,d,).

Theorem 3.2.2 (Bézout’s theorem in P™). Let (f1,..., fn) € Fs(dy,...,d,) be such
that I = (f1,...,fn) C S is zero-dimensional and d; > 0,i = 1,...,n. Denote
Ven (1) = {C1,-..,Cs} where ¢ has multiplicity p; and 67 = py + -+ -+ ps. We have
that 6T = H?‘:l d;. Moreover, both the property that I is zero-dimensional and the
property that u; = 1,1 =1,...,0 hold for general members of Fs(dy,...,dy).

Proof. The proof of this theorem will be our first application of the Koszul complex
(see Subsection A.2.5). Since S is Cohen-Macaulay and codimpn Vpn (I) = n is the
number of homogeneous equations, f1,..., f, is a regular sequence in S, see [Ben19,
Proposition 2.7.13] or the discussion in [EHO06, page 144]. As a consequence (Theorem
A.2.6), the augmented Koszul complex

R(firoifa): 0— Ky 25 K 25 2K 258 5 8/1— 0 (3.22)

where

K= @ Std—--—d,)

1<ip < <ig<n

is exact. Also, all homomorphisms ¢, are graded of degree 0. Restricting the sequence
(3.2.2) to the degree d part and applying Theorem A.2.3 we find that

HF (d) = dimc(S/1)q = dime Sq + 3 _(—1)" dimg(Ky)a.
/=1

In this formula, the dimensions of Sy and (K/)q are easy to compute: these are all
twisted free graded S-modules. One can work out the combinatorics (see [EH06, page
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144-145]) to obtain

n
HF(d) = [[di, d>di+-+dn—n. (3.2.3)

i=1
This proves the first statement. The proof of the rest of the theorem uses resultants
(among other things). This is covered in [CLOO06, Chapter 3, §5, Exercise 6]. O

Remark 3.2.1. There are versions of Bézout’s theorem for positive dimensional
solution sets. See for instance [EH06, Theorem III-71] or [Har77, Chapter I, Theorem
7.7]. A

3.2.2 Projective eigenvalue, eigenvector theorem

In this subsection, we will assume for simplicity that I = (fy,..., fs) C S is a zero-
dimensional ideal with Vpn (I) = {(1,...,(s} where each of the ¢; has multiplicity one.
This implies that the saturation (I : B°°) is radical (Proposition 3.2.2). All results can
be generalized to the case with arbitrary multiplicities. We would like to mimic the
approach taken in Subsection 3.1.1 to construct matrices representing ‘multiplication
with a function’ whose eigenvalues are the evaluations of that function at the points
of Vpn(I). Since the only regular functions on P™ are the constants, we will allow
rational functions defined on V- (I). A first thing to generalize is the evaluation map
from Definition 3.1.1.

Definition 3.2.3 (Homogeneous evaluation maps). For d € N and h € S, such that
h(¢) #0,i=1,...,8, we define eve, € (S/I)y,i =1,...,8 by eve,(f + I4) = %(Q)
Furthermore, we define the homogeneous evaluation map g : (S/I)g — C° by
Ya = (eve,, ..., eve,). That is,

walf +10) = (£ £6).

The maps 14 are well-defined because f and h are homogeneous of the same degree
and h does not vanish at any of the points (;. Note that for each d it is possible to
find h € S, satisfying the condition of Definition 3.2.3. In fact, a general member
of Fg(d) satisfies the condition, for all d € N. A crucial property of the evaluation
map from Definition 3.1.1 is that it can be used to define coordinates on the (affine)
coordinate ring of a set of points in C™. The same happens in the homogeneous case
for large enough degrees. We characterize what ‘large enough’ means first.

Definition 3.2.4 (Regularity). The regularity Reg(I) of I is defined as
Reg(I)={d € Z | HF;(d) =6 and I; = (I : B*>)4}.
By the results from Subsection 3.2.1, we know that there is ¢ € N such that d € Reg(I)

for all d > ¢. For the case we are most interested in, the regularity has an easy
description.
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Theorem 3.2.3 (Regularity for square systems). If I = (f1,..., fn) with f; € Sq,,
d; >0,i=1,...,n is zero-dimensional, then Reg(I) D{d€Z |d>dy+---+d,—n}.

Proof. The fact that HF;(d) = § for d > dy + ...+ d,, — n follows from the proof of
Theorem 3.2.2. The condition that I; = (I : B°°)4 turns out to be satisfied for all d
in this case. See Theorem 5.5.10. O

Proposition 3.2.3. If I C S is zero-dimensional such that all points in Vpn (I) have
multiplicity 1, then for all d € Reg(I) the evaluation map 1 : (S/I)g — C° from
Definition 3.2.3 is an isomorphism of C-vector spaces.

Proof. Tt follows from d € Reg(I) that dim¢(S/I)q = 0. Moreover, d € Reg(I) also
implies that 14 is injective, since f({;) = 0,7 =1,...,d means f € (1/(I : B®))g =
(I : %oo)d = Id. O

It is now clear what the generalization of the Lagrange polynomials in Subsection
3.1.1 should be.

Definition 3.2.5 (Homogeneous Lagrange polynomials). For d € Reg(I) and j =
1,...,4, let £; € Sy be any representative of the class ¥, ' (e;) € (S/I)4. That is, any
homogeneous polynomial satisfying

Ci(zj) = h(z;), £i(z:) =0,i# ]

for any set of homogeneous coordinates z; of (;, where h € Sy is used to define the
evaluation map 14 (Definition 3.2.3).

Note that the elements ev¢,,¢ =1,...,0 from Definition 3.2.3 form the dual basis of
(S/I)y with respect to the homogeneous Lagrange polynomials. The next step is to
define multiplication maps for homogeneous polynomials.

Definition 3.2.6 (Homogeneous multiplication map). Fix d,dy € N. For any g € Sy,
we define the multiplication map representing multiplication with g as the C-linear
map

Mg : (S/1)a = (S/D)ata, with Mg(f+1a) = fg+ lavd-

The following lemma will be used to state the main result of this subsection.

Lemma 3.2.1. Let d,dy € N be such that d,d + dy € Reg(I). For any hg € S4, such
that ho(¢;) # 0,4 = 1,...,0 we have that the multiplication map My, : (S/I)q —
(S/I)d+td, is an isomorphism of vector spaces.

Proof. Let h € S4 such that h({;) #0,i=1,...,0 and use h to define ¢4. Since hhg
does not vanish at any of the (;, we can use it to define 944+4,. The lemma follows
from 144, © Mp, = diag(ho((1), - .-, ho(Cs)) o 1q and Proposition 3.2.3. O
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Theorem 3.2.4 (Projective eigenvalue, eigenvector theorem). Let d,dy € N be such
that d,d + dy € Reg(I) and take hg € Sy, as in Lemma 3.2.1. Then for any g € Sq,,
Mgy /p, = M,;)l oMy :(S/I)g — (S/1)q has eigenpairs

<hg0(gj),€j + Id) ; (evcj, hgo(cj)) , j=1,...,6,

where the {; + 14 are cosets of homogeneous Lagrange polynomials of degree d and the
eve, form the dual basis of (S/I)y.

Proof. The map Mj,, is an isomorphism by Lemma 3.2.1. We define 14, ¥q+4, as in
Definition 3.2.3 with h € Sy, hho € Sqta, respectively. A straightforward computation
shows that g1a, © My, (¢; + I4) = e;. Analogously, we have giq, 0 My(¢; + I4) =
i=(Gj)ej- 1t follows that

My, (4 + 1g) = h%((j)((j + 1a),

which proves the statement about the right eigenpairs, since the ¢; 4+ I; are linearly
independent. For the statement about the left eigenpairs, note that for any f € Sy

eve, oMy n, (f + 1a) = eve; oMy (g f + Tatd,)

and since Mpy, is an isomorphism, there is f € Sq such that gf — hof € Tgta,-
Therefore, for each (; € Vpn (I) we have

gf —hof

!
hoh h

) =0=$6) = £@)5E)
and thus, since M,jol(gf + Iiva,) = f—i— 14, we have
evg; oMq/ho (f + Id) = evy¢; (f+ Id) = hio(gj) eve, (f + Id)'

The eve; are linearly independent, so this concludes the proof. O

As in the affine case, this suggests the following pseudo-algorithm for computing
homogeneous coordinates of (i, ..., (5.

1. For d,d + 1 € Reg(I) and for some basis of (S/I)q, pick a generic linear form
ho € S1 and compute matrix representations of M, /ngs- - My, /n,-

2. Diagonalize these matrices simultaneously, i.e. compute

_ . L4 ] .
DM:L’i/hoD 1:dlag 7(41)7"'57(65) , 0=0,...,m,
ho ho

and read off the homogeneous coordinates from the diagonal.



66 ZERO-DIMENSIONAL VARIETIES

3.2.3 Homogenization

In Subsection 3.2.1 we have discussed how a zero-dimensional homogeneous ideal
I C S gives ideals #(U;) C €(U;) = C[C"] defining points in an affine chart of P" by
dehomogenizing the generators. This is used to obtain local information such as the
multiplicities of the points defined by I. In this subsection we will study the way of
obtaining a homogeneous ideal I C S = Clxy,...,x,] by homogenizing the generators
of a zero-dimensional ideal in R = C[C"] = Clyy,...,yn]). Recall that homogenization
of degree d is defined as

) N ~fx T,
Na : Rgd — Sd with nd(f(yl, . ,yn)) = $gf (17 ey ) .
Zo i)
Let J = (fl, ceey fs> C R and define d; as the smallest integer such that f; € R<q,.
We consider the homogeneous ideal I C S obtained as

I={f1,....fsyCS, with f;=na(f;),i=1,...,s.

With the notation of Subsection 3.2.1, it is clear that J = .#(Up). If J is zero-
dimensional, it is clear that V= (I)NUy = Vin (J) and the isolated points in Ve (I)NUy
have the same multiplicity as the corresponding points in Vgn(J) (for the reader
who knows about schemes: J and I define the same zero-dimensional subscheme of
Uy ~ C™). For the rest of this subsection, we will consider the case where s = n.

A first observation is that generically nothing happens when going from J to I, in
the sense that the only points in Vpn (I) are the ones corresponding to Ve (J). To be
more precise, let (f1, cl fb) € Fgr(dy,...,d,) be a general member in the sense that
Ve (J) consists of dy - - - d,, points with multiplicity 1 (Theorem 3.1.2). Homogenization
establishes an isomorphism between Fr(ds,...,d,) and Fg(ds,...,d,). By Theorem
3.2.2 our general member (fl, .. .,fs) € Fgr(dy,...,d,) homogenizes to a general
member (f1,...,fs) € Fs(di,...,d,) in the sense that Vpn(I) consists of dy -+ - d,
isolated points with multiplicity 1. It is clear that these points are in one-to-one
correspondence. Homogenization can sometimes be useful to understand the case
where (f1,...,fs) € Frldy,...,d,) does not behave like a general member (in terms
of the Bézout root count), but the homogenization (f1, ..., fs) € Fs(d1,...,d,) does.

Example 3.2.3. Consider the ideal J = (fy, fo) € R = Cly1,ys] given by
fi=vi-3yp+25+1, fo=yi—y3—3p+1

The solutions (yi,ys2) in C? are (v/—1,0), (—v/—1,0) and (3,2). Note that this is one
less than expected: the Bézout root count is dyde = 4. To see where this ‘missing’
solution has gone, we homogenize to obtain

2 2 2 2 2 2
fi =21 —3zixo + 225 + x5,  fo =27 — x5 — 3zox2 + 2.

The solutions (zg : 1 : @2) in P? are (1 : /=1 :0),(1;—/=1:0),(1 :3:2) and
(0:1:1). The first three in this list correspond to the affine solutions, and the fourth
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one lies in the line defined by x¢ = 0, which is the complement of Uy in P2. In this
setting, this is the line at infinity, and the system of equations fl = fg = 0 is said
to have a solution at infinity. Note that (f1, f2) € Fs(2,2) is a generic member, in
the sense of Bézout’s theorem. We remark that from a numerical point of view, it
makes sense to compute such ‘excess solutions’ as well, rather than ignoring them.
Indeed, the slightest perturbation of the coefficients of fl, f2 will move the solution
(0:1: 1) € P2 into Uy, causing f1 = f2 = 0 to have four solutions in C2, one of which
has ‘large’ coordinates. A

Another reason one might want to use P" as a solution space instead of C™ is that
we can compute representatives zy, ..., zs of the solutions (i,...,(s of I in any affine
subspace of P”. More precisely, the solutions of J correspond to points in Uy C P,
which in turn correspond to lines through the origin of C"*! that hit the hyperplane
Vin+1 (zo—1). This hyperplane is identified with C™: the coordinates (y1,...,y,) € C*
of the affine solutions are the x1,...,x, coordinates of the intersection of these lines
with Ven+1(zg — 1). Instead of choosing the hyperplane Vien+1(xzg — 1), we could pick
a different linear form hy € S; and identify C™ with Vgn+1(ho — 1) via the map from
Remark 2.2.2. This may be advantageous if the coordinates for g = 1 of a solution
are very large (solutions ‘near’ infinity). In this case we can compute the coordinates
for hy = 1 with hg chosen randomly (such that there is no reason to expect that
the coordinates will be large) and afterwards we simply scale them to have z¢ = 1.
More concretely, solutions on or near infinity cause numerical issues for computing the
multiplication matrices M,, from Subsection 3.1.1, which are actually the matrices
M, /2, from Subsection 3.2.2. Choosing a random element hg can help us get rid of
this issue completely. We will say more about this in Section 4.5.

As we have noted in Example 2.2.7, homogenizing the generators of J may enlarge
the variety by adding components contained in P™ \ Uy. This is also what happened
in Example 3.2.3. The fact that an extra point was added after homogenizing in
Example 3.2.3 was due to the equations fl, fg being non-generic in a sense. Indeed,
the 4 solutions of a general member of F(2,2) all lie in C2. Sometimes, however,
extra points in P \ Uy are introduced as an artifact of homogenization, possibly even
destroying the zero-dimensionality. This is illustrated by the following example.

