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The goal of this document is to explain the basic dynamical behavior of an epidemic, such as the
flu, by means of a simple mathematical model. In particular, our aim is to show the importance of
drastic measures such as a lockdown of the population to reduce the impact of an epidemic, as well
as the influence of the limited capacity for medical care on the final death toll. The mathematics in
this document are kept as elementary as possible. Our interest was peaked by the ongoing Corona
pandemic. Although we have made an effort to use reasonable model parameters, we do not claim
that any of the results in this document should be considered as accurate predictions. We work with
limited real data and an overly simplified model, which will nonetheless give insight into the basic
dynamics. Furthermore, none of the mathematical or epidemiological results are new. More detailed
descriptions of the models we use here and many others can be found, for instance, in [Het00].

1 The SIR-model

We consider a population consisting ofN individuals. In our examples we will takeN = 11, 000, 000 =
11 · 106, which is roughly the number of Belgian citizens. The SIR-model is the most elementary
mathematical model for describing the dynamics of an infectious disease which spreads in our pop-
ulation. It is an example of a so-called compartmental model, which partitions the population into
several compartments or groups. Each of the compartments contains individuals having the same
characteristics related to the disease. The SIR-model uses only three groups, which give the model
its name:

1. the group of susceptible individuals, which are not infected yet, but may be in the future,

2. the group of infective individuals, which are infected by the disease and may infect others,

3. the group of recovered individuals, which had been infected at some point, but do no longer
carry the disease now. They are assumed to have become immune to the disease.

One can argue that this model allows for individuals to ‘die’, in the sense that the group of ‘recovered’
individuals can be partitioned further into a group of healed and deceased individuals. After all, the
deceased individuals no longer carry the disease and are immune to it, satisfying the requirements
as described previously to belong to that third group. The word ‘recover’ must in that case simply
be understood as transitioning from having the disease to not having the disease. We will model the
deceased individuals explicitly in Section 3.

In this model, the possible transitions between the groups is as follows. Susceptible individuals
may become infected, and infected individuals may recover. There is for instance no way for recovered
individuals to become susceptible or infected again. Schematically, we denote

S −→ I −→ R.

The result of our computation will be the number of susceptible, infected and recovered individuals
as a function of time. These quantities are denoted S(t), I(t) and R(t) respectively, where t is our
time variable, with time expressed in days.
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Example 1. S(48) is the number of susceptible individuals on day 48.

Example 2. At each moment in time, i.e., for each t, we have that S(t) + I(t) +R(t) = N .

In order to compute these functions, some information is needed. First of all, we need to know
the number of susceptible, infected and recovered individuals at time t = 0. These quantities are
denoted by

S(0) = S0, I(0) = I0, R(0) = R0.

Secondly, we need to know how fast the transition between the compartments S and I happens.
This is captured by a parameter β, called the infection rate of the disease. The number β can be
thought of as the number of individuals one infective person infects on average per day, assuming
everybody else is susceptible. Finally, we need the speed of the transition from I to R, that is, the
recovery rate. This is represented by the model parameter γ. The constant γ can be thought of as
the fraction of infected people that recover per day, on average. In other words, the inverse 1/γ is the
average duration of the infectious period. That being said, we update the schematic representation
of our model to

S
β−→ I

γ−→ R,

keeping in mind that β captures the rate of infection when everybody else is susceptible.

1.1 Model equations

To keep the notation simple, we will sometimes use the short notation S, I and R for the functions
S(t), I(t) and R(t). According to the SIR-model, the number of people that get infected each day
is proportional to S and to I. Indeed, the larger the group of susceptible individuals S and the
larger the group of infected people I, the faster the disease spreads. Recall that the parameter β
gives the average number of other people that are exposed to the virus by one infected person in
a single day. Since only a fraction S

N of the population is susceptible, this causes an average of βS
N

people to be infected each day for each person in group I. The rate of infection is thus βIS
N . The

second transition, from I to R, happens for a fraction γ of the individuals in I each day. The rate of
recovery is therefore γI. The final schematic representation of the SIR-model can be found in Figure
1 below.
The arrow labels in Figure 1 govern the speed at which the quantities S, I and R are changing over

S I R

βIS
N γI

Figure 1: Diagram of the SIR-model.

time. This is captured by a mathematical concept called the derivative with respect to time of the
functions S(t), I(t) and R(t). For instance, at time t, the number of susceptible individuals decreases

at a rate of βI(t)S(t)
N individuals per day, which results in the derivative

dS(t)

dt
= −βI(t)S(t)

N
. (1)

The minus sign reflects the decrease of S(t) and corresponds to the outgoing arrow S → I in the
diagram of Figure 1. The reader who is unfamiliar with derivatives, can read the expression (1)
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above as stating that the difference between the number of susceptible individuals at day t+ 1 and
day t is approximately

S(t+ 1)− S(t) ≈ −βI(t)S(t)

N
.