Example 3.2.4. Let R = Cly1, y2, y3] and consider the equations

f1 = a1+ agy1 +asy2 + aqys + asy1y2 + asyY1ys + ary2ys + asyiy2ys,
fo = b1 +bay1 + bsya + bays + bsy1y2 + beyrys + bryays + bsy1y2ys,
fa = c1+coyr + csy2 + cays + csy1y2 + CeY1Ys + cryays + CsY1Yays.

Homogenizing these equations and setting ¢y = 0 we obtain
f1(0,21, 22, 73) = agr17273,
f2(0, 21, w2, 23) = bgw1 2273,

f3(0, 21,22, 23) = cgx1T223.
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This shows that for any choice of the parameters a;,b;,c;, Vpn(I) contains the three
lines {(0:0: o :23)},{(0:21:0:23)},{(0: 21 : 25 :0)} (each of which is isomorphic
to PL). A

Example 3.2.4 is an illustration of how homogenization has some undesirable properties
for systems coming from a subfamily F' C Fr(di,...,d,) which is such that generic
elements of the subfamily do not behave like generic elements of Fr(dy,...,d,). We
argue that in this kind of situations, P™ is not the right solution space to consider.
This raises the question ‘which one is?’. For an important class of subfamilies 7' C
Fr(dy,...,d,), containing the family considered in Example 3.2.4, the answer is a
compact toric variety which is naturally associated to F’. This is the subject of
Chapter 5. For now, we will work with the isomorphic families Fg(dy,...,d,) and
Fs(dy,...,ds) and solution spaces C™ or P™.

3.3 Grobner and border bases

To use the results of the previous subsections for solving polynomial systems we
need algorithmic tools for doing computations modulo an ideal I. The theory of
Grébner bases provides us with such a tool. Grobner bases have led to great advances
in computational algebraic geometry and computer algebra and give rise to a good
example of what is called a normal form with respect to an ideal. This is a concept
that plays an important role in this thesis. Border bases generalize Grobner bases in
several ways. In particular, they remove some of the restrictions that Grobner bases
impose on the basis of the quotient ring R/I in which we can work. Our aim is to
present the main ideas. For references that cover Grébner and border bases in more
detail, see Subsection 1.3.1. Throughout this subsection we work with zero-dimensional
ideals I C R = Clz1,...,zy]. In the context of Grébner bases it is more common to
work over fields that are more fit for symbolic computation, such as Q or finite fields.
We stick to the complex numbers for the sake of consistency. The reader can safely
replace C in this section with their favorite field.

3.3.1 Grobner bases

The discussion on Grobner bases included here is partly inspired by some lectures
by Frank Sottile on Algorithmic Algebraic Geometry, attended by the author at FU
Berlin in the fall semester of 2019.

In the case where n = 1, all ideals in R = C[z] are principal. If f = co+c1x+---+cqx
with ¢ # 0 and I = (f), a canonical choice of basis for R/I is B = {1 + I,z +
I,...,2%97 Y+ I}. A well known way of expanding the residue class of any polynomial
g € R in this basis is given by the Fuclidean division algorithm. This algorithm writes
g as

d

g=qf +r,
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where r,q € R and the degree of r is smaller than d. It follows easily that g+1 =r+1
and the coefficients of r (in the monomial basis) give the expansion of g + I in terms
of B. One can think of the Euclidean division as a way of using f to rewrite g modulo
I using ‘smaller’ monomials. Here smaller is with respect to the total order

l<z<a?l<ad<--

on the monoid of monomials in R, or equivalently, with respect to the canonical total
order on the natural numbers N. A first step to generalize this to the multivariate
case is to define what we mean by ‘small’ monomials. For n > 1, there is no canonical
total ordering on the monomials in R".

Definition 3.3.1 (Monomial order). A monomial order is a total order ‘<’ on the
monomials of R such that for any a,b,c € N”

1. 1 Xz for any a € N,

2. 2% < xb implies zo+¢ < ab*e.
Example 3.3.1 (Monomial orders). Some important examples of monomial orders

are

1. the lexicographic order, where x® > 2? if the first nonzero entry of a — b is

positive,

2. the degree lexicographic order, where £ >geglex zb if |a| > |b| or |a| = |b| and
x¢ >lex xba

3. the degree reverse lexicographic order, where @ =g, 2% if |a| > |b| or |a| = |b|

and the last nonzero entry of a — b is negative.
For example, in R = Clx1, 22, 1 >lex T3, Yet 1 <deglex 3. In R = Cla1, z2, z3] we
have
3.3 4,2 3. .3 4.2 3.3 4.2
.7311‘2.%'3 >‘lex .’Ell‘2$3, .’1311‘2.7}3 }deg]ex .271.%‘21‘3 and xleZL‘?) _<d1‘1 $1$21‘3.
A
In what follows, if we do not specify the monomial order we will assume that some
monomial order ‘<’ is fixed.

Definition 3.3.2 (Initial monomial). For a polynomial f = 3 . csz® € R we
define the initial monomial of f as

iny(f) =2 where 2 is the maximal element w.r.t. < such that ¢, # 0.

Theorem 3.3.1 (Multivariate division algorithm). There exists an algorithm which
takes as an input the polynomials g, f1,...,fs € R and a monomial order ‘<’ and
gives as an output a set of polynomials q1,...,qs,T € R satisfying
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1. g:q1f1+"'+Qst+T;
ing (g> = ing (T):

ing(g) =inz(qifi), i=1,...,s,

e b

no term of r is divisible by any of the initial monomials inL(f;),i=1,...,s.

Proof. The algorithm is a straightforward generalization of the Euclidean division
algorithm for n = 1. It is given explicitly in the proof of Theorem 3 in [CLO13,
Chapter 2, §3]. O

It is clear that if I = (fi,..., fs) and the algorithm of Theorem 3.3.1 allows us to
write g =q1 1+ -+ ¢sfs + 7, then g+ 1 =7+ 1 in R/I. Unfortunately, in general
this does not give a unique way of representing ¢ modulo I. The output depends on
the choice of generators f1,..., fs of I and on the way they are ordered. The following
is Example 5 in [CLO13, Chapter 2, §3]. It shows that the conditions imposed on the
output of the multivariate division algorithm do not guarantee that r is unique.

Example 3.3.2. Let R = C[z,y] with lexicographic monomial order where z > y.
For g = zy? —z, fi = zy — 1, fo» = y? — 1, the polynomials

a=y ¢@=0, r=-x+y

satisfy the conditions of Theorem 3.3.1, and so do the polynomials

In fact, (g1, q2,7) is the output of the algorithm in [CLO13, Chapter 2, §3], whereas
(¢}, b, ") is the output when the order of fi, f2 is changed. A

This ‘imperfection’ of the multivariate division algorithm can be removed by imposing
some conditions on fi,..., fs such that r is unique under the conditions of Theorem
3.3.1. Such ‘special’ sets of generators for I are called Gréobner bases.

Definition 3.3.3 (Grobner basis). A finite subset G C I is called a Grébner basis for
I with respect to ‘<’ if the initial ideal

ing(I) = (x* | 2% = in4(g) for some g € I)

satisfies in4 (I) = (in<(f) | f € G).

It is a direct consequence of Dickson’s lemma [CLO13, Chapter 2, §4, Theorem 5]
that every ideal in R has a finite Grobner basis. The terminology ‘Grobner basis’ is
justified by the fact that any Grobner basis of an ideal I is a basis for the ideal, i.e.
the elements of a Grobner basis generate the ideal [CLO13, Chapter 2, §5, Corollary
6).
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Proposition 3.3.1. If{f1,..., fs} is a Grébner basis for I = (f1,..., fs), theng € I
if and only if the polynomial r returned by the multivariate division algorithm is
the zero polynomial. Moreover, for each g € R there is a unique polynomial r € R
satisfying r + I = g+ I and condition 4 of Theorem 3.3.1.

Proof. 1t is clear that if r = 0, g € I. Conversely, if r # 0, then by the fourth condition
of Theorem 3.3.1 no term of r lies in in (). It follows that r ¢ I, which implies g ¢ I
since g = q1f1 + - -- + qsfs + r. To prove the second statement, suppose that

g=qfi+ - tasfstr=¢fi++df+r.

Then r — v’ € I. If r =1', we're done. If r # 1/, we arrive at a contradiction because
none of the terms in r — 7/ are in inL (7). O

The unique polynomial r returned by the multivariate division algorithm for a
polynomial g € R and a Grobner basis G C R of an ideal I is called the remainder
upon division of g by G. We denote r = Ng(g). The set of monomials

B = fa" | 2* ¢ ins(D)}

is called the set of standard monomials of I with respect to <. Their C-linear span is
denoted by

B. = spang(B<) = Z cqex® | finitely many ¢, are nonzero » C R.
zeeB

It follows from Proposition 3.3.1 that the map Ng : R — B~ is C-linear and Ng(b) = b
for all b € B..

Theorem 3.3.2. Let G = {f1,..., fs} be a Grébner basis for I. We have the short
ezact sequence of C-vector spaces

0—T—RY B, 0.

Proof. The fact that kerNg = I follows immediately from Proposition 3.3.1.
Surjectivity of Ng : R — B follows from Bs C R and Ng(b) = b for b € B.. O

Corollary 3.3.1. If I C R is a zero-dimensional ideal with Ven(I) = {2z1,..., 25}
such that z; has multiplicity p; and 67 = p1 + -+ + ps, then for any monomial order
‘<’ the set of standard monomials B~ consists of T monomials whose residue classes

in R/I form a C-basis of R/I.

Remark 3.3.1. A Grobner basis G = {f1,..., fs} is called reduced if for i = 1,...,s,
the coeflicient standing with the monomial in(f;) equals 1 and no monomial occurring
in f; can be divided by any of the leading terms of the other elements of G (i.e. all
monomials of f; are not contained in (in.(f;) | j # ¢). Reduced Grébner bases have
the nice property that every ideal I C R has a unique reduced Grébner basis for any
monomial ordering [CLO13, Chapter 2, §7, Theorem 5]. VAN
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Remark 3.3.2. The remainder upon division 7 of a polynomial g by a Grébner basis
G ={f1,...,fs} can be defined as the result of the multivariate division algorithm
because of the uniqueness property in Proposition 3.3.1. However, the polynomials
q1, - - -, qs satisfying the conditions of Theorem 3.3.1 are not unique (for instance, replace
¢ by ¢; + f; and g; by ¢; — f;). However, the polynomial h = ¢1 f1 +---+¢sfs =g—r
can be defined from any output of the multivariate division algorithm and is again
unique. The map g — h + r makes the isomorphism R ~ I & B explicit. A

Remark 3.3.3. Grobner bases, along with an algorithm for computing them, were
introduced by Bruno Buchberger. In his Ph. D. thesis [Buc06], the focus was on the zero-
dimensional case. The general theory was developed in [Buc70]. Many improvements
to the original algorithm have been made to reduce the complexity and memory usage.
We have listed some references in Subsection 1.3.1. A more complete overview is given
in [CLO13, Chapter 2, §10]. The development of specialized Grobner basis methods is
ongoing research. See, for instance, the Ph. D. thesis of Zuzana Kukelova [Kuk13] for
Grobner basis methods in computer vision, and the Ph. D. thesis of Matias Bender
[Ben19] for specialized algorithms dealing with sparse polynomials. A

Example 3.3.3. As an illustration, we compute Groébner bases for the ideal of
Example 3.1.2 using the computer algebra software Macaulay2 [GS] for two different
monomial orderings. Using the (default) degree reverse lexicographic order, we obtain

G = {6zy—y® —3z+22y+5, 32 +4y* + 32— 10y +4, 98y” — 363y> — 1892 4888y + 107},

where we have underlined the initial monomials. Here in~ (1) = (zy,z2,y3) and
B.,, = {1,y,y% 2}. For a lexicographic order with 3 >=1ex © we obtain

G = {49z + 3742° + 9132 + 840z + 1260, 906y — 1962° — 8592% — 74Tz — 1272}.

Here ing (I) = (z*,y) and B, = {1,z,2% 23}. We note that these computations
happened in exact arithmetic: if the ideal can be generated by polynomials with
coefficients in a field K, then it is a direct consequence of Buchberger’s algorithm that
the ideal has a Grobner basis with coefficients in K (here K = Q, for instance). Figure
3.2 shows how the partitioning of the monomials of C|x,y| into B and the monomials
in in< (1) leads to a typical staircase pattern, which depends on the monomial order.
In this type of figures, we identify a € N? with the monomial z%1y?2. A

What is essential for us is that a map Ng having the property of Theorem 3.3.2 allows
us to compute the multiplication maps from Subsection 3.1.1. Indeed, multiplication
with g in the basis B = {z*,..., 2%} looks like

1 %

21 | |
M=o | Nalgam) o Ng(ga™)
)
where the columns are the expansions of {Ng(gz®) | 2 € B<} in the basis B5. A

map satisfying the property of Theorem 3.3.2 is what we will define to be a normal
form. We will see another example in the next subsection.
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Figure 3.2: Tllustration of the staircase patterns of a <g4, (left) and a <y (right)
Grobner basis for the ideal of Example 3.3.3. The initial terms in the Grobner basis
(i.e. the generators of in<([) are indicated with small boxes.

3.3.2 Border bases

The staircase patterns arising from Grébner bases depend on the choice of monomial
order, but they also depend on the ideal. This is natural in the sense that the subsets
of monomials of R whose images in R/I can be used as a basis for R/I depends on
I. However, the dependence of B on the ideal has some specific features that are
artifacts of working with a monomial order ‘<’ and can have bad consequences for the
behavior of Gréobner bases in a numerical context. Here’s an example that illustrates
this.

Example 3.3.4. Let R = C[z,y| and consider the degree reverse lexicographic
monomial order ‘<4, with y <q,;1 . We consider the ideal I = (fi, f2) from Example
3.1.6 with
f1:x+1y2—x2 and f2:_—1x+}x2.
3 ’ 3 3

The resulting reduced Grobner basis is G = {22 —z,y} and B<,, = {1, z,y,zy}. If we
perturb the polynomials f; and f5 slightly to obtain I’ = (f], f3) with f{ = fi—10""xy,
f5 = f2 + 10 "xy, the new reduced Grébner basis becomes

107 1 30000000
. 2 2 1.9 3 OVVVY L2
g = {my+6 VLT oY T Y 16999999999991 }

"eun = {L,2,y,4?}. In order to obtain the first two
elements of G’, we can use the equations f7, f§ to write that (modulo I’)

it I A I [ e

from which we get

[ e S KA v ]

with set of standard monomials B’
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The reader who is familiar with numerical analysis notices that this computation is
not very suitable for finite precision arithmetic: we are inverting an ill-conditioned
matrix (see Appendix B). Indeed, performing this computation in double precision
arithmetic with the help of the following Matlab [MAT17] commands

A = [-1e-7 -1;1e-7 1/3]; B =[010 1/3;0 -1/3 0 0];
we get a relative forward error
>> norm(-A\B - [0 0 O -1e7/6; 0 1 0 1/2])/norm(A)

of size 4.4177e-10, which is roughly 10° times larger than our working precision! It
is interesting to see what the analogous computation looks like when we stick to our
set of standard monomials {1, x,y, zy} from before. We now get
-1 1/3][«*] _ [0 1 0—10—71 T
{1/3 0 } Lﬁ} - [0 s 0 107 [Uryoml

which leads to 22 —x+3-10" "2y € I’ and y?>+6-10" "y € I’. The coefficient matrix is
now perfectly well conditioned and the set of polynomials H = {2? —2+3-10~ "2y, y> +
6- 10~ "2y} can be computed up to machine precision. Note that the polynomials in
‘H are slightly perturbed versions of the polynomials in G. They are a basis for the
ideal I’ as they are just an invertible linear combination of f{ and f}. Although not a
Grobner basis, the set H can be used to rewrite any polynomial g € R as a C-linear
combination of the monomials in B modulo the ideal (as we will see). Even though the
slightly perturbed polynomials f1, f5 lead to a slightly perturbed set of polynomials
‘H that allow us to compute modulo I’ in the basis {1+ I',x + I',y +I',zy + I'} of
R/I', the Grobner basis G' and its corresponding set of standard monomials change
completely. Moreover, we are forced to solve a nearly degenerate system of linear
equations in order to compute G’. The reason for this is that the monomial order ‘<g4,1’
really prefers y? over zy as a candidate for the set of standard monomials. By adding
the monomial xy to the equations, xy ‘replaces’ y? in the initial ideal. This causes an
artificial discontinuity in the set of standard monomials picked by a Grobner basis.
Note that the condition number of the coefficient matrix in this example governs the

magnitude of the coefficients in the reduced Grobner basis. Also, the size 10~7 of the
perturbation can be taken smaller: the situation can be made arbitrarily bad. A

Similar examples of the bad behavior of Grobner bases in a numerical context can
be found, for instance, in the introductions of [Ste97, Mou99]. Border bases have
been developed to remedy this type of behavior. For instance, the set H of Example
3.3.4 is part of a border basis. The idea of the multivariate division algorithm is to
use the elements f1,..., fs to reduce a polynomial g, where ‘reduce’ means ‘lower’ its
initial monomial with respect to the chosen monomial order. A reduced Grébner basis
G={f1,..., fs} is such that

fi=inL(fi) = > car® (3.3.1)

z2eB
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gives an explicit way of rewriting in(f;) as Y acp cox® modulo the ideal (f1,..., fs).
The initial monomial of any polynomial g that is not in B~ divides one of the in~(f;).
This means that there is an appropriate term cz® such that g — cz®f; lies ‘closer’ to
B than g does, in the sense that in<(g — cx®f;) < in4(g). Border bases give a way
of ‘reducing’ any polynomial g modulo I without the use of a monomial order. More
precisely, for a C-vector subspace B C R satisfying some properties, a B-border basis
for a zero-dimensional ideal I is a basis H of I that induces a map Ny : R — B such
that g — Ny(g) € I and g — (9 — N(9), Nu(g)) gives an isomorphism R~ I & B.
In particular, a Grobner basis G gives a border basis with Ny = Ng. We will now fill
in the gaps in this definition. First of all, let us specify which conditions the subspace
B should satisfy. Two different definitions are commonly used in the literature, and
we will give them both.

Definition 3.3.4 (Order ideal). A nonempty subset B of monomials in R is called
an order ideal or a closed subset if for each z° € B and 2¥ such that 2% divides z?,

we have 2’ € B.

Note that every order ideal contains 1. For instance, the references [MMMO91, Ste97,
KKRO05, KK05] work with B-border bases where B is the C-linear span of an order
ideal.

Definition 3.3.5 (Connected to 1). A C-vector subspace B C R is connected to 1 if
for every b € B there exist by,...,b, € B such that

b= i Iibi~
i=1

Every connected to 1 subspace B C R contains 1. Moreover, the C-span of every
order ideal is connected to 1. An example of a set of monomials that is an order
ideal and one that is not, but its span is still connected to 1, are shown in Figure 3.3.
The connected to 1 property is the restriction on B for the B-border bases discussed
in [Mou99, MT05, LLM*13]. Since subspaces that are connected to 1 contain the
subspaces coming from an order ideal, we will work with this assumption in the
remainder of this subsection. Next, in order to specify what we mean by ‘reducing’
a polynomial g with respect to B, we need a way of determining how far g is from
being in B. To that end, following the approach in [Mou99], for any subspace B C R
we define
Bt*=B+z,-B+--+ux, B

where z;- B = {2;b| b € B} C R, and we let BI¥) be the result of applying the operator
() d times to B. We set BI% = B by convention and we define B = 52, Bl

Definition 3.3.6 (B-index). For a polynomial g € R and a subspace B C R, we
define the B-index indp(g) of g as the smallest d € N such that g € Bl4. If such a d
does not exist, we set indg(g) = —oc0.
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Figure 3.3: Illustration of an order ideal (left) and the ‘connected to 1’ property (left
and right).

Note that if 1 € B, every g € R has a finite B-index and B* = R. Also, if L C R is
spanned by H = {f1,..., fs} over C, then LI = (H) = (f1,..., f.).

Lemma 3.3.1. If1 € B and L is such that BT = B 4 L, then every element g with
indp(g) = d can be written as g = h +r where h € LI and r € B.

Proof. The proof is by induction on d [Mou99, Lemma 2.3]. O

The process of writing ¢ = h+7 in Lemma 3.3.1 is called B-reduction of g along L. This
is to border basis algorithms what the multivariate division algorithm is to Grébner
bases. Here B plays the role of B- and L plays the role of the C-linear span of the
generators of the ideal I. With the right assumptions on B and L we will have that the
B-reduction along L is canonical, i.e. for each d € N and each g € R with indg(g) = d
there is a unique way of writing g = h +r with h € LI~ b € B. Equivalently,
B-reduction along L defines a map Ny, : R — B where Ny (g) = (9 — Nu(9), Nu(9))
is an isomorphism R ~ () @ B (here H is a C-basis for L).

Definition 3.3.7 (Border basis). Let I C R be a zero-dimensional ideal. A border
basis of I is a pair (B, H) where

1. B C R such that dim¢ B = dim¢ R/I and B is connected to 1,

2. L = 1IN BT is supplementary to B in BT: BT = B L,

3. H is a C-basis for L.

We say that H is a B-border basis of 1.
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As we will see in Section 4.2, for a border basis (B, H) of I we have that the B-reduction
Nz : R — B along L = 1IN BY is canonical and (L) = (H) = I, so H is indeed an
ideal basis of I. In [Mou99] an algorithm is described for computing a border basis of
I, based on Mourrain’s criterion for normal form algorithms [Mou99, Theorem 3.1].

Definition 3.3.7 is mostly based on the results from [Mou99], even though in this
article the terminology border basis is not used. To justify this definition, we remark
the following. Definition 3.3.7 defines a border basis as any C-basis H for L = IN B+.
However, for every subspace 8B C BT such that BT = B @ 0B and for every choice
of C-basis 0B for 0B there is a canonical choice for H. This choice of H leads to the
definition of ‘B-border basis’ in [KK05, KKR05, KKO06, Ste97] if B is a C-basis for B
which is an order ideal and that of a ‘border basis for B’ in [MTO08] if B consists of
monomials and B = spang(B) is connected to 1. For a border basis (B, H) we say
that H is a reduced B-border basis with respect to a basis 9B = {g1,...,gs} of OB if
H = {fl, e 7fs} Wlth
Ji=9i _N’H(gi)v i=1,...,s.

Note that {f1,..., fs} give an explicit way of rewriting the ‘border’ 9B of B modulo
the ideal.

Example 3.3.5. Let G = {f1,..., fs} be a reduced Grobner basis for I with respect
to a monomial order ‘<’ The border 9B~ contains the initial monomials in_(f;). Let
OB~ = {z% | x* € B* but 2% ¢ B}. Then dB< is a basis for 0B, the set

H={z* — Ng(z®) | z* € OB}
contains G and is a reduced B<-border basis with respect to dB«. A

Example 3.3.6. Let B C R = Cl[z,y] be the C-span of {1, z,y,zy} and consider the
basis B = {22, y?, 2%y, vy?} of 9B ~ BT /B. A reduced B-border basis with respect
to OB for the perturbed ideal I’ from Example 3.3.4 is given by
H = {2 —2+3-10"2y, y> +6-10 "y,
9 1 6-1077 }
YT TR0 1-18-10- 14"
This is a slightly perturbed version of the B-border basis

zy, vy’ +

H = {xQ - Z, 927 3329 -2y, myz}
of I from the same example. Note that the reduced Grobner basis G is contained in H

and the B-border basis varies continuously in a ‘neighborhood’ of I. A

Just like for Grébner bases, the fact that the map N3 identifies B with R/I allows us
to compute multiplication with ¢ in R/T as
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in a C-basis B = {b1,...,bs} for B. The columns are the expansions of {N3(gb) | b €
B} in this basis.

3.4 Resultants and Macaulay matrices

In this section, we discuss a different algebraic technique for computing points defined
by zero-dimensional ideals, based on resultants. More specifically, we consider projective
resultants and postpone the discussion on (more general) toric resultants to Chapter 5.
As the name suggests, the natural solution space for studying these resultants is the
projective space. Throughout this section, we work with (homogeneous) polynomials
in S = Clzog,...,z,] = C[P"]. The main results and their proofs can be found in
[Jou91l, GKZ94, Mac02] and [CLO06, Chapter 3] contains an accessible treatment
with a view towards computations. First, we state the definition and some properties
of resultants. This will allow us to describe very explicitly when a member of the
square family Fg(dy,...,d,) is ‘generic’ with respect to some properties. That is, we
will give equations for the variety of members that are not. Next, in Subsection 3.4.2
we will describe a construction due to Macaulay to compute the resultant and a way
of constructing (homogeneous) multiplication maps using resultants.

3.4.1 Definition and properties

We consider the family of homogeneous polynomial systems Fg(do, .. .,dn) > Sg, X
---x S84, given by n + 1 homogeneous equations fo = --- = f,, = 0 over P, with
fi € Sq,. Note that this is not a square family: we are considering n + 1 equations
on an n-dimensional solution space. Recall that Fg(do,...,dy) is isomorphic to the

affine space CP = CPo x --- x CP» where p; = (n—;dl) via

¢((60,a)|a|:d0a ceey (cn,a)\a\:dn) = Z CO,axaz ey Z Cn,al'a

lal=do la|=dx

Here |a| = d; means that a runs over all tuples a = (ag,ay,...,a,) € N*T! satisfying
la] = ag + -+ a, = d;. Let us denote

A= (C[(Cp} = C[(CO,a)Ialzdov SR (cma)la\:dn}

for the ring of polynomials whose variables represent the coefficients of a member of
Fs(dp,...,dy). A property is said to hold for a generic member of Fs(dy,...,d,)
if there is some polynomial g € A such that the property holds for ¢(CP \ Vs (g)).
Resultants are a powerful tool for finding such a polynomial g for many interesting
properties of polynomial systems.
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Definition 3.4.1 (Resultant). A resultant of the family Fs(do,...,dy,) with d; >
1,4 =0,...,nis a polynomial Resy, .4, € A such that Resy,, . a4, (a) = 0if and only if
¢(a) represents a homogeneous system which has a solution in P and Resy,,... a4, (@) = 1
for the point a € CP with a = ¢~ (z°, ..., zdn).

Note that the second condition on the polynomial Resq, .. 4, € A is just a scaling
condition. We will use the notation Resq,,. q,(a) = Resa,y....a,(fo,.--,fn) =
Res(fo, ..., fn) for a = ¢=(fo,..., fn). The following theorem tells us that Definition
3.4.1 makes sense and it gives a selection of some of the interesting properties of the
resultant.