Writing down analogous expressions for the derivatives of I(t) and R(t) and using the short notation
S, I and R we get

dS

dt
= −βIS

N
dI

dt
=

βIS

N
− γI

dR

dt
= γI.

(2)

The system of equations (2) is an example of a system of ordinary differential equations. Our
approach for understanding the evolution in time of the population subject to the disease will be to
solve the following mathematical problem.

Problem 1. Find functions S(t), I(t), R(t) satisfying (2) and S(0) = S0, I(0) = I0, R(0) = R0.

Such a problem is called an initial value problem. The problem is nonlinear since the system
contains the product of the unknown functions I(t) and S(t). This system can be solved numerically,
i.e., in an approximate way by using computer algorithms designed specifically for this purpose.
These methods allow us to show the functions S(t), I(t), R(t) graphically and get a quantitative
understanding of the evolution of the three groups over time. The details are outside the scope of
this article.

1.2 A first simulation

In order to solve our initial value problem, we need to specify the initial quantities S0, I0, R0 and the
parameters β and γ of the model. Let us assume that at time t = 0, only one individual is infective
and all the others are susceptible. That is,

S0 = 10, 999, 999, I0 = 1, R0 = 0.

Moreover, we will assume that the duration of the infectious period of our disease is 14 days on
average. Together with the assumption that an infective individual infects 2.5 other people in their
infectious period (assuming all other individuals are susceptible), this gives

γ =
1

14
, β =

2.5

14
.

The result of the numerical simulation over a period of 1 year is shown in Figure 2. We make three
observations.

1. Since in our model (2) the ‘change’ over time of S(t) is always smaller than zero, the number
of susceptible individuals can only decrease.

2. Conversely, since dR
dt is always positive, the function R(t) can only increase.

3. The derivative of I(t) has two contributing terms. At the beginning of the simulation, when
the number of susceptible individuals is high, the term βIS

N will dominate over −γI and the
derivative will be larger than zero: the number of infected individuals grows. At some point
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Figure 2: Result of our first simulation with β = 2.5/14, γ = 1/14.

(after about 160 days in this example) the disease has infected so many people that too few
susceptible individuals are left. The term −γI now dominates the derivative of I(t): the
function starts decreasing. From

dI

dt
=

(
βS

N
− γ

)
I

we see that I(t) reaches its maximum exactly when the number of susceptible individuals equals
γN
β . On Figure 2, this corresponds to the fact that I reaches its maximum where S reaches the
value

γN

β
=

2

5
· 11, 000, 000 = 4, 400, 000.

2 Lockdown

In order to reduce the number of simultaneously infected individuals, the population can be urged
to practice social distancing. In its most extreme form, this comes down to a complete lockdown
of the population, which prohibits infected individuals (to a certain extent) from infecting more
susceptibles. In this section, we show by means of the SIR model what the effects of such drastic
measures may be. It is reasonable to assume that the model parameter that is influenced by a
lockdown is the infection rate β. As a first experiment, we compare the outcome of two different
simulations of the SIR model. For the first simulation, we use the same parameters as in Subsection
1.2. We index the model parameters and outcomes with a ‘1’ to emphasize that they correspond to
the first simulation:

γ1 =
1

14
and β1 =

2.5

14
give S1(t), I1(t), R1(t) as in Subsection 1.2.

For the second simulation, we assume that some sort of lockdown measure has caused the infection
rate β2 to be only 1.5/14. That is

γ2 =
1

14
and β2 =

1.5

14
give S2(t), I2(t), R2(t).

The curves I1(t) and I2(t) are shown in Figure 3. We conclude that the effect of decreasing the
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Figure 3: Number of infective individuals as a function of time for β1 = 2.5/14 and β2 = 1.5/14.

infection rate is to delay, lower and widen the peak of infection.
In practice, authorities will only enforce a lockdown once it is clear that a disease is spreading

problematically. To incorporate this into our model, we allow the infection rate β to change over
time. Explicitly denoting all time dependencies, the model becomes

dS(t)

dt
= −β(t)I(t)S(t)

N
dI(t)

dt
=

β(t)I(t)S(t)

N
− γI(t)

dR(t)

dt
= γI(t).