Theorem 3.4.1. For any tuple (do,...,d,) € Ng'gl a resultant Res = Resq,, .4,
ezists and it is unique. Moreover, it has the following properties:

1. Res has coefficients in Z,

2. Res is an irreducible polynomial,

3. each term of Res has degree do - --d;i_1d;iy1 -+ - d,, in the variables (¢ q)|a|=d, -
Proof. All of these statements and more are discussed in [CLO06, Chapter 3, §2 and
3] with proofs or full references. O

Example 3.4.1 (Sylvester resultant). Let S = C[z,y] and consider two general
homogeneous polynomials

fo=aoy™ + arzy®™ ' + -+ agyx®, fi =boy™ + bray® T+ -+ by M

In this example A = Clag, ..., ady, b0, - - -, b4, ]. It is a classical result that fo and fy
have a common root in P! if and only if the determinant of the (dg + dy) x (do + dy)
matrix

ydrl xydl—z zd1—1 ydo—l zdo—1
ylotdi—t T ag bO -
myd0+d1’2 ay ag b1
N N aq - e bO
Syl(fo, f1) = pao - g, L 4 ; by (3.4.1)
gdotlyd1—2 ag, aq bd1 .

with coefficients a; appearing in the first d; columns and b; in the last dy columns, is
zero (see [CLO06, Chapter 3, §1] and [CLO13, Chapter 3, §6] for the affine version).
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The indexing of the rows and columns by monomials comes from the interpretation of
Syl(fo, f1) as the matrix representation of the linear map

Sdy—1 X Sdg—1 = Sag+di—1  given by  (qo,q1) = qofo+ a1

in monomial bases for S4 _1 X Sg,—1 and Sgyia,—1 (e.g. for Sg,_1 the basis
{yB =Y oy®=2 . x%171} is used). We set Resg, 4, = det(Syl(fo, f1)) and one can
trivially check that Res satisfies the scaling condition Res(y®, %) =1 (we let = play
the role of z; and y the role of z( in Definition 3.4.1). A

Example 3.4.2 (The determinant of a square matrix). The resultant Res; 1,1 is the
determinant of the matrix (c; ¢, )o<i,j<n Where e; is the exponent vector corresponding

to x;. A
Remark 3.4.1. To gain some more insight in property 3 of Theorem 3.4.1, suppose
that we let the coefficients of the polynomials fi,..., f, take on generic values
(¢fo)jal=d;»@ =1,...,n. We investigate the condition on the coefficients (co,a)|a|=d, Of
fo such that fo = f1 = ... = f, has a solution in P". The condition that fy(¢) =0
for some ¢ € P"™ imposes a linear condition on the (co,q)|a|=d,- Hence, for each of the
common zeros ¢ € Ve (f1,..., fn) we get a linear condition l; € C[(co,a)|a|=d,]- Then

we have that Ven (fo) N\ Ven (f1, ..., frn) is nonempty if and only if HCEWn(fl gy e =0.
By Bézout’s theorem 3.2.2 this is a homogeneous polynomial of degree dy - - - d,,. A

To conclude this subsection, we state some genericity conditions which we have used
in previous subsections in terms of resultants.

e In Subsection 3.2.3 we stated that for a general member (fl, cee fn) €
‘FR(d17 et dn) the homogenization (fl) AR 7Afn) = (ndl/\(fl)’ AR 777d'n, (fn)) does
not ‘add’ anything to the variety defined by f; =--- = f, =0, in the sense that

Ven (f1,- .., fn) is generically contained in Up. This is justified by the fact that
Ve (f1,- .-, fn) contains a point outside of Uy if and only if

f1(0 21, xn) = ... = fn(0,21,...,2,) =0
has a common solution in the hyperplane ‘at infinity’. Note that the
fi(0,21,...,2,) are homogeneous of degree d; in x1,...,z, and they have a

common solution in P*~! if and only if
Resa, ....a, (f1(0,21, ... xn), ..., fn(0,21,...,2,)) = 0.

This imposes a polynomial condition on the coefficients of fl, cee fn standing
with the monomials of degree dy, ..., d, respectively.

¢ A homogeneous version of the Jacobian condition of Remark 3.1.4 for a root
¢ € Ven(f1,..., fn) to have multiplicity > 1 is the following. For any set of
homogeneous coordinates z € C*t! of ¢ the gradient vectors

Vfi= <8fi (2),... 0 (z)) c !

Oxo " Oz,
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must be linearly dependent. This gives 2n + 1 homogeneous equations

fi==f=0, nVfii+---+yVfi =0
in the 2n+1 variables zq, ..., Tn, Y1, - - - , Yn. These equations have more structure:
they are homogeneous in the two sets of variables {xo,...,z,} and {y1,...,yn}

separately. The meaningful solutions correspond to points in the product of
projective spaces P* x P*~1. The existence of such solutions corresponds to the
vanishing of a multihomogeneous resultant. We omit the details and refer to
[CLOO06, Chapter 3, §5, Exercise 6]).

o Theorem 3.2.2 asserts that generic members of Fg(dy,...,d,) have a zero-
dimensional solution set. The condition for Vpn(f1,...,fn) to be positive
dimensional is the following. For any hyperplane given by fo = 0, fo € 51
there is a nonempty intersection Vpr (fo) N Ven (f1, ..., fn). This only happens
for coefficients (cz‘7a)|a|=di,i = 1,...,n that make the resultant Res; 4, . 4,
identically equal to zero. This is equivalent to the vanishing of the coefficients
of a degree d; ---d, polynomial in cg.,,...,Coe, Where e; is the exponent
vector corresponding to x; and each of these coefficients is a polynomial in
the (cf,)jaj=d;»? = 1,...,n. In particular, the subvariety of Fs(dy,...,dn)
corresponding to systems with a positive dimensional solution set is contained in
the variety of systems whose solution set intersects Vpn (z¢). These are exactly
the systems with solutions at infinity, whose variety we described above.

3.4.2 Macaulay matrices

There are several ways of using resultants for solving a system of polynomial equations
numerically. One approach is via u-resultants which recover the coordinates of the
points in Vpn(I) via a generalized eigenvalue problem (see e.g. [JVO05]). Another
approach uses hidden variable resultants to eliminate variables from the equations.
This leads to a polynomial eigenvalue problem which can be solved via, for instance,
linearization or numerical contour integration techniques [GT17]. The hidden variable
resultant approach has been studied quite extensively in the context of numerical
computation, using different resultant constructions (Sylvester/Macaulay type as well
as Bézoutian resultant constructions). The technique turns out to be quite effective,
especially in the case where n = 2 [BKM05, SVBDL14, NNT15, Tell6]. We should
mention that, even though in practice they usually give satisfying results, the fact
that these methods ‘project some variables away’ makes them inherently numerically
unstable. A proof and examples of worst-case scenarios are given in [NT16].

We will limit ourselves to the description of a way to obtain multiplication matrices from
an important resultant construction of Macaulay. This is the resultant-based approach
for solving equations that is most directly related to the methods proposed in this thesis.
The Macaulay construction is a generalization of Sylvester’s matrix (3.4.1) for the
resultant of two homogeneous equations on P!. Our goal is to construct a matrix which
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we will call Macg, ... 4, whose entries are coefficients of fo, ..., f, (that is, variables of
A), such that its determinant det Macg, ... 4, € A is a nonzero (polynomial) multiple
of the resultant Resg, .. 4, € A. As for the resultant, we will denote Macy,.... 4, (a) =
Maca,.....d, (fos- - fn) = Mac(fo, ..., fn) for a = ¢~ (fo,..., fn). In the case where
n = 1, we will have that Mac(fo, f1) = Syl(fo, f1). Note that the image of the
map represented by Syl(fo, f1) represents the degree p = dy + di — 1 part of the
homogeneous ideal (fy, f1). Indeed, the columns are obtained by taking all monomial
multiples of fp, f1 that result in a homogeneous equation of this degree. In the
generalized construction, the columns of our matrix will represent polynomials in

<f07' . afn>ﬁ C Sﬁ Where
p=do+di+---+d, —n. (3.4.2)

More precisely, they will be monomial multiples of fg,..., f,. In general, we will
not multiply f; with all monomials of degree p — d;, since this would not lead to a
square matrix Macg,, . 4, (and we cannot take the determinant). We denote the set of
monomials of degree p — d; by which we multiply f; to obtain columns of Macg,,... 4,
by ¥;. The set {Xo,...,3,}, indexing the columns of Macg,, . 4, , Will correspond
to a partitioning of the monomials of S5, indexing the rows of Macg,,... 4, They are
defined as follows:

Y, ={z"€S,
S, = et € S,

dp 312 a
xor divides x},

. dn—
2% does not divide z® but 2%"7' does },

¥ ={z* €S, xfi does not divide z® for i = 1,...,n but :cgo does },

and ; = {z¢/a% | 2% € 3},
Example 3.4.3. Let n =2,dy = 1,dy = 3,ds = 2. In this case, p = 4 and we get

2 2 2
Yo = {5, vox1, Tow2, 77, 122, 3}, Y1 = {To, 1,22},
3,2 2,2 2
Yo = {zy, xjr1, xox], TGT2, TT1T2, T1T2 )
The corresponding partitioning of the monomials in Sy into 3, 37 and X is illustrated
in Figure 3.4. In the figure, the monomial 23~ “*~*2z{' 25?2 is identified with the lattice
point (a1, az). Denoting
Jo = aoxo + a171 + azwa,
= boxp + b1af byxd b 240 b 2+ bga + bra?
J1 = boxy + bizgrr + bazgre + b3zox] + bazor1T2 + bsToTs + bewy + braiws
2 2
+ bg.TlIQ + b9£E2,

2 2 2
fo = coxf + cixor1 + oo + c3x7 + cax1x2 + 523,
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we obtain the matrix Macg, 4, 4, shown below.

acg zgwl a:gazg mozf ToxT1T2 :vfa:z Ty T1 T2 a:g ToT1 ToT2 wf T1x2 wg

mg -ao bo Co 1
wgzl al ap bl bO c1 Co

a3zs | ao ao bo by | c2 o

x%xf aq Qg b3 bl C3 (1 Co
mgmlzg ag al ap b4 b2 b1 Cq4 C2 C1 Co
zoaiws az a1 ag |br by bs 4 C3 C2
wow} a be b3 3 1

oy be 3

w?m ay b7 b(; Cq C3
zgxg as b5 bg Cs Co Co
zgzlzg a2 bg b5 b4 Cs Cq Co C1
zozg bg b5 Cs Co
wia} az bs bz cs 4 C3
zlxg bg bg Cy C4

5 by Cs

Note that the columns of Macg, 4, 4, are indexed by {Xo, X1, 32} and the rows by
{%6,%1, 55} (recall that ¥} = 2% - %;). The column corresponding to z3zs € Yo
represents the polynomial 23w fo in the monomial basis for Sy. A

4
.

| . .

T . . .

I

I

Figure 3.4: Illustration of the partitioning of S; into X (blue), X (yellow) and X
(orange) from Example 3.4.3.

Let us define the row vectors ¢x, (zo,...,z,) = (% | z* € ;) where the ordering of
the monomials is compatible with the indexing of the columns of Macg,, . 4,. That is,
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the columns are indexed by the vector

[¢Eo(x07 cee 7xn) e ¢2n(x0, N ,ZL’n)]

In the same way, we define the row vectors ¢sy (zo,...,2,) = (x* | z* € £}) such
that the order of the monomials is compatible with the row indexing of Macgy,.... 4,
Constructing the matrix Macg,, .. 4, as illustrated in Example 3.4.3, one can check
that Mac(xgo, ...,2%) is the identity matrix. This shows that det Macg,.....d, € A is

not the zero polynomial. Moreover, if ( € P" is such that fo(¢) =--- = fn.(¢) =0,
then for any set of homogeneous coordinates z € C" ™1\ {0} of ¢, we have that

[fs; (2) -+ bsr, ()] Mac(fo, .., fn) = [fo(2)ds,(2) ... fu(2)¢s,(2)] = 0.

This shows that if fo = --- = f,, = 0 has a solution in P", det Mac(fo,..., fn) =0,
which implies that
det Macq,, ..., € (Resq,,....d,)

,,,,, 4, is irreducible. Therefore, there is a
nonzero polynomial F such that det Macg,,....q,, = E'-Resq,,... 4, This polynomial E is
called the extraneous factor. In his paper [Mac02], Macaulay identifies the extraneous
factor as the determinant of a submatrix of Macg,,... a4, , see also [CLO06, Chapter 3,

§4].

In the construction of Macy, .. 4,, the set X consists of the d; - - - d,, elements

,,,,,

/o p—ar—-—a ai a
= {zp Tyt ey

a; <di,i:1,...,n}.

Therefore, the number of elements in Xf (and in ) is the Bézout number for the

family Fs(di,...,d,). We will see that this is no coincidence. In what follows, fix
(fo,---y fn) € Fs(do,...,d,) and define I = (fy,..., fn). We partition the matrix
Mac(fo,- .-, fn) into 4 submatrices as follows:
Yo {21,...727,,}
=) |_ Moo Mo,
Mac(fo,.-., fn) =
{Ella""zln} MlO Mll

Here Moy and M;; are square matrices. Just like the Sylvester matrix, the matrix
Mac(fo,. .., fn) can be interpreted as a map

Mac(fo, ..., fn) : Ao X Ap X oo X Ay = A

where A = S5p, A; = spanc(X;), given by Mac(fo, ..., f2)(qo,- -+, @) = qofo+ -+ gnfn-
The second block column of Mac(fo, ..., f,) is the restriction of this map to Ay x
e X A

M,
{Mﬁj = Mac(fo, - fn)|ArxxA,-
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Note that the image of Mac(fo,. .., fn)|a;x.-xA, is contained in I;. The following is
the main result of this subsection. It uses some terminology from Subsection 3.2.2.

Theorem 3.4.2. For any (do,...,d,) € N5 let (fo,..., fn) € Fs(do,-..,dy).
Suppose that I = (f1,..., fn) C S is such that Vpn(I) = {(1,...,(s} consists of
0 =dy -+ -dy, points with multiplicity 1 and the submatriz M1 of Mac(fo,..., fn) is
invertible. Then

1. Vpu(I) C Uy,
2. {z+1, | 2% € Xo} is a C-basis for (S/I), where p = p — dy,
3. the Schur complement Moy — M01M1_11M10 is the homogeneous multiplication

map M (S/1), — (S/I), in this basis,

fo/ﬂf/’gO :

4. detMac(fo, ..., fn) = det(M1) [T°_, ;%(Ci).

Proof. For the first statement, suppose that ¢ € Vpn(I) € P \ Uy. For any set of
homogeneous coordinates z € C"*1 \ {0} for ¢, this gives

6342) 021(2) - 6 o] = 0y 2) - 0 21 317
= [¢x,(2) -+ ¢sr (2)|M11

Here ¢y (2) = 0 since ¥ = 2l .53 and ¢ ¢ Uy. This contradicts the assumption that
M7, is invertible.

To show the second statement, note that p,p € Reg(Il) by Theorem 3.2.3. Since
HF;(p) = di---dn = #(X0) we have that the image of Mac(fo,..., fn)|A;x-xAn>
which has codimension d; - - - d,, in S; by the assumption that M;; is full rank, is I,.
This also shows that the elements of {z® + I, | 2® € X} form a basis for (S/I),.
The second statement now follows from the fact that ngo 2 (S/I), = (S/1); is an

isomorphism (Lemma 3.2.1).

For the third statement, we define Mf do = Moo — M01M1_11M10 and show that it is

0/10
indeed multiplication with fo/z0° in (S/I),. For any set of homogeneous coordinates
z of ¢ € Vpn(I) we observe that

(P52 (2) s (2) -+ sy, (2)] []\1\22 %(ﬂ [Mli_ldlMlo 1?1}
M, a5 M,
= [¢x (2) ¢z (2) -+ b5 (2)] [ fcb/% Mij
id 0
= o2)0m (20 - 0 {—MulMlo id} ’
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where ‘id’ are identity matrices of the appropriate size. It follows that
D ()M 00 = fol=)m, (2).
Using éx (2) = 28 ps, (2) we obtain

Iy (DM, 0 = 0 (2)m, (2)

xgo
This shows that the eigenvalues of M fo 0 ATE indeed the evaluations of the rational
0

function fo/zl" at the roots of I. We now show that the eigenvectors are also the
correct ones. For any h € S, such that h(¢) # 0 for all { € Vpn (1), let eve = (S/1), = C
defined by f + I, — (f/h)(¢) be the corresponding element of (S/I)¥. We think of
eve as a row vector, represented in the basis Xg of (S/I),. Then ¢x,(2) = h(z)ev,
together with Theorem 3.2.4 shows the third statement.

The fourth statement is obtained from

_ Moy Mo id 0 - Mf /xdo Moy,
det Mac(fo, ..., fn) = det ({Mlo Mu} {—MﬂlMlo id}) = det [ (E) 0 My

O

Example 3.4.4. Consider the case where n = 1, fo = x, fi = coy™ + cryh 1o +
o+ eg,xh and we use xg = y, 1 = x for the definition of the Macaulay construction.
We find p = d; and

Yo = {yP oy 72 aB T w) = {1}

which gives

g1 gyd1—2 -1
yh i e .

oyt~ 1 ol

Syl(fo, f1) = Mac(fo, f1) = =™~ 1 2
x4 i 1 car |

and the Schur complement Myg — Mg M. 1_11 My is the Frobenius companion matrix of
fl (Z, 1) A

The condition that M is invertible clearly imposes a determinantal condition on the
coefficients of the f;. This determinant is not the zero polynomial, which makes sure
this condition holds for general members of Fg(do,...,d,) (see [Emi96, Lemma 4.4]).
We make three remarks and end the subsection with an extension of Example 3.4.3.
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Remark 3.4.2. Theorem 3.4.2 implies the following for systems of equations on C™.
Suppose that for a member (fi,..., f,) € Fr(di,...,dn) with R = Clys, ..., yn] the
homogenization (f1,...,fn) € Fs(di,...,dy,) defines a zero-dimensional projective
variety whose points have multiplicity one and for some fy € Sy, the submatrix M,
of Mac(fo, f1, .., fn) is invertible. Then

iy + (o fo) L < diji=1,...,n}

is a basis for R/(fl, cee fn> and the Schur complement Moy — My M;* Mo, is
multiplication with fo(1,y1,...,yn) in R/{f1,..., fn) represented in this basis. This
is what we observed in Example 3.4.4 in the case where n = 1. A

Remark 3.4.3. Note that in the situation of Theorem 3.4.2 the Schur complement
can be written as the matrix product

_ . 1 [M
Moy — Mot M ;" Myg = [id  —Moi M {Mﬂ ,

where the first factor satisfies

. 17 [ Mo1

[ld _M01M111:| |:M11:| =0.
Since M7, is invertible, it follows that the kernel of the linear map [id —MOlell]
is the image of Mac(fo,..., fn)|a,x---xA, : A1 X --- x Ay = A, which is I;. That is,
[id —M01M1_11:| represents a linear map N : S, — C? such that

0—1I; — S, 5 C° —0

is a short exact sequence, and N_d4, : S, — C?® given by N _ao(f) = N(zd f) is onto.
0 0

Such a map will give rise to a homogeneous normal form, a concept that we will define

in Section 4.5. One can check that if, dy = 1 and fy = z; for some i, then

. —17 | Moo

id —Mo M

[ 01471 } |: M10:|
is merely a ‘column selection’ of the matrix N. All this indicates that a homogeneous
normal form with respect to I (in a large enough degree p) gives us all the information
we need to compute the homogeneous multiplication operators. AN

Remark 3.4.4. Another, equivalent way to state that the kernel of N is the
image of Mac(fo,..., fn)|a,x--xa, 1S to say that N is the cokernel map of
Mac(fo, .-, fn)|A1x--xA,- The terminology used in numerical linear algebra literature
is that N is the left nullspace of Mac(fo,..., fn)|A;x-xA,- Since the image of
Mac(fo, -+, fn)|Asx--xA, 15 the same as the image of

Sﬁfdl X+ X Sp,dn — Sﬁ with (qh ce 7qn) = q1fl + -+ (]nfn, (343)
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N may also be obtained as the cokernel of this map. Examples 3.4.1 and 3.4.3
illustrate that the two maps are the same for n = 1,2. The definition of the map
(3.4.3) seems slightly more natural or ‘intuitive’ than the one coming from the Macaulay
resultant matrix, which restricts this map to subspaces of the S;_4, which give the
same image. Computing the cokernel of (3.4.3) instead of Mac(fo, ..., fn)|A;x---xA,>
although mathematically equivalent, gives better results numerically (even for generic
systems of equations). We will illustrate this in Example 4.3.1. The use of cokernels of
maps like (3.4.3) for polynomial root finding in affine and projective space is studied
extensively in a numerical linear algebra context in the work of Dreesen, Batselier and
De Moor [DBDM12, Drel3, Bat13, BDDM14]. A

Example 3.4.5 (Example 3.4.3 continued). Theorem 3.4.2 tells us that if the
submatrix M7y of Mac(fo,..., fn) is invertible, there cannot be any roots at infinity
(the proof of this statement does not need the assumption of zero-dimensionality on
I ={fo,..., fn)). This implies that if there are roots at infinity, det M7, must be zero.
So the assumption that M;; is invertible fails when f; = --- = f, has solutions at
‘infinity’ (i.e., outside of Uy). However, this may not be the only case for which the
condition is not satisfied. We investigate this for the matrix of Example 3.4.3. As we
saw in Subsection 3.4.1, the equations f; = fo = 0 define solutions outside of Uy if
and only if the polynomial Res,, € A vanishes, where Res,, is defined as

C3 b6
¢y 3 by be
Resco = Resz 2(f1(0, 21, 22), f2(0,21,22)) =det [c5 ¢4 c3 bg by
C; Ca bg bs
cs by

Using Macaulay2, we find that
det M11 = Cs (b90364 - b86365 + bﬁcg) RGSOO .

This confirms that det M7; vanishes whenever f; = fo = 0 has roots ‘at infinity’, but
it will also vanish when either c5 = 0 or bgczcy — bgescs + bgcz = 0. A



Chapter 4

Truncated normal forms

This chapter introduces a new algebraic approach for solving zero-dimensional systems
of polynomial equations. The key concept is that of a truncated normal form, which
generalizes Grobner and border bases (Section 3.3) as well as the resultant method
described in Section 3.4. One of the main issues that is addressed by truncated normal
forms is the following. Neither Grobner/border bases nor resultants allow for a way of
choosing a basis for the quotient algebra related to a zero-dimensional ideal based on the
numerical properties of the problem of computing multiplication operators in this basis.
This was mentioned as an open problem in [Mou07]. A solution is proposed in our first
paper [TVB18], where the system is assumed to be a generic member of Fr(dy,...,d,)
in the sense that there are dj - - - d,, many roots in C™, counting multiplicities. The key
idea is to let the basis be picked by a QR factorization with optimal column pivoting,
which is a standard tool in numerical linear algebra. It was pointed out to the author
by Tomas Pajdla that the bad numerical behavior of standard monomials coming
from Grébner bases for the computation of multiplication matrices was also noticed in
the computer vision community. The authors of [BJA07, BJA08] use both QR and
SVD techniques for basis selection on some problem-specific matrix constructions.
The definition of truncated normal forms was first given in [TMVBI18]. Next to
developing the theory of the truncated normal form framework, the article proposes
explicit algorithms for solving several families of systems, including Fr(d1,...,d,),
for which the algorithm is a reinterpretation of the algorithm in [TVBI18]. Other
families of systems considered in [TMVB18] are the polyhedral families discussed in
Chapter 5, the homogeneous families Fg(dy, ..., d,) and multihomogeneous families.
As mentioned above, the framework allows for a systematic way of selecting a basis
for the quotient algebra which behaves well for numerical computations. As we will
show in examples, these bases lead rarely to ‘connected to 1’ subspaces, let alone order
ideals (see Subsection 3.3.2 for definitions). In a follow-up paper [MTVB19] some
generalizations and modifications of the algorithms in [TMVB18] are proposed.

The content of this chapter is strongly based on the papers [TVB18, TMVBIS,

89
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MTVB19]. In Section 4.1 we give a motivating example for developing the framework
of truncated normal forms, which is done in Section 4.2. We use the results of Section
4.2 to give an explicit numerical linear algebra based algorithm for solving generic
members of Fg(dy,...,d,) in Section 4.3. Section 4.4 discusses some ideas to make
the algorithm more efficient and the use of non-monomial bases for the algebra R/I. In
particular, we consider bases coming from using the SVD for basis selection and (tensor
product) Chebyshev bases. Finally, Section 4.5 describes homogeneous normal forms
for root finding in P™. The algorithms in this chapter focus on the isomorphic families
Fr(dy,...,d,) and Fg(dy,...,dy,). Generalizations to other (polyhedral) families, as
introduced in [TMVB18, Section 4] and in [Tel20] for the homogeneous case, will be
given in Chapter 5.

4.1 A motivating example

Let R = C[z,y] and consider the family Fg(2,2) of polynomial systems with two
equations in two unknowns of degree at most two. A member (f1, f2) € Fg(2,2) is
given by

fi = ao + a17 + agy + azz® + aswy + azy?,
fo = by + b1z + boy + b3x® + bazy + bsy.

For any values of a;,b; € C, these two polynomials generate an ideal I = (f1, f2) € R
for which we want to compute Vgz(I). The a;, b; are the variables of the coordinate
ring A = Clao, . ..,as,bo, ..., bs] of the affine variety C'? parametrizing our family.
Motivated by the results of Subsection 3.1.1, we want to compute the multiplication
maps M, : R/I — R/I and M, : R/I — R/I in some basis of R/I. With the
appropriate genericity assumptions (see Subsection 3.1.2), we know that this basis
should consist of four elements. Suppose we want to work with the basis B+ I =
{b+1|0be B} where B={1,z,y,2y}. If we can compute the representations

2 +1=—c11 —ca1x—c3ny —canxy +1,

y2 +1=—ci2—cCoor —cC32y —cCapxy+1, (4.1.1)
gy +1=—c14— cour — 34y — cagzy + I, o
zy? +1=—c15 — Co5% — C35y — casry + 1

of 2%, y%, 2%y, zy*> modulo I (the indexing of the coefficients ¢; ; € C and the minus
signs will soon make sense), then the multiplication matrices M,, M, in the basis
B+ I are given by

1 T Yy Ty 1 =z Yy Ty
1 0 —C1,1 0 —C1,4 1 0 0 —C12 —Ci5
z 1 —c 0 —c z 0 0 —c —c
M, = 21 24 M, = 22705 (41.2)
y 0 —c31 0 —c34 1 0 —c32 —c35
ey | 0 —e4n 1 —cuq zy | 01 —c4p —eg5
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The coefficients ¢; ; depend, of course, on the specialization to C? of the parameters
a;,b;. In order to compute (4.1.1), we consider the so-called resultant map

res: R<1 X R<i — R<3 given by res(qi,q2) = ¢1.f1 + ¢2 fo.
Using the bases {1,z,y} for R<; and {1,z,y,zy,...,y>} for R<s, this map is

represented by
1 =z y 1 =z y

1 ag bo
x ay; ag bl b()
y | a2 ap by bo
Ty a4 Q2 A1 b4 bg bl
. z? as aj bg bl
e v? | as az bs by
z3 as b3
ny a4 as b4 b3
ny as a4 b5 b4
Y as bs

Note that the columns of this matrix correspond to the polynomials

f17$f17yf1af27$f27yf2 € IﬁRS&

In fact, from the definition of res it is clear that imres C I N R<s, so applying res to
any column vector of length 6 gives us an element in I N R<3. Assuming that the
considered member of Fr(2,2) is generic, the submatrix of res consisting of its last 6
rows is invertible (see Subsection 3.4.2) and we can find particularly nice elements of
I N R<3 by computing

1 =z y 1 = y g1 92 93 9ga g5 GJe
1 _CLO b() i 1 —6171 6176_
z ay ap b1 bo L T C2,1 C2.6
y | az ap ba by | [az a by by ] y | c3,1 ... C36
zy aq a2 Ay b4 b2 bl as ag b5 b2 Yy C4.1 e C4.6
z2 as ajp bg bl as b3 o z2 1
v a5 az bs  be ag az by b3 oy 1
x3 as b3 as 4 b5 b4 z3 1
%y a4 as b4 b3 L as b5_ z2y 1
zy2 as a4 b5 b4 ny 1
v | as bs | v | 1]

This gives the polynomials g1, . . ., gg, of which g1, g2, g4, g5 establish the representations
(4.1.1). Notice that, in particular, H = {g1, g2, g4, g5} is a reduced B-border basis for
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I, with B = span(B) C R (B has the connected to 1 property) and with respect to
the monomial basis 0B = {x2,y?, 2%y, 7y} of 9B = BT /B. In this computation, we
have computed two ‘extra’ rewriting rules modulo I, given by g3, gs.