(3)

For the reference model, we will keep using the constant function β1(t) = 2.5/14. For the second
model, we will now assume that the initial infection rate is 2.5/14 as well. After 100 days, once a
significant number of infections is confirmed, a lockdown brings the infection rate down to 1.5/14.
Mathematically, this is denoted by

β3(t) =

{
2.5/14 t ∈ [0, 100]

1.5/14 t ∈ (100,∞)
.

The result is shown in Figure 4. Note that the curves I1(t) and I3(t) agree up to t = 100, which
makes sense from the definition of β3(t).

We conclude this section by noting that a timely lockdown can not only cause the number of
simultaneously infected individuals to decrease drastically, it also causes less infections overall. The
interested reader can see this from the results in the first Appendix. The Matlab code which was
used to run the simulations in this section can be found in the second Appendix. As we will see in
the next sections, in case of a deadly disease, these effects can decrease the death toll of the epidemic
significantly.

3 The SIRD-model

In this section, we explicitly keep track of deaths by introducing a fourth group D of deceased
individuals. We keep the previous groups S, I, and R from Section 1. The diagram of this model,
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Figure 4: Number of infective individuals as a function of time for β1(t) and β3(t).

called the SIRD-model, is given in Figure 5. The model assumes that infective individuals can either

S I

R

D

βIS
N

γI

δI

Figure 5: Diagram of the SIRD-model.

recover (I → R) or die (I → D). The speed of these transitions is given by the model parameters γ
for I → R and δ for I → D. The corresponding system of ordinary differential equations is

dS

dt
= −βIS

N
dI

dt
=

βIS

N
− γI − δI

dR

dt
= γI

dD

dt
= δI.

(4)

The initial value problem considered in this section is the following.

Problem 2. Find functions S(t), I(t), R(t) and D(t) satisfying (4) and S(0) = S0, I(0) = I0,
R(0) = R0 and D(0) = D0.

For a first simulation of this model, we use the model parameters

β =
2.5

14
, γ =

1

14
and δ = 0.003,
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and the initial conditions

S0 = 10, 999, 900, I0 = 100, R0 = 0, D0 = 0.

The results are shown in Figure 6.
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Figure 6: Result of our first SIRD simulation with β = 2.5/14, γ = 1/14, δ = 0.003.

4 Limited capacity for medical care

A certain proportion of the infective population will experience severe symptoms, being at a higher
risk of death. These individuals need additional treatment and fill up the capacity for medical care.
The number of individuals that can be treated simultaneously is limited. This limited capacity for
medical care causes the death rate δ to depend on the number of patients that is infected. In simple
terms, if hospitals are forced to choose which individuals to treat and which not, more people will
die.

Let C denote the number of infective individuals that fills up the capacity for medical care. We
will call this parameter the care capacity. Not all infective individuals need to be hospitalized. If
we assume that 10% of infective individuals need care and the maximum number of simultaneous
patients is 55, 000 (0.5% of the Belgian population), the care capacity is C = 55, 000/0.10 = 55×104.
If the number of infective individuals exceeds this care capacity, not all of the severe cases can be
treated.

It has been observed that for the new Corona virus COVID-19, infective individuals with severe
symptoms that do not receive the appropriate treatment have a much higher probability of dying.
Let us assume that the death rate is δ = 0.001 if I ≤ C and that δ = 0.005 for the individuals in I
that exceed the capacity C. In the latter case, the proportion of infective people that have access
to the available medical care is C

I and the proportion of infective people that do not is I−C
I . Hence,

one can express δ as a function of I as follows:

δ(I) =

{
0.001 I ≤ C

0.001C
I + 0.005 I−C

I I > C
. (5)
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Writing out all dependencies explicitly, the model (4) becomes

dS(t)

dt
= −βI(t)S(t)

N
dI(t)

dt
=

β(t)I(t)S(t)

N
− γI(t)− δ(I(t))I(t)

dR(t)

dt
= γI(t)

dD(t)

dt
= δ(I(t))I(t).

We can now observe the effect of a lockdown as described in Section 2 on the final death toll. Assume
that we start our simulation once 100 individuals are infected, i.e., assume

S0 = 10, 999, 900, I0 = 100, R0 = 0, D0 = 0.