An important observation is that we could play the same game for any B consisting
of four monomials such that the square submatrix of res corresponding to the rows
not indexed by B is invertible. We will denote the determinant of this submatrix by
Dp € A, and the evaluation for a specific instance by Dp(f1, f2). Another restriction we
impose on B is that the result of the computation allows us to construct multiplication
matrices as in (4.1.1) and (4.1.2). For this we need that the monomials in 9B (i.e. the
monomials outside B obtained from multiplying the monomials in B with x and y)
are contained in R<3. We conclude that we can pick any four element subset B of
W = {1,z,y,2% xy,y*} such that Dg(f1, f2) # 0. The algorithm goes as follows. Let
V= {1,z,y,2% xy,y?, 23, 2%y, vy%,y3} be the set of all monomials of degree at most
3. For any four element subset B C W such that Dg(f1, f2) # 0, construct the matrix
of res such that its first 4 rows are indexed by B:

Multiply res by M;;' (which makes sense because by construction Ds(fi, fo) =
det M71) to obtain

. -1_ B MOlMﬁl B C
res My, T WN\B { id Tws | id |

The columns of the result give rewriting rules analogous to (4.1.1) for V' \ B modulo I,
which directly gives us the multiplication matrices in the basis B + I since 9B C V \ B.
Indeed, all that is left to do is plug in the (negative of the) entries of the matrix C
into M, M, in the right place.

In Section 4.2 we will prove formally that this algorithm can indeed be used to compute
the multiplication matrices M, M, for any four element subset B C W such that
Dg(f1, f2) # 0. If B = spang(B) is connected to 1, this gives a reduced B-border
basis for I and the correctness of the algorithm follows from the theory of border bases.
To show that this approach is indeed more general, we have computed Dy for all 15
four element subsets of W using Macaulay2. Each of these 15 polynomials in the ring
A turns out to be nonzero, which means that for generic members of Fg(2,2), any
of these 15 possible choices of B works. Out of the 15 possible choices, only 5 satisfy
the connected to 1 property. These configurations are shown in Figure 4.1. Among
these five connected to 1 bases, there are only three order ideals. These are the three
leftmost bases depicted in Figure 4.1. Note that the basis used in Example 3.1.2 is not
in the picture. The computations in that example can be checked using the method
described here.
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o fie fro il

Figure 4.1: All possible subsets B (blue dots) of monomials of degree at most two for
which B is connected to one. The border 86 is indicated with small orange boxes.

Remark 4.1.1. In the case of Fr(2,2) we have shown that imposing the connected
to 1 condition on the basis B reduces the number of possible choices of monomial
bases of degree at most 2 from 15 to 5. To see how this scales with the degree of the
equations, we have performed an analogous computation for the families Fr(2,3) and
Fr(3,3). For (f1, f2) € Fr(2,3), we consider the map res : R<a X R<1 — R<4 given
by res(q1,¢2) = q1f1 + g2 f2 and we compute the determinants Dg for all six element
subsets B of the 10 monomials of degree at most 3. There are 210 such subsets, out of
which 3 give a determinant Dg = 0. These three ‘bad’ subsets! are

{1,z,y,2% 2y,9*}, = {Lz,y, 2%, 2y, 9%}, y- {1, z,y,2%, 2y, y°}.

Among the other 207 subsets B, which can be used as a basis B+ I for R/I for generic
members of Fg(2,3), there are only 19 subsets for which B is connected to 1, and only
6 of those are order ideals. For Fr(3,3), we consider the map res : R<s X R<s — R<s
given by res(q1,q2) = ¢1f1 + ¢2f2 and we compute the determinants Dg for all 5005
nine element subsets B of the 15 monomials of degree at most 4. Out of all these
monomial bases, 4975 work for generic systems, of which 129 correspond to connected
to 1 subspaces and 12 are order ideals. A

Now that we have established that there are, in general, 15 possible choices for B,
the question is which one to pick? The following numerical example makes it clear
that, when computing in finite precision arithmetic, some choices may be significantly
better than others.

Example 4.1.1. Consider the equations

f =x+%y2—x2, fa= —1x+ ;x + 12,
for which (f1, f2) equals the ideal I in Examples 3.1.6 and 3.3.4. This represents a
member of Fg(2,2) which is non-generic in several ways. For instance, the roots have
multiplicity greater than one. It is also non-generic in the sense that 13 out of 15
determinants Dg(f1, f2) vanish for this system. To make sure that we are dealing
with generic equations, we perturb f; and fs slightly to obtain

f{:fl—i_el) f£:f2+625

1To see why these subsets cannot give bases for R/, one can check that the vanishing of f; € R<s
at all the points in Vgn (I) implies that there cannot exist Lagrange polynomials supported in these
monomials.




94 TRUNCATED NORMAL FORMS

where (e, e2) € Fr(2,2) have random real coefficients which are all drawn from a
normal distribution with mean 0 and standard deviation 10~7. All determinants
Dg(f1, f4) are nonzero. For all 15 choices of B, we use Julia to compute the condition
number Kz of the matrix M7, from the algorithm explained above in double precision
arithmetic. The result is

K{1,z,y,xy} = 2.6 - 100, R{1,z,y,22} = 2.9 108, R{1,z,y,y2} = 1.3- 1077

/{{17z’x27xy} =1.8- 108, ’f{l,y,zy,gﬂ} =4.4- 108, H{m,ﬂ,my,gﬂ} =1.7- 107,
H{z,y,zz,zy} =1.6- 107, K{x,y,z2,y2} =23 107, K{y,zz,my,yQ} =84- 107,
K{z,yzyy?} = 14" 108, K{1,22,0y,y2} = 1.1 107, K{lyz2y2) = 1.1- 107,
K{l,m,IQ,yQ} =9.2. 108, H{1,y7zz7zy} =1.0- 100, ’i{l,z,wy,yQ} =1.7- 107.

Notice that for all choices of B except {1,z,y,zy} and {1,y, 22, zy}, the condition
number is of order at least 107. This means that in the computation of C via
M01M1_11 we can expect to lose about 7 digits of accuracy (see Section B.1). Using
B={1,z,y,zy} or B={1,y,22% xy} the multiplication matrices would be computed
accurately up to machine precision. Note that this mirrors our conclusion in Example
3.3.4 that it is much better to stick with the basis B = {1, z, y, xy} instead of switching
to B = {1,x,y,2%} after perturbing the coefficients of f; and f, slightly. In fact,
B = {1,z,y,zy} is the only basis for which B is connected to one and My, is well-
conditioned. Dropping the connected to 1 requirement, we see that there is another
option B = {1,y, 22, zy}, for which the condition number of Mj; is nearly perfect. A

Example 4.1.1 shows that the choice of the right monomial basis B might be crucial
for the accuracy with which we can compute the multiplication matrices. Let resyy be
the submatrix of res with rows indexed by the monomials in YWW. We can formulate the
problem of ‘finding a good B’ as finding a submatrix of resy, that is well-conditioned.
This is a problem that can be solved by a standard algorithm in numerical linear
algebra, called the QR decomposition with optimal column pivoting (see Section B.3).

We continue the discussion under the assumption that we chose the basis B =
{1, z,y,zy} when we write down the matrices that are involved explicitly. Computing
the matrix C = MOlel1 leads directly to a cokernel map NRsz : R<s — B given by

T y zy 1;2 y2 z3 x2y Iy2 y3
1 1 —C1,1 —Cl,2 —C3 —Ci4 —Ci5 —Clg
Ne. = ° 1 —Cg1 —C22 —C23 —C24 —C25 —C2p
<3 1 —C31 —C32 —C€33 —C34 —C35 —C3¢6
zy 1 —c4n1 —cap —Ca3 —Ca4 —Cip —Cap

To see that this is indeed the cokernel of res, recall that C' = My M;;* and

. . i [M
[id —C]res=[id —MyMp;'] {Mﬂ =0.

We have that ker Nr_, = imres C 1N R<3 and (Nz_,)|p = idp. As we will see, under
the assumptions that I defines 4 points in C? this implies that in fact we have the
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equality ker Np_, = I N R<3. Therefore, Np_, rewrites elements of R<3 modulo [
as elements of B. A nice consequence is that the multiplication operators M, and
M, in the basis B + I can be read off directly from Ng_,: We define N, : B — B by
N (b) = Ng_,(zb) and N, : B — B by N (b) = Ng_,(yb). This gives

1 x Y Ty 1 =z Y Ty
1 0 —C1,1 0 —C1,4 1 0 0 —C1,2 —C15
./\/ =z 1 —C21 0 —C2.4 N oz 0 0 —C22 —C25
© = 0 — 0o — A 10 — - ’
Y C3,1 C3,4 Y C3,2 C35
zy | 0 —cs1 1 —cyq zy | 0 1 —cu2 —au5

which are exactly the matrices of (4.1.2). This suggests a different (but equivalent)
way of obtaining the multiplication matrices. First, compute a cokernel matrix
N : R<3 — C* of res (e.g. using the singular value decomposition, see Section B.2).
The columns of N are indexed by the monomials in V. Next, select a submatrix Np
of N indexed by a 4 element subset B C W such that Ng is invertible (Np is the
restriction of the map N to the subspace B = spang(B) C R<2). If necessary, permute
the columns of IV such that the first 4 columns correspond to Ng and set

Nr., =Ng'N:R<s — B.

It is clear that after this procedure, ker Ng_, = imres and (Ng_,)p = idp. The
multiplication matrices can now be obtained as the matrices of NV, and NV, as defined
above.

Just like in the first, equivalent approach, a choice of basis B has to be made. Again,
this comes down to finding an invertible submatrix and for numerical stability reasons
one should pick a well-conditioned submatrix using, for instance, QR with optimal
pivoting.

4.2 A general framework for normal form methods

In this section we introduce truncated normal forms (TNFs) as defined in [TMVB18].
We consider a zero-dimensional ideal I C R = C[z1, ..., 2y,] such that V(I) = Ven (1) =
{#1,...,2s5} consists of § < co points and z; has multiplicity p;. We have seen in
Section 3.1 that this implies dim¢ R/I = § = py + -+ - + us. In the same section, we
also concluded that (numerical approximations of) the coordinates of the points in V(1)
can be computed via eigenvalue computations, once we know matrix representations
of the multiplication operators

My :R/I— R/I defined by My(f+1)=fg+1.

If B C R is a subset of 67 elements such that B+ 1 = {b+ I | b € B} is a basis
for R/I, then the columns of a matrix representation of My in the basis B+ I can
be computed by rewriting {gb | b € B} as a linear combination of the elements in B
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modulo the ideal I. A map R — B = spang(B) with the right ‘rewriting properties’ is
called a normal form.

Definition 4.2.1 (Normal form). A normal form with respect to I is a C-linear map
N : R — B where B C R is a C-vector subspace of dimension 6 such that

0—I-—>RY%B—0 (4.2.1)

is a short exact sequence of C-vector spaces and N|p = idp.

Definition 4.2.1 imposes the natural condition of linearity over C on a normal form N
It follows that, as vector spaces over C, B ~ R/I (Theorem A.2.2). However, since N/
is a C-linear map whose kernel is an ideal, it also identifies B with R/I as R-modules.

Lemma 4.2.1. For a normal form N : R — B with respect to I, define
Rx B — B with (f,b)— f-b=N(fb). (4.2.2)

Then (4.2.1) is a short exact sequence of R-modules.

Proof. We show that (4.2.2) satisfies the axioms of scalar multiplication (see Definition
A.2.1). For all f,g € R and b,b' € B we have

Lf-o+V)=N{fO+V)=N(fo) +N(fV)=f-b+f-V,
2. (f+9)-b=N({(f+9)b) =N(fb) + N(gb)=f-b+g-b,

3. (fg)-b=N(fgb) = N(fN(gb) + f(gb— N(gh))), and since N o N = N by
N|p = idp, we have that gb — N(gb) € ker N = I, so that f(gb— N (gb)) € I
and (fg) -b=N(fN(gb))=f-(9-b),

4.1-b=N(b) =b.

The map N is also R-linear, since N(fg) = f - N(g) (the argument is similar to the
one used in point 3 above). O

The property N o N/ = N used in the proof of Lemma, 4.2.1 is a projection property,
which is why normal forms are also called ideal projectors, see e.g. [DB04]. Notice
that we have encountered normal forms before: the map Ng of ‘taking remainder
upon division by a Grébner basis G’ and the map Ny of ‘B-reduction along the
subspace L = spang(H) for a B-border basis H’ both meet Definition 4.2.1. A direct
consequence of Lemma 4.2.1 is that for a normal form A : R — B, ‘multiplication
with g’ can be represented as the map B — B with b — N(gb).

As we remarked in Subsection 3.1.1, in order to compute the coordinates of the points
in V(I) it is sufficient to have a matrix representation for the maps M,,,i=1,...,n
representing multiplication with the coordinate functions. These maps are represented
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by b +— N(x;b), b € B. It is therefore sufficient to compute the restriction of a normal
form N to the finite-dimensional subspace

B*=B+4+2,-B+---+z, -BCR.

In practice, it will sometimes only be possible to compute J\/| B+ from M v for some
finite dimensional subspace V C R containing B™. This redundancy may force us to
compute with larger matrices, but we can still extract the information we need. We
therefore make the following definition.

Definition 4.2.2 (Truncated normal form (TNF)). Let B,V be finite dimensional
C-vector subspaces of R such that B* C V. A truncated normal form (TNF) on V
with respect to I is a C-linear map Ny : V — B such that there is a normal form
N : R — B with respect to I such that N}y = Ny.

Some obvious properties of a TNF Ay, : V — B with respect to I are

Property 1. The sequence 0 — INV — V ﬂ B — 0 is exact,
Property 2. (Ny)|p = idp,
Property 3. dim¢ B =67.

It is not so straightforward that the converse statement is also true: TNFs are
characterized by these properties.

Theorem 4.2.1. Let B,V be finite dimensional C-vector subspaces of R such that
BT CV and let Ny : V — B be a C-linear map. If Nv,V, B satisfy Properties 1-3
above, then Ny : V — B is a TNF with respect to I.

Before stating the proof of Theorem 4.2.1, it will be helpful to prove a lemma about
the following construction. Consider a map Ny : V — B with Bt C V. For
u € B, we define a linear map N, : R — B by defining it on monomials first and
extending it linearly. For a monomial z* € R that can be written as x;, - - - x;, with
1< <. <1y <n we set

No(@i, - mi) = Ny (@i Ny (i, Ny (- Ny (i u) -+ +))),  Nu(1) = . (4.2.3)

Under the assumption that (NV)‘B = idp, the resulting C-linear map N, : R — B
has the following property.

Lemma 4.2.2. Let B,V C R be finite dimensional C-vector subspaces of R such that
Bt CV and let Ny : V = B be a C-linear map satisfying (Nv)|p = idg. For any
u € B, the C-linear map N, : R — B obtained by extending (4.2.3) linearly is such
that for any f € R, No,(f) + (ker Nyv) = fu+ (ker Ny) in R/(ker Ny/).

Proof. It suffices to show the lemma for monomials, so we can assume f = x;, - - - x;,
with 1 <4 < --- < iy < n. For s = 0, the lemma holds trivially since N, (1) = u.
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Since (Nv)|p = idp, we have that Ny (f) — f € ker Ny for all f € V. Hence, for s = 1
we have NV, (z;) = Ny (z;u) = z;u + h for some h € ker Ny For s > 1, the proof is by
induction on s. Suppose the lemma holds for all monomials of degree s — 1, then

J\/u(acil .- -xis) = NV(xilNV(xiz ot xl)),
=xy Ny (T, --3;,) +h  for some h € ker Ny .

Since Ny (xi, + -+ x;,) = @, - - 2, + h' for some h' € (ker N/) we have
Nu(zil e :1;75) e "I“il e :I“is + xilh/ + h’

which concludes the proof. O

Proof of Theorem 4.2.1. Our strategy is to construct explicitly a normal form N :
R — B satisfying |y = Ny. First, observe that from

0—InV —V¥%B_—0 (4.2.4)

(Property 1) we have that B ~ V/(I N'V) as C-vector spaces. Since dim¢c B = 4§+ =
dimc¢ R/I (Property 3), the canonical inclusion V/(I NV) — R/I is an isomorphism.
This gives an isomorphism ¢ : B — R/I, so that every residue class f + I € R/I has a
representative : ~1(f + I) € B. We define

u=1'1+1)€B

such that w + I = 1 + I. We define the map N : R — B as N, from Lemma 4.2.2.
That is, for a monomial z;, ---x;, € R, 1 <i; <--- <iy <n we set

N (@i, - xi,) = Nv (@, Ny (2, Nv (- - Ny (zi,u) -+ -))), (4.2.5)

and N (1) = u. We extend this map linearly to get a C-linear map N : R — B.

We now show that N : R — B is a normal form with respect to I. By Lemma 4.2.2, we
have that N'(f)+1 = f+I. Note that here we use Property 2. Using V = B& (INV)
(which follows from (4.2.4)), we get the following three statements.

o ker ' =1. If f € ker NV, then f+1 = 0+1. Conversely, if f € I, then N(f) € I,
and hence N(f) e BN (INV)={0}.
e Nip=idg. Forany be B, N(b) —be BN (INV)={0}.
+ N(R) = B. This follows directly from N = idg.
This shows that A/ : R — B is a normal form with respect to I and hence R = I & B.

It remains to show that Ny = Ny. For f € V, we have that N(f) — f € I and
Nv(f) — f e INV. Therefore N(f) — Ny (f) € BNI={0}. O
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Example 4.2.1. A TNF associated to a border basis normal form Ny : R — B (with
B connected to 1) is (Ny)p+ = Np+ : Bt — B, given by ‘projection of B* onto B
along L = I N BT’ The short exact sequence looks like this:

0-—L-—pBtYstp 0

A Grobner basis gives a TNF by extending it to a border basis as in Example 3.3.5
and applying the same construction to obtain Ng+. The map Ng_, : R<z — B from
Section 4.1 is TNF by Theorem 4.2.1. A

Remark 4.2.1. In the proof of Theorem 4.2.1 we extended the linear map Ny
satisfying Properties 1-3 to a C-linear map A : R — C by defining it on monomials as
in (4.2.5). The definition seems to depend on the order of the variables z;,, ..., z;,
in which the monomial is expanded. To show that the map does not depend on this
ordering, note that for each b € B, by Ny (f) = f + h for some h € I NV there are
hi, hj € INV such that

Ny (@iNy (2;0)) = Ny (2;Nv (2:d)) = Nv (220 + 2ihj — xj20 — 25h;)
= Nv(xihj - (E]hz)
= 07

where the last equality follows from h;, h; € INV = z;hj—x;h; € I and z:hj —xjh; =
ziNy (z;b)) — xjNy (z;b) € V. This means that in the proof of Theorem 4.2.1, the
assumption that 1 <147 < .-+ <14y < n was not strictly necessary: any other expansion
of a monomial 2% € R would give the same map A. The fact that for any b € B,
Ny (2 Ny (z;b)) = Ny (z;Ny (x;b)) corresponds to the pairwise commutativity of the
multiplication operators M, o My, = M, o My,. A

Note that once we have picked a basis V for V and B for B, a TNF Ny : V — B is
just a matrix. If we have computed such a matrix, it is straightforward to compute the
multiplication matrices M,, in the basis B + I by computing the maps b — Ny (z;b).
In other words, we have reduced the root finding problem to the problem of computing
a TNF with respect to I. To prove that a map Ay : V — B (with BT C V) is a
TNF, Theorem 4.2.1 shows that it suffices to show that is has Properties 1-3. In what
follows, we will replace property 1 by a property that may be more convenient to
check in practice.

In the following theorem, for v € R and an ideal J C R we use the notation (J : u) =
{feR]| fue J}.

Theorem 4.2.2. Let B,V be finite dimensional C-vector subspaces of R such that
BT CV and let Ny : V — B be a C-linear map. If Nv,V, B are such that

1. ker Ny C INV and there is uw € V such that w+ I is a unit in R/I,
2. (Nv)p = idp,
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3. dimc B = 5+,
then Ny : V. — B is a TNF with respect to I. Moreover, we have I = ((ker Ny) : u).

Proof. If w+ I is a unit in R/I for some u € V, then Ny (u) + I is also a unit in R/I
since Ny (u) —u € ker Ny € I NV, which implies u + I = My (u) + I. Hence, we
can pick an element u € B such that « + I is a unit in R/I. We define the C-linear
map N, : R — B by extending (4.2.3) linearly. We consider the sequence of C-vector
spaces

0— kerN, — R B — 0, (4.2.6)

which we now show to be exact. Exactness at ker M,, and R is clear. To show that N,
is surjective, we consider the C-linear map ¢ : B — R/I given by ¢(b) = b+ I. By
the assumption that ker Nyy C TNV, Lemma 4.2.2 tells us that N, (f) + I = fu+ 1.
Hence, we have that ¢(N,(f)) = fu+ I. This shows that ¢(imN,) = R/T and hence
dimc(im N,,) > dime R/I = dim¢ B, which implies im N,, = B.

The fact that Ny (f) + I = fu + I also shows that ker N, C I. Indeed, if NV, (f) = 0,
then fu+ I =0+ I which implies that f € I since u + I is a unit. Exactness of the
sequence (4.2.6) implies that dim¢ R/ ker V,, = dim¢ B = dim¢ R/I, which together
with ker N, C I means that I = ker N,,.

We now define N : R — B by N(f) = Nu(fu™') for any u=! € R such that
w~lu+1 =1+ 1. To show that N is a normal form with respect to I whose restriction
to V is Ny, we prove the following two things.

e ker N =1. This follows from the fact that N,(fu=') = 0 is equivalent to
fu~! € I, which is in turn equivalent to fu=tu+1I=f+1=0+1in R/I.

o Ny =Ny. For f € V we have Ny (f) = f + h for some h € ker Ny C I NV

and N(f) = Ny (fu™!) = futu + h' for some b’ € (ker Ny/) C I (see Lemma
4.2.2). Therefore N(f) — Ny (f) € BNI = {0} by (4.2.6). In particular, this
implies that N = (Ny)|p = idp.

This shows that My : V — Bis a TNF. It remains to show that I = ((ker V) : u). The
inclusion ker Ny, € I NV implies (ker Ny) C I and thus ((ker Ny) :u) C (I :u) =1
(fu € I implies f € I since u+ I is a unit in R/I). The opposite inclusion follows from
the fact that if f € I then N, (f) =0, and thus 0 = fu + h for some h € (ker Ny/) by
Lemma 4.2.2. We conclude that f € ({(ker Ny/) : u). O

The following corollary of Theorem 4.2.2 will be important for the numerical stability
of algorithms based on TNFs.

Corollary 4.2.1. Let 'V be a finite dimensional C-vector subspace of R and let W C V
be its largest subspace such that W+ C V (see Remark 4.2.2). If the space V and a

C-linear map N : V — c’ satisfy the following properties:
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1. ker N C INV and there is u € V such that u+ I is a unit in R/I,

2. Njw : W — C®" s surjective,

then for any d1-dimensional subspace B C W such that Nip is invertible, Ny =
(Njg)"'o N :V — B is a TNF with respect to I.

Proof. Note that surjectivity of Ny ensures that there exists some B C W of
dimension 0" such that N|p is invertible. It suffices to check that Ny = (Njp)~'o
N, B,V satisfy the assumptions of Theorem 4.2.2, which follows trivially from ker Ny, =
ker N. O

Remark 4.2.2 (Existence of W). The vector space W C V in Corollary 4.2.1 is
W=A{feV]zfeV,i=1,...,n}.

To see this, note that W is closed under addition and scalar multiplication. Moreover,
for each subspace T satisfying W C T' C V we can find an element ¢ € T'\ W for which
x;t ¢ V for some %, which implies 7T ¢ V. We conclude that W is indeed the largest
subspace of V such that W+ C V. A different way of thinking about W that does not
require taking elements was pointed out to the author by David Cox. Define W to
be the sum of all subspaces T' C V such that T+ C V (this is a nonempty collection,
containing {0}). By (U4 T)* =U* + T, we see that WT C V, and W is clearly
the maximal such subspace. A

The word any in Corollary 4.2.1 is very important: the space B is not required to
come from a monomial order, to be spanned by an order ideal or to be connected
tol. The map N :V — €% from Corollary 4.2.1 can be thought of as a “‘TNF in
disguise’: all we need to do to turn it into a TNF is to compose it with Nljgl for any
§T-dimensional subspace B C R such that N)p is invertible. The terminology used in
[TMVB18] is that N covers a TNF.

Definition 4.2.3. For a finite dimensional C-vector subspace V of R,amap N : V —
C%" is said to cover a TNF Ny : V — B with respect to I if there is an isomorphism
P:B —C’ such that Ny = P~'o N.

Proposition 4.2.1. Let V be a finite dimensional C-vector subspace of R and let
W be as in Corollary 4.2.1. A map N : V — C*" covers a TNF Ny : V — B with
respect to I for any B C W such that N|p is invertible if and only if it satisfies the
assumptions of Corollary 4.2.1.

Proof. The ‘if’ direction is Corollary 4.2.1. For the ‘only if’ direction, suppose N :
V — €% covers a TNF Ny : V — B with respect to I, for any B C W such that
N\p is invertible. Then N = P o Ny for some isomorphism P : B — C%". Since
Np=Pand BCW, Ny : W — Cc s surjective. It follows from the definition of
a TNF that ker N = I NV and for the normal form N such that A}, = Ny we have
NQ)+TI=1+1,s0u=N(1) € B is such that v+ I is a unit in R/I. O
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A natural next question to ask is ‘given a set of generators of I, how do we compute a
map N :V — C*" that covers a TNF with respect to 17 As we have seen, Grobner
and border bases are one way to go, and in Section 4.1 we hinted that Macaulay
resultant matrices also lead to an example (at least in the case n = s). However, these
techniques do not fully exploit the freedom for choosing B (Corollary 4.2.1). The
goal of the next section is to present an algorithm that does exploit this, for generic
members of Fr(dy,...,d,).

4.3 Solving generic, dense systems

Although our goal in this section is to find solutions of a square polynomial system in
affine space, some of the arguments need the homogeneous ideal obtained from
homogenizing the affine equations. To avoid ambiguities we adopt our usual
notation in this setting. Throughout this section, let R = Clyi,...,y,] and let
(fl, . fn) be a generic member of Fr(ds,...,dy,) for (dy,...,d,) € NZ; in the sense
that Ven (fl, cee fn) consists of 67 = d; ---d,, points, counting multiplicities. Let
S = Clzo,...,x,) and let f; = 14, (f;) be the homogeneous polynomials obtained
by homogenizing the fi. We denote I = (fi,...,f.) C S and Iy = S (Upy) =
<f1, cee fn> C R. We denote (Ip)<q = IopNR<4 for any d € N. This section is organized
as follows. In Subsection 4.3.1 we discuss resultant maps and their close relation to
TNFs. In Subsection 4.3.2 we present an algorithm for solving fl =... = fn =0
under the assumptions that there are no solutions ‘at infinity’. Finally, in Subsection
4.3.3 we show some numerical experiments.

4.3.1 Resultant maps

An effective way of computing a TNF starting from a set of generators of the ideal
Iy C R is by using resultant maps.

Definition 4.3.1 (Resultant map). For a tuple (fi,...,fs) € R*® and finite

dimensional C-vector subspaces Vi,...,V;,V C R such that f;-V; C V,i=1,...,s,
the resultant map is the C-linear map

resj, ; :Vix--xVy—=V given by resflw’fs((jh ) = Gufi A+ Qs fs
We have encountered a resultant map before in Section 4.1. We will also consider
resultant maps associated to elements of a graded ring S, which have a ‘compatibility’
property with respect to the grading.

Definition 4.3.2 (Graded resultant map). Fix d € N5y. For a tuple (f1,..., fs) €
Sa, X --- x 84, and finite dimensional C-vector subspaces A; C Sq_q,,9 = 1,...,s,
A = Sy, the graded resultant map is the C-linear map

vesf, . A1 X x Ay — A given by resy, s (q1,-...qs) =qfi o+ Gsfse



SOLVING GENERIC, DENSE SYSTEMS 103

Examples of graded resultant maps are the map ¢; in the Koszul complex (3.2.2)
and the map represented by Mac(fo,. .., fn) in Subsection 3.4.2 (the connection with
Macaulay’s matrix construction for computing resultants is why these maps are called
resultant maps).