The lockdown happens at day 60 and is such that the infection rate β lowers from 2.5/14 to 1.5/14.
Furthermore, as before, γ = 1/14. The results are shown in Figure 7. The number of susceptible,
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Figure 7: The effect of a lockdown on the number of infective and deceased individuals as a function
of time.

infective, recovered and dead people after one year is:

S(365) I(365) R(365) D(365)

no lockdown 12.2% 0.0% 84.0% 3.8%
lockdown 43.2% 0.1% 55.8% 0.9%

(6)

5 Conclusion

Lowering the infection rate β(t) over time has the effect of ‘flattening the curve’ of simultaneously
infected people. If the population succeeds at keeping the curve below the care capacity, the final
death toll can be reduced significantly.
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Figure 8: Phase portraits for different choices of the infection rate β.

APPENDIX: Phase plane portraits

Another nice way of representing the outcome of a simulation is by means of a phase plane portrait.
We consider a triangle ∆ whose vertices represent the groups S, I and R. We denote these vertices
by vS , vI and vR and we give them coordinates in the plane:

vS = (0, 0), vI = (1, 0), vR = (0, 1).

As time continues, we keep track of the point

φ(t) =
S(t)

N
vS +

I(t)

N
vI +

R(t)

N
vR.

For each moment in time t, φ(t) is a point in the plane which is a ‘linear combination’ of the vertices
vS , vI and vR. It is even a convex combination, which means that φ(t) is inside the triangle ∆ for each
t. For the reader to whom it does not make sense to take linear combinations of points in the plane,
it is sufficient to know that φ(t) is closer to the vertex vS when the number of susceptible individuals
is high, and analogously for the other groups in the model. For the different choices β1(t), β2(t), β3(t)
from Section 2, we denote the corresponding phase portraits by φ1(t), φ2(t) and φ3(t). The result is
shown in Figure 8. Since the difference between φ2(t) and φ3(t) is nearly invisible, we ran another
simulation with an infection rate β4(t), similar to β3(t) but with a lockdown enforced only after 150
days, instead of 100. Note that by looking at where the phase diagram hits the line segment between
vS and vR, we can deduce how many people have been infected by the disease. At the end of the
epidemic, for β1(t) nearly 90 percent of the individuals were infected by the disease. For β3(t), this
number has been reduced to almost 60 percent. For β4(t), roughly 75 percent of the population was
infected.

APPENDIX: Matlab code

function [ S,I,R, tnodes ] = SIR_fwd(S0,I0,R0,beta,gamma,T,dt)

% This solves the system of differential equations of an SIR model for

% the dynamics of an epidemic, such as the flu.

% INPUT:

% -------------------------------------------------

9



% S0 initial number of susceptible individuals.

% I0 initial number of infected individuals.

% R0 initial number of recovered/dead (immune) individuals.

% beta function handle describing the infection rate as a function of time.

% gamma the recovery/death rate.

% T the system is solved for the time interval [0,T].

% dt time step for the discretization of the differential equations.

% OUTPUT:

% -------------------------------------------------

% tnodes discrete points in time where the solution is computed.

% S S(t) is the number of susceptible individuals at time tnodes(t).

% I I(t) is the number of infected individuals at time tnodes(t).

% R R(t) is the number of recovered/dead individuals at time tnodes(t).

S = [S0]; % susceptible individuals

I = [I0]; % infected individuals

R = [R0]; % recovered/dead individuals

N = S0+I0+R0; % population size

tnodes = linspace(0,T,T/dt);

sol = [S0;I0;R0];

for t = 1:length(tnodes)-1

tt = tnodes(t);

v1 = -dt*beta(tt)*S(t)*I(t)/N;

v2 = dt*(beta(tt)*S(t)*I(t)/N - gamma*I(t));

v3 = dt*gamma*I(t);

solnew = sol + [v1;v2;v3];

S = [S solnew(1)]; I = [I solnew(2)]; R = [R solnew(3)];

sol = solnew;

end

end

Here’s an example of a Matlab script to run a simulation.

T = 365; % compute a solution up to time T

dt = .1; % time step for discretization

LD = 100; % time of lockdown

dur = 14; % average time an individual is infected

% Model parameters

beta = @(t) (2.5/dur+(t<LD)*1.5/dur); % infection rate

gamma = 1/dur; % recovery rate

% Initial conditions

S0 = 11*1e6 -1 % susceptible individuals

I0 = 1 % infected individuals

R0 = 0 % recovered/dead individuals

[ S,I,R, tnodes ] = SIR_fwd(S0,I0,R0,beta,gamma,T,dt);

figure; hold on;

plot(tnodes,S,’linewidth’, 1.5); plot(tnodes,I,’linewidth’, 1.5); plot(tnodes,R,’linewidth’, 1.5);

legend(’susceptible’,’infected’,’recovered/dead’)

xlabel(’time’)
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