Recall that by Corollary 4.2.1, to show that a map N : V — C®" covers a TNF with
respect to I, it suffices to show that ker N C Ig NV, there is u € V such that u + I is
a unit in R/l and N}y is onto (C5+, where W C V is the largest subspace such that
W+ C V. A first indication that resultant maps could help us compute TNFs is the
trivial observation that imres;  ; C Iop NV. This means that if N:V — V/imres

is the cokernel map? of res, we have that ker N C Iy N V. Our task is to choose the
spaces Vi,...,V, and V for the resultant map

resp o Vix-ooxV,—=V
in such a way that the cokernel also satisfies the other criteria. One possible choice
that works for generic members of Fg(dy,...,d,) follows directly from Macaulay’s

construction. Let dy =1, p=dy+---+d, —n+1and let Ag,...,A,, A be as defined
in Subsection 3.4.2. Moreover, we let V; = nﬁ_jdi (A;) be the image of dehomogenization

restricted to A; and V = nﬁ_l(A). Note that V; C R<;_q, and V = R<;.
Proposition 4.3.1. Let p,V1,...,V,,V be as defined above and consider the resultant
map

resp oo Vix---xV, =V
If for some fo € Sy, the submatriz My of Mac(fo,..., fn) is invertible, then the

corank of resp s 5% and any cokernel map N : V — cs* of resp i COVETS G
TNF with respect to Iy.

Proof. Using the notation
Np—dy o pedn = Mp—dy X =7 X Np—dy, 2 VI X oo X Vg = Ay X XAy,

for ‘component-wise’ homogenization, we get the commuting diagram

TS f1 L fn

Vix--xV, 1%

J{nﬁdl,m,ﬁdn Jj]ﬁ

Ay X oo x A, —2rln g

from which we see that im resp g and imresy, . ¢

1y-es)n

are isomorphic via 7. Since

n

M,
TESf1,sfn = Mac<f07 IR fn)|A1><-..><An = |:M?1:|

2The (canonical) cokernel map of a C-linear map ¢ : V — V'’ is the projection 7 : V! — V’/im ¢.
We say that ¢ : V/ — V' is a cokernel map of ¢ if kerip) = im¢ and ¢ : V//im¢ — V"' given by

P(v +im¢) = ¢(v') is an isomorphism.
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and we are assuming that M, is invertible, we have that res Froif has corank §7.
Since 1 € V and 1+ I is a unit in R/Iy, we only need to show that the restriction

of amap N :V — C%' such that ker N = im resy ; tothe subspace W = R<;_1

is onto C%". We can choose bases of Vi,..., Vs,V such that the resulting matrix
representation of res Frof 08

Mo,
resflv'“vfn - |:M11:| :

Indeed, the rows are indexed by the ‘dehomogenized versions’ of the monomials
in ¥f,...,%, (in the notation of Subsection 3.4.2) and the columns by the

n
dehomogenization of Xg,...,X,. A cokernel map of res i f, 18 given by

N=[d —MyuMy'], [id —MoMy'] {]\]\/4[(1)1] -

From this observation it is clear that N|p is onto (C5+, where B is the C-span of
the 6+ monomials in 17,3_1(26). Since X{, = xg - X, zo divides all monomials in X
and therefore all monomials in B are of degree < p. It follows that B C W and
Ny (W) =C?". O

As noted in Remark 3.4.4, the image of the graded resultant map resy,, . . : Ay x---x
A, — A with Aq,...,A,, A coming from Macaulay’s construction does not change
when we replace A; by S;_q,. As the image remains unchanged, nothing happens
to the cokernel map either. As a result, one may think that it is better to stick
with the smaller spaces A; from Macaulay’s construction, since it leads to a cokernel
computation of a smaller matrix. However, we observe in numerical experiments that
the cokernel of the larger matrix is less sensitive to perturbations (see Appendix B).

Example 4.3.1. We consider a member (fl, fa, fg) € Fr(8,8,8) whose coefficients
are all real and drawn from a standard normal distribution. We construct matrices for
two resultant maps

TeSf) fa,fs * A1 X A2 X Ag — A

For the first map, A = S22 and A; is spang(X;) coming from Macaulay’s construction.
For the second map, A = Soy and A; is the entire graded piece S14. The corresponding
matrices have sizes 2300 x 1788 and 2300 x 2040 respectively. These are also matrices
for the resultant maps

resfl’fg’fngl XVox Vs —=V

where V; is the dehomogenization of A; and V is the dehomogenization of A. The
singular values of these matrices are shown in Figure 4.2. The sensitivity of the
cokernel of the matrix to perturbations can be measured by the smallest singular
value that is considered ‘numerically nonzero’ (see Section B.2). This is the size of the
minimal perturbation that enlarges the dimension of the cokernel by 1. The smaller
this number, the more ill-conditioned the problem of computing the cokernel is. For
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Figure 4.2: Singular values of two resultant maps with the same image.

A; = spang(X;) we expect the matrix to be of full rank: there are 1788 nonzero
singular values. For A; = S14, the image of the map does not change so there are
still 1788 nonzero singular values. However, now there are 252 singular values that
are numerically zero: they are of the order u - o1, where u ~ 1076 is the working
precision and o7 is the largest singular value. This causes the dramatic ‘jump’ for the
blue dots at j = 1788 in Figure 4.2. The ratio o17gs/01 is approximately 2.12 - 1078
for Az = spanC(Ei) and 1.76 - 10~2 for AZ = 514. A

Proposition 4.3.1 implies that for a generic member (fl, ceey fn), a TNF with respect
to Iy can be computed from the cokernel of the resultant map

resg p i Vixoex V=V (4.3.1)
where V; C R<;_q, is the dehomogenization of A; = spang(3;) C Sj—q, and V =
R<; = nﬁ_l(Sﬁ). By the discussion above, it is an easy corollary that for a generic
member (fl, ey fn), a TNF with respect to I can be computed from the cokernel
of the resultant map (4.3.1) where each V; is replaced by the larger space R<;_q;.
‘Genericity’ here means that Mj; is invertible. As we have seen in Example 3.4.5, this
implies that the resultant

Resco = Resa, . oa, (f1(0,21, .. 2n), ooy [ (0,21, .o 2p))

does not vanish. However, the converse statement is not true: it might be that there
are no solutions at infinity (Reso, # 0), yet Mi; is not invertible. The following
proposition shows that Res,, # 0 is the only condition we need for our cokernel
computation to lead to a TNF.

Proposition 4.3.2. Let V; = R<j_q,,t = 1,...,n and V = R<;. Consider the
resultant map
resp o Vix---xV,—=V.
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If Resso # 0, then the corank of resp ;o is 5% and a cokernel map N : V — cst of

resp i COVETs 4 TNF with respect to 1.

------

Proof. Since 1 € V and ker N C Iy NV is immediate, we only have to show that Ny

is onto C*", where W = R<;—1. As in the proof of Proposition 4.3.1, we have that
imres;  ; ~imresy . 5, where

Lyeees

resg, ., A XX A = A

with A; =14, (Vi) = Sp—q, and A =1,;(V) = S;. The assumption Ress # 0 implies
that Vpn (I) is zero-dimensional (see Subsection 3.4.1). The statement about the corank
of resj ; follows from imresy, ., =I5, and by the proof of Theorem 3.2.2, I,

n

has codimension d* in ;.

It also follows from the proof of Theorem 3.2.2 that HF;(p) = dimc(S/I), = 6
for p = p — 1. Therefore, we can pick a set of 67 monomials B, C S, such that
B, + I, is a basis for (S/I),. Since z, vanishes at none of the points in Vpn(I),
Lemma 3.2.1 tells us that, under the assumption that all multiplicities are 1 (6 = §1),
My, = (S/I), — (S/I)p41 is an isomorphism of C-vector spaces. However, this
is also true for arbitrary multiplicities (Corollary 5.5.3). A consequence is that
B; =xo-B, ={xoz® | z* € B,} C S, is such that B; + I, is a basis for (S/I);. Let
{91,...,9m} be a basis for I;. Since HF;(p) = 6, we know that m = dim¢ S, — 6.
We order the monomials V; of degree p such that the 7 monomials in B, come first
and represent the inclusion I, — S; by the matrix

g || |
Bs M01
M = g1 9m = f |: :|
B, | M
Vp\Bj ‘ ‘ Vi\Be M
We claim that Mj; is invertible. If not, there is a nonzero vector v € C™ such that
Mi1v = 0. Since M is full rank ({g1,...,gm} is a basis), we must have Mv # 0. The
vector Muv represents a polynomial in I N spanc(B;). Since B, + I is a basis for
(5/1)p, this leads to a contradiction. Since im M = I = imresy, ..y, ~imres; ¢,
we have that
n, (Bs)  myt(Vo\Bp)
N= [ id —MuM;" ]

satisfies NM = 0. We conclude that N : V — C%" represents a cokernel map of
res; ¢ and the restriction of N to B = spanc (77;1 (Bp)) is onto C?". By construction,

xo divides every monomial in Bj, which implies B C W. O

Corollary 4.3.1. If Resy, # 0, then the image of res ;
Vi,V as in Proposition 4.3.2 is (Io)<;.

Vi X xVy, =V with
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Proof. By Proposition 4.3.2, a cokernel map N : V — C%" covers a TNF with respect
to Iy. Therefore

0—I,nV —vV25c o

is exact and ker N =imres; ; =IoNV = (lo)<p. O

Tyeees

Remark 4.3.1. If T = (f1,..., f») is zero-dimensional but Res,, = 0 (there are
isolated solutions at infinity), then a random affine change of coordinates y; <
cio + Z;Zl ci;y; will make sure that the points at infinity move into the affine chart
Uy, and Proposition 4.3.2 applies after performing this change of coordinates. A

Example 4.3.2. The resultant maps from Proposition 4.3.2 are often presented in a

monomial basis for Vi,...,V,, V. This leads to highly structured matrices with an
interesting sparsity pattern. An example for n = 3 and dy = 5,ds = 4, d3 = 6 is shown
in Figure 4.3. The matrix has size 560 x 505. A

4.3.2 Algorithm

The following simple example illustrates the main steps in the algorithm presented in
this subsection.

Example 4.3.3. We consider the polynomial system in Example 3.1.2. To be
consistent with our notation of this section we replace x, vy, f1, f2, I in that example
by y1, 92, f1, f2, Ip here. The equations become

fl =T+ 3y1 — 6y — 4y% + 2y1y2 + 5937
f2 =—1—3y; + 14y, — ny + 2y1y2 — 31/%-

The resultant map from Proposition 4.3.2 is represented by

1w oy oyi owive v ¥ Wiy wivs v

h T 3 -6 -4 2 5

yifu 7 3 —6 -4 2 5
resT . — ya fr 7 3 —6 —4 2 )
fi.f2 fo -1 -3 14 -2 2 -3
y1f2 —1 *3 14 -2 2 73
yzfz -1 ) 14 -2 2 -3

Knowing the solutions of fl = fg = 0 (see Example 3.1.2), we can construct a cokernel
matrix N whose rows represent ‘evaluation at z; € Vp2(Ip)”. This gives

T oy oy ¥) wive w3 Y5 Yive vyl vs

ey [1 -2 3 4 -6 9 -8 12 —18 27

N o Ve 1 3 2 9 6 4 27 18 12 8
wen, |1 02 1 4 2 1 8 4 2 1
evio |1 -1 0 1 0 0 -1 0 0 0
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Figure 4.3: Nonzero pattern for the resultant map res Frfarfs - RegxR<gxR<7 = R<i3
for a generic member of Fr(5,4,6).

One can check that Nres; ; = 0 and N has rank 4. This is of course cheating:
we cannot construct a cokernel like this in practice. However, this construction will
do for illustration purposes. We use the basis B = {y1,v2,y?,y1y2} (B in Example
3.1.2 corresponds to B + Iy here) and B = spang(B). The corresponding TNF is
Ny = Nlj;N. Defining N; : B — B by N;(b) = N(y;b) we find that

My, : B — B s given by My, (b) = Ny (yib) = (N5 N)(y:ib) = (N5 Ni)(b)-
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The maps N|p, N1, N2 are the submatrices of N corresponding to B,y - B, y2 - B. They
are given by

—2 3 4 —6 4 —6 -8 12 6 9 12 —18
3 2 9 6 9 6 27 18 6 4 18 12
Ne=1l9 14 o M=1y 9 g 4" M=|9 1 4 o
-1 01 0 1 0 -1 0 0 0 0 0

One can check that M, = N‘;Nl is indeed the matrix ‘M,  obtained in Example
3.1.2. A

Proposition 4.3.2 leads directly to Algorithm 4.1 for computing the multiplication
operators M., +=1,...,n. There are other ways to tackle the actual implementation

Algorithm 4.1 Computes multiplication matrices for (fl, ceey fn) € Fr(di,...,dp)
such that Resy, # 0

1: procedure MULTIPLICATIONMATRICES(f1, ce fn)

2: p=di+--+d,—n+1

3 resp g 4 the resultant map Vi x --- x V,, = V from Proposition 4.3.2
4 N ¢ cokerres; ¢
5: Njw < submatrix of N corresponding to monomials of degree < p
6 N|p « submatrix of Ny corresponding to an invertible submatrix
7

8

9

B < monomials corresponding to the columns of Np

fori=1,...,ndo
: N, < submatrix of N corresponding to z; - B
10: Myi — (N‘B)ilN,;
11: end for
12: return My, ,..., M,

13: end procedure

(see e.g. Section 4.4). We focus on the following choices in Algorithm 4.1 for now. In
line 3, it is assumed that res Frof is constructed with respect to the monomial basis

yersJn

of V = R<;. The matrix has size

n
dim«; Rgﬁ X Z dim(c RSﬁ—di

i=1

or in terms of binomial coefficients:

(d1+-~-+dn+1> Xi<d1+--~+di1+di+1+--~+dn+1>.
n — n

In line 4, we 